Promoting Scopolamine Accumulation in Transgenic Plants of Atropa Belladonna Generated from Hairy Roots with Over Expression of Pmt and H6h Gene

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Journal of Medicinal Plants Research Vol. 4(17), pp. 1708-1713, 4 September, 2010 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR10.269 ISSN 1996-0875 ©2010 Academic Journals Full Length Research Paper Promoting scopolamine accumulation in transgenic plants of Atropa belladonna generated from hairy roots with over expression of pmt and h6h gene Xiaoqiang Liu1, Chunxian Yang1, Min Chen2, Mingyang Li3, Zhihua Liao1* and Kexuan Tang4* 1Laboratory of Natural Products and Metabolic Engineering, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, People’s Republic of China. 2School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China. 3Institute of Ornamental Plants Research, Southwest University, Chongqing 400715, People’s Republic of China. 4Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R and D Center, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China. Accepted 29 June, 2010 Atropa belladonna is the most important commercial source for obtaining pharmaceutical tropane alkaloids such as scopolamine and hyoscyamine. In the present study, two rate-limiting enzyme genes including putrescine N-methyltransferase and hyoscyamine 6β-hydroxylase were introduced into A. belladonna, and integration of the pmt and h6h genes into the genomic DNA of transgenic plants were confirmed by genomic polymerase chain reaction (PCR) analysis. The scopolamine content of transgenic lines was increased to 1.3 - 2.5 folds than that in wild type, which was caused by over expression of the pmt and h6h genes in the transgenic plant lines of A. belladonna. The current study provides a more effective approach for commercially large-scale production of scopolamine by cultivating A. belladonna plants in large fields but not using the hairy root systems as bioreactors. Key words: Atropa belladonna, pmt, h6h, scopolamine, transformation, regeneration. INTRODUCTION Atropa belladonna, commonly known as belladonna or tropane alkaloids especially scopolamine in natural deadly nightshades, is a perennial herbaceous plant and plants, there has been a long-standing interest in most importantly commercial source of pharmaceutical increasing the content of alkaloids, especially the much tropane alkaloids in the family of Solanaceae. The plant is more valuable scopolamine in cultivated medicinal plants. of interest due to its production of bioactive tropane Over the past years, extracting these secondary alkaloids, including scopolamine and hyoscyamine, which metabolites from whole plants was viewed as the only are wildly used as antagonists of acetylcholine in both the economical method for the production of these pharma- autonomic and central nervous system (Guggisberg and ceuticals. However, in natural plants, the low endogenous Hesse, 1983). For medicinal purposes, scopolamine is content of these chemicals remains as the limitation for much more useful and valuable because of its higher mass production. Although, other options are available for physiological activity and fewer side-effects (Evans, tropane alkaloid production, they are not currently 1996). However, because of the low abundance of available. For example, chemical synthesis remains extremely expensive due to the existence of multiple chiral centers. Also, incomplete characterization of the pathways required for tropane alkaloid production makes *Corresponding author. E-mail: [email protected], it impossible to acquire them by means of alternative [email protected]. Tel: 86-21-62932002. Fax: 86-21- biosystems such as microorganisms (Verpoorte, 2000). 62824073. Nowadays, with the development in plant cell cultures, Liu et al. 1709 tissue cultures and genetic engineering, it becomes Researchers were able to elevate scopolamine levels by feasible to manipulate the biosynthetic pathways of plant over expressing h6h. Yun et al. (1992) reported that h6h secondary metabolisms such as tropane alkaloids at the from H. niger was constitutively expressed in A. level of metabolic and enzyme level to increase the phar- Belladonna plants, including stems and leaves where maceutical tropane alkaloids content in the cultivated A. endogenous h6h is not expressed. Hashimoto et al. belladonna (Oksman-Caldentey, 2004; Trethewey, 2004). (1993b) reported a five fold increase in the scopolamine Putrescine is a common precursor of both polyamines content of transgenic A. Belladonna hairy roots over such as spermidine and spermine and tropane/pyridine expressing the same h6h gene. Over expression of h6h alkaloids (Guggisberg and Hesse, 1983; Hashimoto et gene in H. muticus hairy roots produced over 100-fold al., 1989; Hibi et al., 1994). higher level of scopolamine and hyoscyamine compared Putrescine N-methyltransferase (PMT) is the first with controls (Jouhikainen et al., 1999). alkaloid-specific enzyme committed for the biosynthesis Over expressing multiple key-enzyme genes or mani- of tropane alkaloids, because it involves in the removal of pulating regulatory genes in the target bioengineering putrescine from the polyamine pool and then catalyzes pathway is a promising way to manipulate the biosyn- the N-methylation of this diamine to form N- thetic pathways of tropane alkaloids since the single rate- methylputrescine (Hibi et al., 1992), the product N- limiting step of most biosynthetic pathways for secondary methylputrescine is the first specific metabolite on the metabolites may not exist (Sato et al., 2001). A good route to nicotine, tropane and nortropane alkaloids example is simultaneous introduction and over (Biastoff et al., 2009). The pmt cDNAs were already expression of genes encoding the rate-limiting upstream cloned from tobacco (Hibi et al., 1994) and Hyoscyamus enzyme PMT and the downstream key enzyme H6H of niger (Suzuki et al., 1999). Regulation of the expression scopolamine biosynthesis in transgenic H. niger hairy of pmt gene has been shown to be crucial for alkaloid root cultures (Zhang et al., 2004). Transgenic hairy root production in several cases. After introducing the tobacco lines expressing both pmt and h6h produced significantly pmt gene into the genome of Datura meteland and higher levels of scopolamine compared with both the wild Hyoscyamus muticus respectively, it was found that both type and the transgenic lines harboring a single gene hyoscyamine and scopolamine production were improved (pmt or h6h). The best line produced more than nine folds in hairy root cultures of D. meteland, whereas in H. scopolamine than that in the wild type and more than muticus only hyoscyamine contents were increased twice the amount in the highest scopolamine-producing (Moyano et al., 2002). h6h single-gene transgenic line. It indicated that the However, in many cases, the over expression of expression of h6h played an important role in exogenous pmt can not improve alkaloid production as scopolamine biosynthesis, while the contribution to the expected. For example, over expression of pmt in A. increase of scopolamine production result from the belladonna did not affect tropane alkaloid levels either in activity of pmt is limited. transgenic plants or in hairy roots (Sato et al., 2001); In order to investigate the secondary metabolism Moyano et al. (2002) inserted the tobacco pmt gene into response to pmt and h6h over expression in A. the hairy roots of a hybrid of Duboisia and improved the belladonna, the Nicotiana tabacum pmt gene and the H. N-methylputrescine level of the transgenic hairy roots, but niger h6h gene were introduced into A. belladonna in the there was no significant increase in either tropane or present work. The regenerated plants from transgenic pyridine-type alkaloids. Rothe et al. (2003) also found hairy roots were obtained, which is different from previous that increased pmt expression alone was not sufficient to studies, the phenotype and scopolamine production of increase alkaloid production in A. belladonna plants and transgenic plant lines were investigated after planted in in root cultures. All of these reports indicated that the the field, with the blank-transformed plant lines and the regulation of tropane alkaloids synthetic pathways varied wild-type plants used as controls respectively. with different plant species, and the effect of over expression of a single enzyme may be inadequate. Although, genetic manipulation on the upstream MATERIALS AND METHODS pathway of tropane alkaloid in some plant species was unsuccessful, efforts closer to the final products have Strains and plasmids been effective. Hyoscyamine 6β-hydroxylase (H6H; EC 1.14.11.11) is a bifunctional enzyme, which catalyzes the The bivalent plant expression plasmid pXI containing both pmt and h6h genes, constructed by Zhang et al. (2004), were used in the last two oxidative reactions of tropane alkaloids study. The pXI contained two separate expression cassettes for pmt biosynthetic pathway, converting hyoscyamine to the and h6h, both driven by the CaMV 35S promoter and the nptII more pharmaceutically valuable tropane alkaloid cassette for conferring kanamycin resistance. Plasmid pXI was scopolamine (Hashimoto et al., 1993a; Matsuda et al., isolated from Escherichia coli strain DH5α and transformed into 1991; Jaber-Vazdekis et al., 2009). In the case of h6h disarmed Agrobacterium tumefaciens strain C58C1 containing Agrobacterium rhizogenes Ri plasmid pRiA4.
Recommended publications
  • Polyamines and Plant Alkaloids

