Implications for the Tectonics of West Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Implications for the Tectonics of West Antarctica JOURNALOF GEOPHYSICALRESEARCH, VOL. 96, NO. Bll, PAGES17,935-17,954, OCTOBER 10, 1991 New PaleomagneticData FromThurston Island' Implications for the Tectonicsof West Antarcticaand Weddell Sea Opening A.M. GRUNOW1 ByrdPolar Research Center, Ohio State University, Columbus Lamont-DohertyGeological Observatory andthe Department ofGeological Sciences, Columbia University, New York I. W. D. D ALZlEL Institutefor Geophysics,University of Texasat Austin Palcomagneticdata from threeWest Antarcticcrustal blocks (Antarctic Peninsula (AP), ThurstonIsland-Eights Coast (TI), and the Ellsworth-Whitmore Mountains (EWM) indicate that there has been motion between the individualblocks and motion relative to EastAntarctica during the Mesozoic. A Triassicpalcomagnetic pole from theTI block(116øE, 61øS, A95 = 19.4ø,N = 3 VGPs)appears toindicate that the block has rotated -90 ørelative to EastAntarctica between 230 Ma and110 Ma. Ourpreviously reported Middle Jurassic palcomagnetic pole from the EWM block indicates that a 90 ø rotation relative to East Antarctica occurred sometime between the Cambrian and 175 Ma. We believe that the 90 ø counterclockwise EWM rotation occurred between-220 Ma and 175 Ma related to thedevelopment of post-GondwanideOrogeny shear zones. The motion of theAP, TI, andEWM blocksappears to be linked duringthe mid- to late Mesozoicto threemajor events in the evolutionof the southemocean basins. Openingin theMozambique-Somali-Weddell Sea basins may have produced major counterclockwise rotation of the TI blockwith respectto EastAntarctica between the Jurassic and Early Cretaceousbased on new LateJurassic (145øE,64.5øS, A95 = 7ø,N= 5 VGPs)poles. We believe that the TI rotation,as well as deformation inthe southem AP block, wascaused by collisionand shearingof the EWM blockagainst the othertwo asthe EWM block moved southwardwith East Antarctica. An Early Cretaceous palcomagnetic pole (232øE, 49øS, A95 = 7.9ø,N= 5 VGPs) from the TI blockrequires that between the Early andmid- Cretaceousthere was clockwise rotation, with respect to EastAntarctica, of the AP-TI-EWM blocks(an entity we callWeddellia). A changein theopening history of the WeddellSea basin caused by initiationof spreadingin theSouth Atlantic ocean basin at-130 Ma probablystarted Weddellia'sclockwise rotation. Two new - 110and -90 Mapoles from the TI block(210øE, 73 øS, A95 = 7.6ø,N= 7 VGPsand 161øE, 81øS,A95 = 3.9ø,N = 18VGPs, respectively) aresimilartoequivalent agepoles from the APblock andEast Antarctica and indicate that Weddellia was at ornearits present-day position with respect to East Antarctica by -110 Ma. This correspondsto a time of majorplate reorganizaion in the SouthAtlantic and southeast Indian Oceans.Based on both the new TI palcomagneticdata and previously reported data from Marie ByrdLand (MBL), dextralshearing would be expected to haveoccurred between MBL andWeddellia since the mid-Cretaceous. Pine IslandBay, the areabetween the TI andMBL blocks,marks a fundamentaland complex tectonic boundary in West Antarcticathat we proposehas largely been a zoneof transcurrentsheafing. ]_NTRODUCTION GEOLOGIC OVERVIEW OF WEST ANTARCTICA The positionof West Antarcticawith respectto cratonicEast The AP and TI blocks are composedprimarily of Mesozoic Antarctica prior to and after breakup of Gondwanaland is and Cenozoic arc intrusive and extrusive rocks associated with critical to the opening history of the Weddell Sea. West the Pacific convergent margin of Gondwanaland [Srnellie, Antarctica,however, is not a singletectonic entity but rather is 1981; Thornson and Pankhurst, 1983; Pankhurst, 1990]. Early composedof four major