1 Brief History and Overview of Nonlinear Water Waves

Total Page:16

File Type:pdf, Size:1020Kb

1 Brief History and Overview of Nonlinear Water Waves 1 Brief History and Overview of Nonlinear Water Waves 1.1 Linear and Nonlinear Fourier Analysis Man has long been intrigued by the study of water waves, one of the most ubiquitous of all known natural phenomena. Who has not been fascinated by the rolling and churning of the surf on a beach or the often-imposing presence of large waves at sea? How many countless times have ship captains logged the treacherous encounters with high waves in the deep ocean or later reported (if they were lucky) the damage to their ships? Man’s often strained friendship with the world’s oceans, and its waves and natural resources, has endured at least since the beginning of recorded history and perhaps even to the invention of ocean going vessels thousands of years ago. But it is only in the last 200 years that the study of water waves has been placed on a firm foundation, not only from the point of view of the physics and mathematics, but also from the perspective of experimental science and engineering. While water waves are one of the most common of all natural phenomena, they possess an extremely rich mathematical structure. Water waves belong to one of the most difficult areas of fluid dynamics (Batchelor, 1967; Lighthill, 1986) and wave mechanics (Whitham, 1974; Stoker, 1957; LeBlond and Mysak, 1978; Lighthill, 1978; Mei, 1983; Drazin and Johnson, 1989; Johnson, 1997); Craik, 2005, namely the study of nonlinear, dispersive waves in two-space and one-time dimensions. The governing equations of motion are coupled nonlinear partial dif- ferential equations in two fields: the surface elevation, Z(x, t), and the velocity potential, f(x, t). Analytically, these equations are difficult to solve because of the nonlinear boundary conditions that are imposed on an unknown free surface. This set of equations is known as the Euler equations, which are based upon sev- eral physical assumptions: (1) the waves are irrotational, (2) the motion is inviscid, (3) the fluid is incompressible, (4) surface tension effects are negligible, and (5) the pressure over the free surface is a constant. While one may question a number of these assumptions, it is safe to say that they allow us to study a wide variety of wave phenomena to an excellent order of approximation. Generally speaking, the Euler equations of motion (Chapter 2) which govern the behavior of water waves are highly nonlinear and nonintegrable. The term “non- linear” implies that the larger the waves are, the more their shapes deviate from simple sinusoidal behavior. The term “integrable” means that the equations of # 2010 Elsevier Inc. All rights reserved. Doi: 10.1016/S0074-6142(10)97001-0 4 Nonlinear Ocean Waves & Inverse Scattering Transform motion can be exactly solved for particular boundary conditions. It is often fash- ionable in modern times to discuss higher-order “nonintegrability” in terms of such exotic phenomena as bifurcations, singular perturbation theory, and chaos. Clearly, the special case of linear wave motion, for a well-defined dispersion relation, can be solved exactly by the method of the Fourier transform (Chapter 2). The Fourier method allows one to project the free surface elevation (and other dynamical properties such as the velocity potential) onto linear modes that are simple sinusoidal waves. Linear superposition of the sine waves gives the exact solution for the wave dynamics for all space and time. Modern research devel- opments have led to the development of the discrete Fourier transform and its much celebrated and accelerated algorithm, the fast Fourier transform (FFT). These developments of course emphasize the importance of periodic boundary conditions in the analysis of time series data and in numerical modeling situa- tions, because the discrete Fourier transform is a periodic function. A large number of scientific fields have embraced the Fourier approach. These include the study of laboratory water waves, oceanic surface and internal waves, light waves in fiber optics, acoustic waves, mechanical vibrations, etc. Both scientists and engineers in such diverse fields as optics, ocean engineering, communications engineering, spectroscopy, image analysis, remotely sensed satellite data acquisition, plasma physics, etc., have all benefited from the use of Fourier methods. Tens of thousands of scientific papers have contributed to the various fields and a number of books have provided a clear pathway through the difficulties and pitfalls of linear (space and) time series analysis, not only from the point of view of data analysis procedures, but also from the point of view of numerical algorithms. Clearly, linear Fourier analysis is one of the most important tools ever developed for the scientific and engineer- ing study of wave-like phenomena. The power of the Fourier method for determining the exact solution of linear wave equations is often cast