crustalblocks whose relation to each Paleozoic basementrepresenting the roots of a magmatic arc other and to East Antarctica is not well understood. These indicate that parts of the AP block have been along a crustal blocks or terranes are the Antarctic Peninsula (AP), the convergent margin since the Paleozoic [Pankhu.rst, 1982, Ellsworth-Whitmore Mountains (EWM), the Thurston Island- 1983; Harrison and Loske, 1988; Milne and Millar, 1991]. The EightsCoast (TI), andMarie ByrdLand (MBL) [Jankowskiand EWM block consistsprimarily of a Precambrian basement at Drewry, 1981;Dalziel and Elliot, 1982] (Figure 1). The focus Haag Nunataks [Millar and Pankhurst, 1987] and a Paleozoic of this paperis on new palcomagneticdata from the TI block sedimentarysuccession in the Ellsworth Mountains [Webers combined with existing palcomagnetic, geologic, and and Sporli, 1983] that has often been correlated with the geophysicaldata from Gondwanalandthat links the movement stratigraphic succession in the Pensacola Mountains, East of the West Antarctic crustal blocks to the Mesozoic evolution Antarctica (Figure 1) [Schopf, 1969; Dalziel and Elliot, 1982]. of the southern ocean basins. MBL consistsof Paleozoic sedimentary and igneous rocks that were intrudedbY mid-Cretaceousgranitoids; it is mostclosely XNowat Departmentof Earth Sciences, University of Oxford,Oxford, associatedwith the Paleozoicrocks of North Victoria Land England. (EastAntarctica) and with New Zealand[Bradshaw et al., 1983]. Copyright1991bythe American Geophysical Union. Variouspositions havebeen suggested forthe West Antarctic Papernumber 91JB01507 crustalblocks ina prebreakup Gondwanaland reconstruction 0148-0227/91/91JB-01507505.00 [Schopf,'1969; Smith and Hallam, 1970; De Wit, 1977;Barron 17,935 17,936 GRUNOWET AL.: NEW PALEOMAGNETICDATA FROM THURSTONISLAND et al., 1978; Norton and $clater, 1979; Dalziel and Elliot, EWM-TI blocks may have acted a tectonic entity which we 1982; Powell et al., 1982; LaBrecque, 1985; Elliot, 1991]. refer to as Weddellia, between the Middle Jurassic and Norton and Sclater [1979] showed that the du Toit [1937] and Cretaceous, insofar as can be resolved paleomagnetically Smith and Hallam [ 1970] fit of the major continentalfragments [Grunow et al., 1987b]. If the AP, EWM, and TI blocks are of Gondwanalandwas essentiallycorrect but that an joined in their present-dayrelative positions(rigid Weddellia), unacceptableoverlap of the AP block with the FalklandPlateau there is an overlap of the AP block with southern South occurs'if West Antarcticais left in its present-dayposition America. Geosat, marine, and airborne gravity data [Sandwell with respectto East Antarctica.Together with the geographic and McAdoo, 1988; Bell et al., 1990] indicate that the isolation and anomalous structural trend of the Ellsworth continentalmargin of the Antarctic Peninsulais much narrower Mountains fold belt, this overlap constituted the primary than necessarily inferred by the imprecise location of the r•asonto/:onsider relative motion among the crustal blocks of shelf-slope break in ice-covered waters, and this lessens the West Antarctica [Schopf, 1969; Dalziel and Elliot, 1982]. pre-breakup overlap shown for the AP block with southern Palcomagneticdata supporta 90ø counterclockwiserotation of South America [Grunow et al., 1987b]. A reconstruction with the EWM block from the Transantarctic margin of East the blocks separated(mosaic Weddellia) fits the geologic and Antarctica(probably near CoatsLand; Figure 1) sincethe Late paleomagneticdata better but requiresa more complex opening cambrian[Watts and Brarnall, 1981; Grunow et al., 1987a]. history for the Weddell Sea basin [Grunow et al., 1987b; Palcomagnetic data obtained from Middle Jurassicrocks in Lawyer and Scotese, 