in terms of the Cauchy problem for one-space and one-time dimensions: Given the wave profile as a function of space, x,atsome initial value of time, t ¼ 0, determine the solution of the surface wave dynamics for all values of x for all future (and past) times, t, that is, given the initial surface elevation Z(x,0)computeZ(x, t) for all t. In two-space dimensions (x, y, t), this perspective has the obvious generalization. Of course, the major goal of the field of nonlinear wave mechanics is to fully describe the surface elevation, Z(x, y, t), and the velocity potential, f(x, y, z, t), for all space and time. Within this theoretical context, an important aspect of the Fourier transform is the extension of the approach to the analysis of experimental data. Typically, (1) the wave amplitude is measured as a function of the spatial variable, x,at some fixed time, t ¼ 0 (this approach is often discussed in terms of remote sens- ing methods) or (2) the amplitude is measured as a function of time, t, at some fixed spatial location, x ¼ 0 (for which one obtains a time series). Clearly, one may also consider an array of fixed locations at which the wave amplitude is measured as a function of time. From a mathematical point of view, the first of these approaches is naturally associated with the Cauchy problem 1 Brief History & Overview of Nonlinear Water Waves 5 (one measures space series and Fourier analysis is defined over the spatial variable in terms of wavenumber) while the second method is associated with a boundary value problem (one measures time series and Fourier analysis is defined over the time variable and the associated frequency). Extension of the Fourier method to other aspects of the data analysis problem, such as the filter- ing of data and the analysis of random data, are also well known and are used often by researchers whose goal is to better understand wave-like phenomena. For those familiar with the analysis of measured space or time series the most often used numerical tool is the FFT, a discrete algorithm that obeys periodic boundary conditions. The Fourier transform for infinite-line or infinite-space boundary conditions has also been an important mathematical development; it solves the famous “rock-in-a-pond” problem. For most data analysis purposes, the discrete, periodic Fourier transform is most often preferred. As simple as the picture is for linear, dispersive wave motion, the extension of the Fourier approach to nonlinear wave dynamics has followed a long and difficult road. Analytical approaches for solving nonlinear wave equations have been slow to evolve and it is only in the last 50 years that general methods have become available. This theoretical work was a natural evolution that began, at least in modern terms, with the work of Fermi et al. (1955) who discovered a marvelous temporal recurrence property for a chain of nonlinearly connected oscillators. A few years later, Zabusky and Kruskal (1965) discovered the soliton in numerical solutions of the Korteweg-deVries (KdV) equation (small-but-finite amplitude, long waves in shallow water). Then the exact solution of the Cauchy problem for the KdV equation was found for infinite-line boundary conditions (Gardner, Green, Kruskal, and Miura, GGKM, 1967) using a new mathematical method now known as the inverse scattering transform (IST). This work was only the beginning of many new approaches for integrating nonlinear wave equations and for discovering their physical properties (Leibovich and Seebass, 1974; Lonngren and Scott, 1978; Lamb, 1980; Ablowitz and Segur, 1981; Eilenberger, 1981; Calogero and Degasperis, 1982; Newell, 1983; Matsuno, 1984; Novikov et al., 1984; Tracy, 1984; Faddeev and Takhtajan, 1987; Drazin and Johnson, 1989; Fordy, 1990; Infeld and Rowlands, 1990; Makhankov, 1990; Ablowitz and Clarkson, 1991; Dickey, 1991; Gaponov-Grekhov and Rabinovich, 1992; Newell and Moloney, 1992; Belokolos et al., 1994; Ablowitz and Fokas, 1997; Johnson, 1997; Remoissenet, 1999; Polishchuk, 2003; Ablowitz et al., 2004; Hirota, 2004). From data analysis and numerical modeling points of view, the IST plays a role in the study of nonlinear wave dynamics similar to the linear, periodic Fourier transform provided that the IST exists for periodic boundary condi- tions for a physically suitable nonlinear wave equation. One motivation for periodic boundary conditions for nonlinear equations rests with the fact that most applications of linear Fourier analysis are based upon the FFT, a periodic algorithm. The periodic formulation for the IST was discovered for the KdV equation in the mid-1970s (see Belokolos et al., 1994 and cited references) and subsequently applied to a number of other physically important wave 6 Nonlinear Ocean Waves & Inverse Scattering Transform equations. In this chapter, the Riemann theta function plays the central theoret- ical and experimental roles. Of course, one can see that the nonlinear Fourier analysis of time series data must contain a number of pit falls.