1987; Lawyer et al., 1991]. the EWM block yielded a palcomagneticpole very similar to a Middle Jurassic pole from the AP block [Longshaw and GEOLOGIC SETrING OF TI BLOCK Griffiths, 1983; Grunow et al., 1987a]. An Early CretaceousTI pole [Grunow et al., 1987b] was indistinguishable from the The TI block consists of the area known as Thurston Island Middle JurassicAP and EWM poles and was interpretedby us as and the Eights Coast between ~255øE (Pine Island Bay) and possibly indicating little apparent polar wander for these ~270øE and from 71øS to ~ 75ø S. ThurstonIsland is separated blocks between the Middle Jurassic and Early Cretaceous from the Eights Coast by the Abbot Ice Shelf, which is found [Grunow et al., 1987b]. This led us to suggestthat the AP- within a graben or half graben structure(Figure 1). The rocks Paleomagneticlocalities Otherlocalities mentioned Antarctic Peninsula MaudLand Weddell Land THURSTON ISLAND Mtns. Thurston_.,., Island• EASTANTARCTIC •,• 1s.,• • CRATON ' Bay MarieByrd • O'o4.,.4•oLand Sea C ' Sherman•.......................... '" ':•'•••'••'"'"'! .... 72o30'S-- B¸T ICE SHELF N LN 0 50kmEIGHTS COAST 100øWI 96oWI '•• 92oWI 73ø30'S Fig. 1. Samplelocations on ThurstonIsland: BN, BelknapNunatak; DI, DustinIsland (ek, EhlersKnob); HG, Hale Glacier,HN, HarrisonNunatak; JM, JonesMountains; LN, LepleyNunatak; LP, LandfallPeak; MB, MountaBtamhall; MB, MountDowling; MI, McNamaraIsland (pb, PelletsBluff); MS, Mount Simpson;PP, ParkerPeak; SH, SheltonHead. Otherlocations: HK, HendersonKnob; MN, MountNoxom. Insetshows the WestAntarctic cmstal blocks (boldly outlined) in theirpresent-day positionswith respectto EastAntarctica. EWM, Ellsworth-WhitmoreMountains; EM, EllsworthMountains; NVL, North Victoria Land;asterisk, Haag Nunataks. Stippled lines show mountain trends; slanted lines show location of ice shelves. GRUNOWET AL.' NEWPALEOMAGNETIC DATA FROM THURSTON ISLAND 17,937 on Thurston Island crop out along two general east-west The Mesozoic rocks in the JonesMountains are unconformably strikingzones, parallel to theAbbot Ice Shelf.The majority of overlain by glacial till and flat-lying Tertiary alkaline
Recommended publications
  • A Data Set of Worldwide Glacier Length Fluctuations
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 2014 A Data Set of Worldwide Glacier Length Fluctuations Paul W. Leclercq Utrecht University Johannes Oerlemans Utrecht University Hassan J. Basagic Portland State University, [email protected] Christina Bushueva Russian Academy of Sciences A. J. Cook Russian Academy of Sciences See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Citation Details Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A. J., and Le Bris, R.: A data set of worldwide glacier length fluctuations, The Cryosphere, 8, 659-672, doi:10.5194/tc-8-659-2014, 2014. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Paul W. Leclercq, Johannes Oerlemans, Hassan J. Basagic, Christina Bushueva, A. J. Cook, and Raymond Le Bris This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/geology_fac/50 The Cryosphere, 8, 659–672, 2014 Open Access www.the-cryosphere.net/8/659/2014/ doi:10.5194/tc-8-659-2014 The Cryosphere © Author(s) 2014. CC Attribution 3.0 License. A data set of worldwide glacier length fluctuations P. W. Leclercq1,*, J. Oerlemans1, H. J. Basagic2, I. Bushueva3, A. J. Cook4, and R. Le Bris5 1Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, Utrecht, the Netherlands 2Department of Geology, Portland State University, Portland, OR 97207, USA 3Institute of Geography Russian Academy of Sciences, Moscow, Russia 4Department of Geography, Swansea University, Swansea, SA2 8PP, UK 5Department of Geography, University of Zürich, Zurich, Switzerland *now at: Department of Geosciences, University of Oslo, P.O.