Recommended publications
  • Acoustic Nonlinearity in Dispersive Solids
    ACOUSTIC NONLINEARITY IN DISPERSIVE SOLIDS John H. Cantrell and William T. Yost NASA Langley Research Center Mail Stop 231 Hampton, VA 23665-5225 INTRODUCTION It is well known that the interatomic anharmonicity of the propagation medium gives rise to the generation of harmonics of an initially sinusoidal acoustic waveform. It is, perhaps, less well appreciated that the anharmonicity also gives rise to the generation of a static or "dc" component of the propagating waveform. We have previously shown [1,2] that the static component is intrinsically linked to the acoustic (Boussinesq) radiation stress in the material. For nondispersive solids theory predicts that a propagating gated continuous waveform (acoustic toneburst) generates a static displacement pulse having the shape of a right-angled triangle, the slope of which is linearly proportional to the magnitude and sign of the acoustic nonlinearity parameter of the propagation medium. Such static displacement pulses have been experimentally verified in single crystal silicon [3] and germanium [4]. The purpose of the present investigation is to consider the effects of dispersion on the generation of the static acoustic wave component. It is well known that an initial disturbance in media which have both sufficiently large dispersion and nonlinearity can evolve into a series of solitary waves or solitons [5]. We consider here that an acoustic tone burst may be modeled as a modulated continuous waveform and that the generated initial static displacement pulse may be viewed as a modulation-confined disturbance. In media with sufficiently large dispersion and nonlinearity the static displacement pulse may be expected to evolve into a series of modulation solitons.
    [Show full text]
  • Downloaded 09/24/21 11:26 AM UTC 966 JOURNAL of PHYSICAL OCEANOGRAPHY VOLUME 46
    MARCH 2016 G R I M S H A W E T A L . 965 Modelling of Polarity Change in a Nonlinear Internal Wave Train in Laoshan Bay ROGER GRIMSHAW Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom CAIXIA WANG AND LAN LI Physical Oceanography Laboratory, Ocean University of China, Qingdao, China (Manuscript received 23 July 2015, in final form 29 December 2015) ABSTRACT There are now several observations of internal solitary waves passing through a critical point where the coefficient of the quadratic nonlinear term in the variable coefficient Korteweg–de Vries equation changes sign, typically from negative to positive as the wave propagates shoreward. This causes a solitary wave of depression to transform into a train of solitary waves of elevation riding on a negative pedestal. However, recently a polarity change of a different kind was observed in Laoshan Bay, China, where a periodic wave train of elevation waves converted to a periodic wave train of depression waves as the thermocline rose on a rising tide. This paper describes the application of a newly developed theory for this phenomenon. The theory is based on the variable coefficient Korteweg–de Vries equation for the case when the coefficient of the quadratic nonlinear term undergoes a change of sign and predicts that a periodic wave train will pass through this critical point as a linear wave, where a phase change occurs that induces a change in the polarity of the wave, as observed. A two-layer model of the density stratification and background current shear is developed to make the theoretical predictions specific and quantitative.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Shallow Water Waves and Solitary Waves Article Outline Glossary
    Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other.