    [Show full text]
  • 10Th Annual Northern Research Day
    Circumpolar Students’ Association 10th Annual Northern Research Day Monday, 19 April 2010 9:00 a.m. to 4:00 p.m. 3-36 Tory Building Featuring the Documentary Film Arctic Cliffhangers Show Time: 12:30 Followed by a Keynote with Filmakers: Steve Smith and Julia Szucs 1 NORTHERN RESEARCH DAY – SCHEDULE OF SPEAKERS TIME AUTHORS/SPEAKERS TITLE 9:00 Justin F. Beckers, Christian Changes in Satellite Radar Backscatter and the Haas, Benjamin A. Lange, Seasonal Evolution of Snow and Sea Ice Properties on Thomas Busche Miquelon Lake, a Small Saline Lake in Alberta 9:15 Benjamin A. Lange, Christian Sea ice Thickness Measurements Between Canada and Haas, Justin Becker and Stefan the North Pole: Overview and Results from Three Hendricks Campaigns in 2009 (CASIMBO-09, Polar-5 & CATs) 9:30 Hannah Milne, Martin Sharp Recording the Sight and Sound of Iceberg Calving Events on the Belcher Glacier, Devon Island, Nunavut 9:45 Gabrielle Gascon, Martin Sensitivity of Ice-atmosphere Interactions Since the Sharp and Andrew Bush Last Glacial Maximum 10:00 Brad Danielson and Martin Seasonal and Inter-Annual Variations in Ice Flow of a Sharp High Arctic Tidewater Glacier 10:15 Xianmin Hu, Paul G. Myers Numerical Simulation of the Arctic Ocean Freshwater and Qiang Wang Outflow 10:30 Coffee 10:45 Qiang Wang, Paul G. Myers, Numerical Simulation of the Circulation and Sea-Ice Xianmin Hu and Abdrew B.G. in the Canadian Arctic Archipelago Bush 11:00 Porter, L.L. and Rolf D. Impacts of Atmospheric Nitrogen and Phosphorous Vinebrooke. Deposition on the Alpine Ponds of Banff National Park: Effects on the Benthic Communities 11:15 Stephen Mayor The Changing Nature: Human Impacts on Boreal Biodiversity 11:30 Louise Chavarie, Kimberly Diversity of Lake Trout, Salvelinus namaycush, in Howland, and W.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Open-File Report 2007-1047, Extended Abstracts
    U.S. Geological Survey Open-File Report 2007-1047 Antarctica: A Keystone in a Changing World—Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences Santa Barbara, California, U.S.A.—August 26 to September 1, 2007 Edited by Alan Cooper, Carol Raymond, and the 10th ISAES Editorial Team 2007 Extended Abstracts Extended Abstract 001 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea001.pdf Ross Aged Ductile Shearing in the Granitic Rocks of the Wilson Terrane, Deep Freeze Range area, north Victoria Land (Antarctica) by Federico Rossetti, Gianluca Vignaroli, Fabrizio Balsamo, and Thomas Theye Extended Abstract 002 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea002.pdf Postcollisional Magmatism of the Ross Orogeny (Victoria Land, Antarctica): a Granite- Lamprophyre Genetic Link S. Rocchi, G. Di Vincenzo, C. Ghezzo, and I. Nardini Extended Abstract 003 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea003.pdf Age of Boron- and Phosphorus-Rich Paragneisses and Associated Orthogneisses, Larsemann Hills: New Constraints from SHRIMP U-Pb Zircon Geochronology by C. J. Carson, E.S. Grew, S.D. Boger, C.M. Fanning and A.G. Christy Extended Abstract 004 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea004.pdf Terrane Correlation between Antarctica, Mozambique and Sri Lanka: Comparisons of Geochronology, Lithology, Structure And Metamorphism G.H. Grantham, P.H. Macey, B.A. Ingram, M.P. Roberts, R.A. Armstrong, T. Hokada, K. by Shiraishi, A. Bisnath, and V. Manhica Extended Abstract 005 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea005.pdf New Approaches and Progress in the Use of Polar Marine Diatoms in Reconstructing Sea Ice Distribution by A.