    [Show full text]
  • Dissipative Cnoidal Waves (Turing Rolls) and the Soliton Limit in Microring Resonators
    Research Article Vol. X, No. X / Febrary 1046 B.C. / OSA Journal 1 Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators ZHEN QI1,*,S HAOKANG WANG1,J OSÉ JARAMILLO-VILLEGAS2,M INGHAO QI3, ANDREW M. WEINER3,G IUSEPPE D’AGUANNO1,T HOMAS F. CARRUTHERS1, AND CURTIS R. MENYUK1 1University of Maryland at Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 2Technological University of Pereira, Cra. 27 10-02, Pereira, Risaralda 660003, Colombia 3Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA *Corresponding author: [email protected] Compiled May 27, 2019 Single solitons are a special limit of more general waveforms commonly referred to as cnoidal waves or Turing rolls. We theoretically and computationally investigate the stability and acces- sibility of cnoidal waves in microresonators. We show that they are robust and, in contrast to single solitons, can be easily and deterministically accessed in most cases. Their bandwidth can be comparable to single solitons, in which limit they are effectively a periodic train of solitons and correspond to a frequency comb with increased power. We comprehensively explore the three-dimensional parameter space that consists of detuning, pump amplitude, and mode cir- cumference in order to determine where stable solutions exist. To carry out this task, we use a unique set of computational tools based on dynamical system theory that allow us to rapidly and accurately determine the stable region for each cnoidal wave periodicity and to find the instabil- ity mechanisms and their time scales. Finally, we focus on the soliton limit, and we show that the stable region for single solitons almost completely overlaps the stable region for both con- tinuous waves and several higher-periodicity cnoidal waves that are effectively multiple soliton trains.
    [Show full text]
  • Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation 1. Introduction
    한국항해항만학회지 제41권 제2호 J. Navig. Port Res. Vol. 41, No. 2 : 55-62, April 2017 (ISSN:1598-5725(Print)/ISSN:2093-8470(Online)) DOI : http://dx.doi.org/10.5394/KINPR.2017.41.2.55 Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation Seung-Hyun An*․†Nam-Hyeong Kim *Coastal, Harbor and Disaster Prevention Research Institute, Sekwang Engineering Consultants Co., LTD. †Department of Civil Engineering, J eju National University, Jeju 63243, Korea Abstract : A nearshore current or a wave-induced current is an important phenomenon in a nearshore zone, which is composed of longshore, cross-shore, and rip currents. The nearshore current is closely related to the occurrence of coastal accidents by beachgoers. A considerable number of coastal accidents by beachgoers involving the rip current have been reported at Jungmun Beach. However, in studies and observations of the nearshore current of Jungmun Beach, understanding of the rip current pattern remains unclear. In this study, a scientific approach is taken to understand the nearshore current and the rip current patterns at Jungmun Beach by numerical computation for year of 2015. From results of numerical computation, the occurrence and spatial characteristics of the rip current, and the similarities between the rip current and incident wave conditions are analyzed. The primary results of this study reveal that the rip currents are frequently generated at Jungmun Beach, especially in the western parts of the beach, and that the rip currents often occur with a wave breaking height of around 0.5 ~ 0.7 m, a wave period of around 6 ~ 8 seconds, and a breaking angle of around 0 ~ 15 degrees.
    [Show full text]
  • CHAPTER 100 Another Approach to Longshore Current Evaluation M.A
    CHAPTER 100 Another approach to longshore current evaluation M.A. Losada, A. Sanchez-Arcilla and C. Vidal A simple model to predict the longshore current velocity at the breaker line on a beach with oblique wave incidence, is presented. The model balances driving and resistance terms (gradients of radiation and turbulent Reynolds stresses and bottom friction) to get a general expression for the velocity. This equation shows explicitely the influence of Iribarren's parameter on longshore current generation. It has been tested with field and laboratory data, obtaining a reasonable fit to measured values. The resulting (predictive) model is expected to be valid for any type of breakers though the calibration has been mainly done for spilling and plunging types, due to the scarcity of results for other breakers. 1.- INTRODUCTION Longshore currents in the surf zone have been acceptably modelled using the radiation stress concept (Longuet-Higgins,1970). The longshore-trust (Nw/m ) due to an oblique wave approach, given by the gradient of the radiation stress, is balanced (in stationary and longshore-uniform conditions) by bottom friction and horizontal mixing (Bowen, 1969), (Longuet-Higgins, 1970). The gradient of the radiation stress is evaluated using sinusoidal theory (as a first approximation for slowly varying depths) and turns out to be proportional to the local rate of energy dissipation, D (joules/(m x sec)), regardless of its origin. Inside the surf zone a significant fraction of D comes from wave breaking because the turbulence associated to the breaking process is responsible for most of the dissipated energy. Bottom friction plays a minor role in this context, being important only in special cases (e.g.