    [Show full text]
  • 2013-2014 National Scar Committe
    National Report to SCAR for year: 2013-2014 MEMBER COUNTRY: USA Activity Contact Name Address Telephone Fax Email web site NATIONAL SCAR COMMITTEE Senior Program Officer, Staff to Delegation U.S. Polar Research Board The National National Academy of Academies Polar Laurie Geller 202 334 1518 202 334 3825 [email protected] Sciences Research Board 500 Fifth Street NW (K-633) Washington DC 20001 SCAR DELEGATES Ohio State University 1) Delegate/ Department of Geological President, Executive Terry Wilson (614) 292-0723 (614) 292-7688 [email protected] Sciences 155 South Oval Committee Mall Columbus, OH 43210 Departments of Biology and Environmental Science HR 347 2) Alternate Delegate Deneb Karentz (415) 422-2831 (415) 422-6363 [email protected] University of San Francisco 2130 Fulton Street San Francisco, CA 94117- STANDING SCIENTIFIC GROUPS LIFE SCIENCES Associate Research Professor, Division of Earth and Ecosystem Sciences 1) Voting Member Alison Murray Desert Research Institute 775 673 7361 775 673 7485 [email protected] 2215 Raggio Parkway Reno, NV 89512 Departments of Biology and Environmental Science HR 347 2) Deneb Karentz University of San Francisco (415) 422-2831 (415) 422-6363 [email protected] 2130 Fulton Street San Francisco, CA 94117- 1080 1 Activity Contact Name Address Telephone Fax Email web site Deputy Chief of Medicine of Extreme Environments NASA 3) Marc Shepanek 202 358 2201 [email protected] 300 E Street Southwest Washington, DC 20024-3210 Professor and Director Natural Resource Ecology 4) Diana Wall
    [Show full text]
  • B. Antarctic Geologic Reports and Maps
    I Ti). W LU. I- LU GLACIER SURFACE 500 7 - w E I Z .\c&A G /GLACIER 14/Lso,v 100 BOTTOM - SEA LEVEL --- GL.. -I ] —100 rs rA 5) -- 10 KM 1 B. Figure 1. Radio-echo sounding profiles extending (A) southward from McMurdo Sound through the Wilson Piedmont and Victoria Lower Glaciers to lower Victoria Valley, and (B) northeastward from lower Wright Valley through Wright Lower and Wilson Piedmont Glaciers to McMurdo Sound. Dashed lines representing snouts of valley glaciers are projections from maps or from other radio-echo data. Some small irregularities in glacier surfaces are caused by errors in pressure record of flight recorder. Figure 2. Radio-echo sounding profile westward from McMurdo Sound through lower Ferrar and upper Taylor Glaciers to 155°E. longitude, on Victoria Land plateau. EAST WEST ICE SHEET 145 ibco 1 500 200 SEA LEVEL--, -400 HIS SEEM " -200 KM ncrth—south faults bounding the eastern side of the Antarctic geologic reports and maps mountains may be indicated by steep breaks in slope occurring in the bottom trace of the profiles transect- CAMPBELL CRADDOCK in the Wilson Piedmont area (figs. 1A and 1B). Department of Geology and Geophysics Work described in this paper was undertaken at the University of Wisconsin, Madison Scott Polar Research Institute, Cambridge, England. Work has continued this year on bringing to publi- References cation the results of eight seasons of geologic study in Ca kin, P. E. In press. Glacial geology of the Victoria Valley parts of West Antarctica. Recent effort has focused on system, southern Victoria Land, Antarctica.
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • Tectonic and Oceanographic Controls on Abbot Ice Shelf
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 7, 5509–5540, 2013 Open Access www.the-cryosphere-discuss.net/7/5509/2013/ The Cryosphere TCD doi:10.5194/tcd-7-5509-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 7, 5509–5540, 2013 This discussion paper is/has been under review for the journal The Cryosphere (TC). Tectonic and Please refer to the corresponding final paper in TC if available. oceanographic controls on Abbot Ice Tectonic and oceanographic controls on Shelf Abbot Ice Shelf thickness and stability J. R. Cochran et al. J. R. Cochran, S. S. Jacobs, K. J. Tinto, and R. E. Bell Title Page Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA Abstract Introduction Received: 29 October 2013 – Accepted: 10 November 2013 – Published: 19 November 2013 Conclusions References Correspondence to: J. R. Cochran ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Tables Figures J I J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 5509 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Ice shelves play key roles in stabilizing Antarctica’s ice sheets and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry 7, 5509–5540, 2013 are important for assessing ocean–ice interactions and modeling ice response to cli- 5 mate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces Tectonic and large volumes of meltwater but is in overall mass balance unlike other ice shelves in oceanographic the region that are losing mass.
    [Show full text]
  • Determining the Architecture of the Terror Rift from Stratal Dips in Reflection Seismology Profiles
    Determining the Architecture of the Terror Rift from Stratal Dips in Reflection Seismology Profiles Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Geological Sciences in the undergraduate colleges of The Ohio State University By Will Blocher The Ohio State University December 2013 Project Advisor: Professor Terry Wilson, School of Earth Sciences Abstract - - - - - - - - - 1 Geologic Setting and Background to the Research Problem - 2 Study Approach, Data and Methodology Approach - - - - - - - - 4 Seismic Reflection Profiles - - - - - 7 Methods - - - - - - - - 9 Selecting Fold-Outs - - - - - - 17 Results and Research Significance - - - - - 19 Possibilities for Future Research - - - - - 23 Acknowledgements - - - - - - - 23 References - - - - - - - - - 24 Appendix - - - - - - - - - A1-A9 Abstract The Terror Rift is the youngest part of the West Antarctic rift system in the Antarctic interior. The Terror rift basin lies beneath the western Ross Sea near the Transantarctic Mountains. The rift has undergone multiple episodes of rifting, as evidenced by superimposed tilts of basin strata in fault blocks that define the rift. A younger tilt pattern has been superimposed on the rift around Ross Island, where the crust has flexed downward under the weight of young volcanoes. Mapping tilt directions provides a means to reconstruct the orientation of faults that produced tilt, and discriminate fault-induced tilt from younger flexure. This study is using seismic reflection profiles, imaging subsurface structure, to reconstruct tilts. Where two seismic lines cross, the true direction of tilt and the magnitude of tilt can be measured at multiple levels downward through the sequence of strata, such that changes in attitudes of bedding with depth can be determined. Maps of tilt directions from multiple crossing profiles for the time period marked by each seismic reflector will allow us to infer the orientations of these surfaces in 3D space.
    [Show full text]
  • Volcanic Fluxes Over the Last Millennium As Recorded in the Gv7 Ice Core (Northern Victoria Land, Antarctica)
    geosciences Article Volcanic Fluxes Over the Last Millennium as Recorded in the Gv7 Ice Core (Northern Victoria Land, Antarctica) Raffaello Nardin 1 , Alessandra Amore 1, Silvia Becagli 1, Laura Caiazzo 2, Massimo Frezzotti 3, Mirko Severi 1,* , Barbara Stenni 4 and Rita Traversi 1 1 Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; raffaello.nardin@unifi.it (R.N.); [email protected] (A.A.); silvia.becagli@unifi.it (S.B.); rita.traversi@unifi.it (R.T.) 2 National Institute of Nuclear Physics (INFN), 50019 Florenc, Italy; laura.caiazzo@unifi.it 3 Department of Sciences, Università degli Studi Roma Tre, 00146 Rome, Italy; [email protected] 4 Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30170 Venezia Mestre, Italy; [email protected] * Correspondence: mirko.severi@unifi.it Received: 15 November 2019; Accepted: 16 January 2020; Published: 20 January 2020 Abstract: Major explosive volcanic eruptions may significantly alter the global atmosphere for about 2–3 years. During that period, volcanic products (mainly H2SO4) with high residence time, stored in the stratosphere or, for shorter times, in the troposphere are gradually deposited onto polar ice caps. Antarctic snow may thus record acidic signals providing a history of past volcanic events. The high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria land) was obtained by Ion Chromatography on around 3500 discrete samples. The relatively high accumulation rate (241 13 mm we yr 1) and the 5-cm sampling resolution allowed a preliminary ± − counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated, and tentatively ascribed to a source volcano.