    [Show full text]
  • Chapter 187 Wave Breaking and Induced Nearshore
    CHAPTER 187 WAVE BREAKING AND INDUCED NEARSHORE CIRCULATIONS Ole R. S0rensen f, Hemming A. Schafferf, Per A. Madsenf, and Rolf DeigaardJ ABSTRACT Wave breaking and wave induced currents are studied in two horizontal dimen- sions. The wave-current motion is modelled using a set of Boussinesq type equations including the effects of wave breaking and runup. This is done with- out the traditional splitting of the phenomenon into a wave problem and a current problem. Wave breaking is included using the surface roller concept and runup is simulated by use of a modified slot-technique. In the environment of a plane sloping beach two different situations are studied. One is the case of a rip channel and the other concerns a detached breakwater parallel to the shoreline. In both situations wave driven currents are generated and circulation cells appear. This and many other nearshore physical phenomena are described qualitatively correct in the simulations. 1. INTRODUCTION State of the art models for wave driven currents are based on a splitting of the phenomenon into a linear wave problem, described e.g. by the mild-slope equation, and a current problem, described by depth-integrated flow equations including radiation stress. Wave-current interaction effects such as current re- fraction and wave blocking may be included in these systems by successive and iterative model executions. A more direct approach to the problem would be the use of a time do- main Boussinesq model which automatically includes the combined effects of wave-wave and wave-current interaction in shallow water without the need for explicit formulations of the radiation stress.
    [Show full text]
  • A Nonlinear Formulation of Radiation Stress and Applications to Cnoidal
    A Nonlinear Formulation of Radiation Stress and Applications to Cnoidal Shoaling Martin O. Paulsen Henrik Kalisch · g Abstract In this article we provide formulations of energy flux and radiation stress consistent with the scaling regime of the Korteweg-de Vries (KdV) equation. These quantities can be used to describe the shoaling of cnoidal waves approaching a gently sloping beach. The transformation of these waves along the slope can be described using the shoaling equations, a set of three nonlinear equations in three unknowns: the wave height H, the set-downη ¯ and the elliptic parameter m. We define a numerical algorithm for the efficient solution of the shoaling equations, and we verify our shoaling formulation by comparing with experimental data from two sets of experiments as well as shoaling curves obtained in previous works. Keywords: Surface waves KdV equation Conservation laws Radiation stress Set-down · · · · 1 Introduction In the present work, the development of surface waves across a gently sloping bottom is in view. Our main goal is the prediction of the wave height and the set-down of a periodic wave as it enters an area of shallower depth. This problem is known as the shoaling problem and has a long history, with contributions from a large number of authors going back to Green and Boussinesq. In order to reduce the problem to the essential factors, we make a number of simplifying as- sumptions. First, the bottom slope is small enough to allow the waves to continuously adjust to the changing depth without altering their basic shape or breaking up.
    [Show full text]
  • Mohammed and Fritz
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C11015, doi:10.1029/2011JC007850, 2012 Physical modeling of tsunamis generated by three-dimensional deformable granular landslides Fahad Mohammed1,2 and Hermann M. Fritz2 Received 21 December 2011; revised 19 September 2012; accepted 21 September 2012; published 15 November 2012. [1] Tsunamis generated by deformable granular landslides are physically modeled in a three-dimensional tsunami wave basin based on the generalized Froude similarity. The dynamic landslide impact characteristics were controlled by means of a novel pneumatic landslide generator. The wave amplitudes, periods, and wavelengths are related to the landslide parameters at impact with the landslide Froude number being a dominant parameter. Between 1 and 15% of the landslide kinetic energy at impact is converted into the wave train energy. The wave amplitudes decay in radial and angular directions from the landslide axis. The first wave crest mostly travels with speeds close to the theoretical approximation of the solitary wave speed. The measured tsunami wave profiles were either of the nonlinear oscillatory or nonlinear transition type depending primarily on the landslide Froude number and relative slide thickness at impact. The generated waves range from shallow to deep water depth regimes, with the majority being in the intermediate water depth regime. Wave characteristics are compared with other two- and three-dimensional landslide tsunami studies and the results are discussed. Citation: Mohammed, F., and H. M. Fritz (2012), Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, J. Geophys. Res., 117, C11015, doi:10.1029/2011JC007850. 1. Introduction tsunami was generated by a coastal landslide triggered by the 2010 Haiti earthquake [Fritz et al., 2012].
    [Show full text]
  • The Three-Dimensional Current and Surface Wave Equations
    1978 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 33 The Three-Dimensional Current and Surface Wave Equations GEORGE MELLOR Princeton University, Princeton, New Jersey (Manuscript received 26 April 2002, in ®nal form 4 March 2003) ABSTRACT Surface wave equations appropriate to three-dimensional ocean models apparently have not been presented in the literature. It is the intent of this paper to correct that de®ciency. Thus, expressions for vertically dependent radiation stresses and a de®nition of the Doppler velocity for a vertically dependent current ®eld are obtained. Other quantities such as vertically dependent surface pressure forcing are derived for inclusion in the momentum and wave energy equations. The equations include terms that represent the production of turbulence energy by currents and waves. These results are a necessary precursor for three-dimensional ocean models that handle surface waves together with wind- and buoyancy-driven currents. Although the third dimension has been added here, the analysis is based on the assumption that the depth dependence of wave motions is provided by linear theory, an assumption that is the basis of much of the wave literature. 1. Introduction pressure so that their results differ from mine and, after vertical integration, differ from the corresponding terms In the last several decades there has been signi®cant in Phillips (1977). They did not address three-dimen- progress in the understanding and numerical modeling sional effects on the wave energy equation. of ocean surface waves (e.g., Longue-Higgins 1953; To contrast the developments in this paper with con- Phillips 1977; WAMDI Group 1988; Komen et al.
    [Show full text]
  • Title a New Approach to Stokes Wave Theory Author(S) TSUCHIYA
    Title A New Approach to Stokes Wave Theory Author(s) TSUCHIYA, Yoshito; YASUDA, Takashi Bulletin of the Disaster Prevention Research Institute (1981), Citation 31(1): 17-34 Issue Date 1981-03 URL http://hdl.handle.net/2433/124895 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 31, Part 1, No. 276, 1981 17 A New Approach to Stokes Wave Theory By Yoshito TSUCHIYA and Takashi YASUDA (Manuscript received November 28, 1980) Abstract Stokes wave theories to third-order approximation have widely been employed to calculate wave properties for waves propagating over finite depths of water in most engineering appli- cations. However, different and often inconsistent expressions of wave variables can be observed from the numerous theories available. Examinations of the usual Stokes wave theories are on the so-called Stokes definitions of wave celerity and Bernoulli constant, as well as on the physical explanations of some theo- retical problems involved. A new Stokes wave theory to third order approximation is derived by applying only necessary conditions and assumptions, without using the definitions of wave celerity. The resulting mathematical formulations for some pertinent wave variables are presented. Comparison is made between the new third-order approximation and the usual ones derived from using the Stokes definitions of wave celerity, showing different expressions of wave celerity, horizontal water particle velocity, and mass transport velocities. It is found that the mass transport velocity exists in the Eulerian description as well as the usual Stokes drift in the Lagrangian description. 1. Introductionintrodurtinn A thorough understanding of wave characteristics in shallow water is essential in estimating wave forces on structures, as well as investigating various mechanisms of wave-induced transport phenomenon, such as nearshore currents and sand drift.
    [Show full text]