    [Show full text]
  • A 2700-Year Annual Timescale and Accumulation History for an Ice Core from Roosevelt Island, West Antarctica
    A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica Winstrup, Mai; Vallelonga, Paul; Kjaer, Helle A.; Fudge, Tyler J.; Lee, James E.; Riis, Marie H.; Edwards, Ross; Bertler, Nancy A. N.; Blunier, Thomas; Brook, Ed J.; Buizert, Christo; Ciobanu, Gabriela; Conway, Howard; Dahl-Jensen, Dorthe; Ellis, Aja; Emanuelsson, B. Daniel; Hindmarsh, Richard C. A.; Keller, Elizabeth D.; Kurbatov, Andrei V.; Mayewski, Paul A.; Neff, Peter D.; Pyne, Rebecca L.; Simonsen, Marius F.; Svensson, Anders; Tuohy, Andrea; Waddington, Edwin D.; Wheatley, Sarah Published in: Climate of the Past DOI: 10.5194/cp-15-751-2019 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Winstrup, M., Vallelonga, P., Kjaer, H. A., Fudge, T. J., Lee, J. E., Riis, M. H., Edwards, R., Bertler, N. A. N., Blunier, T., Brook, E. J., Buizert, C., Ciobanu, G., Conway, H., Dahl-Jensen, D., Ellis, A., Emanuelsson, B. D., Hindmarsh, R. C. A., Keller, E. D., Kurbatov, A. V., ... Wheatley, S. (2019). A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica. Climate of the Past, 15(2), 751-779. https://doi.org/10.5194/cp-15-751-2019 Download date: 30. sep.. 2021 Clim. Past, 15, 751–779, 2019 https://doi.org/10.5194/cp-15-751-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica Mai Winstrup1,a, Paul Vallelonga1, Helle A.
    [Show full text]
  • Paleomagnetic Investigations in the Ellsworth Land Area, Antarctica
    eastern half consists of gneiss (some banded), amphi- probably have mafic dikes as well as felsite dikes, are bolite, metavolcanics, granodiorite, diorite, and present. In the eastern part of the island, mafic dikes gabbro. Contacts are rare, and the relative ages of occur in banded gneiss. A dio rite- to-gabbroic mass is these rock bodies are in doubt. The Morgan Inlet present in the north central portion of the island. gneiss may represent the oldest rock on Thurston Granite-to-diorite bodies occur in the south central Island; earlier work (Craddock et al.. 1964) gave a portion of the island and contain "meta-volcanic" Rb-Sr age of 280 m.y. on biotite from this rock. rocks and mafic dikes. Granite-granodiorite-to-diorite Studies in the Jones Mountains were mainly on the rocks occur in the western portion of the island. This unconformity between the basement complex and the latter plutonic mass is probably the youngest body in overlying basaltic volcanic rocks to evaluate the evi- which mafic dikes are also present. About 10 miles dence for Tertiary glaciation. Volcanic strata just southwest of Thurston Island, a medium-grained above the unconformity contain abundant glass and granodiorite plutonic mass forms Dustin Island, pillow-like masses suggestive of interaction between where three samples were collected at Ehlers Knob. lava and ice. Tillites with faceted and striated exotic In the Jones Mountains, 27 oriented samples were pebbles and boulders are present in several localities collected from the area around Pillsbury Tower, on in the lower 10 m of the volcanic sequence.
    [Show full text]