    Polyamines and Plant Alkaloids

    Indian Journal of Experimental Biology Vol. 38, November 2000, pp. 1086-1091 Review Article Polyamines and plant alkaloids Bharati Ghosh Department of Botany, Bose Institute, Calcutta 700 009, India Naturally occurring alkaloids are nitrogenous compounds th at constitute th e pharmacogenically acti ve basic principles of flowering plants. Alkaloids are classified into several biogenically related groups . Tobacco alkaloids are metabolised from polyamines and diamines putrescine and cadaverine . N-methyl transferase is the tirst enzyme in alk aloid biosynthetic pathway which drives the flow of nitrogen away from polyamine biosynthesis to alkaloid biosynthesis. Arginine decarboxylase has been suggested to be primarily responsible for providing putrescine for nicotine synthesis. Tryptophan is the precursor of indole alkaloids . However, th e biosynthetic pathway of tropane and isoquinoline alkaloids are not clear. Genes for several key biosynthetic enzymes like arginine decarboxylase, ornithine decarboxylase, putrescine N-methyl transferase and spermidine synth ase, hyoscyamine 6 p hydroxylase,tryptophan decarboxylase etc have been cloned from different plant species. These genes arc regulated by plant hormones, li ght, different kinds of stress an e li cito rs like jasmonates and their strong expression is primarily in the cultured roots. In view of thi s, th e axenic hairy root cultures induced by Agrobacterium rhizoge11 es have been utilised to synthesise secondary metabolites. The current development in the knowledge of alk aloid biosynthesis,
  • Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis

    Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis.
  • A Molecular Phylogeny of the Solanaceae

    A Molecular Phylogeny of the Solanaceae

    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
  • ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 2, 48-54

    ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 2, 48-54

    ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 2, 48-54 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH REVIEW ARTICLE Medicinal importance of Genus Atropa Royle -A review * Farhana Maqbool, Seema Singh, Zahoor A Kaloo and Mahroofa Jan Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, J&K, 190006 India. Manuscript Info Abstract Manuscript History: Genus Atropa is medicinally important as it has anticholinergic, antispasmodic, and antidote, anodyne, analgesic, hallucinogenic, Received: 14 December 2013 Final Accepted: 19 January 2014 Parkinsonism, encephalitis, carcinoma, and spastic dysmenorrhoea, Published Online: February 2014 mydriatic, narcotic and sedative. A large number of bioactive compounds have so far been isolated from Atropa. This emphasizes on the need for the Key words: review of literature for reporting the additional information on the medicinal Solanaceae, Atropa, alkaloids, importance of other species of genus Atropa. bioactive compounds . *Corresponding Author Sanjai Gandhi E Copy Right, IJAR, 2014,. All rights reserved. Introduction The genus Atropa belonging to family Solanaceae, tribe Hyoscyameae, and consists of 4 species, Atropa acuminata Royle, Atropa belladonna L., Atropa baetica Willk., Atropa pallidiflora Schönb.-Tem., which are distributed in the Mediterranean region, South Europe and Asia (Nasir 1972).Diverse biological activities have been attributed to this genus like anticholinergic, antispasmodic, (Tyler et al; 1988). Antidote, anodyne, analgesic, hallucinogenic, Parkinsonism, encephalitis, carcinoma, spastic dysmenorrhoea, mydriatic, narcotic and sedative its pharmacologically active ingredients include atropine, scopolamine, hyoscyamine all tropane alkaloids (Grieve and Chiej 1948). Atropa acuminata Royle Atropa acuminata Royle is an important medicinal plant belongs to family Solanaceae, (Anonymous, 1948).
  • Ethnopharmacological Investigations of Phytochemical Constituents

    Ethnopharmacological Investigations of Phytochemical Constituents

    International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 589 ISSN 2229-5518 Ethnopharmacological Investigations of Phytochemical Constituents Isolated from the Genus Atropa Mannawar Hussain a, Waseem Akram, b Jaleel Ahmad, b Taha Bin Qasim, c Rukhsana Bibi c All Address; Department of Applied Chemistry Government College University, Faisalabad a, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University, Multan b, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan b Department of Chemistry Government College University Lahore b Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan c Email; [email protected] Cell no 923460655538a [email protected] b [email protected] b [email protected] c [email protected] c Corresponding Author; Mannawar Hussain Abstract Medicinal plants play a vital role in the development of human culture. Medicinal plantsIJSER are a source of traditional medicine, and many modern medicines come directly from plants. According to WHO the world's people in progressing countries 80 percent rely on traditional medicine for their primary health care more over about 85% of traditional medication involves the make use of plant extracts. Herb and shrubs of the genus Atropa (Solonaceae) inhabitate various ecosystems in worldwide. This review present a complete study of the text on, phytochemistry, pharmacognosy and traditional biological meditional uses of Atropa. Atropa genus contain many chemical constituents like, flavonoids, phenolic compounds like Alkoloids, alcohols, terpenes and flavonoids have been identified in this genus. Some published studies have shown a broad spectrum of biological and pharmacological activities, including anticancer, antioxidant, anti-tumor agent, antibacterial, antimicrobial, antifungal and antiviral effects.
  • Alkaloid Production by Hairy Root Cultures

    Alkaloid Production by Hairy Root Cultures

    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Alkaloid Production by Hairy Root Cultures Bo Zhao Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Zhao, Bo, "Alkaloid Production by Hairy Root Cultures" (2014). All Graduate Theses and Dissertations. 3884. https://digitalcommons.usu.edu/etd/3884 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALKALOID PRODUCTION BY HAIRY ROOT CULTURES by Bo Zhao A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Engineering Approved: _____________________ _____________________ Foster A. Agblevor, PhD Anhong Zhou, PhD Major Professor Committee Member _____________________ _____________________ Jixun Zhan, PhD Jon Takemoto, PhD Committee Member Committee Member _____________________ _____________________ Ronald Sims, PhD Mark McLellan, PhD Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERISTY Logan, Utah 2014 ii Copyright © Bo Zhao 2014 All Rights Reserved iii ABSTRACT Alkaloid Production by Hairy Root Cultures by Bo Zhao, Doctor of Philosophy Utah State University, 2014 Major Professor: Dr. Foster Agblevor Department: Biological Engineering Alkaloids are a valuable source of pharmaceuticals. As alkaloid producers, hairy roots show rapid growth in hormone-free medium and synthesis of alkaloids whose biosynthesis requires differentiated root cell types. Oxygen mass transfer is a limiting factor in hairy root cultures because of oxygen‟s low solubility in water and the mass transfer resistance caused by entangled hairy roots.
  • Plantas Prohibidas O Restringidas Por Su Toxicidad

    Plantas Prohibidas O Restringidas Por Su Toxicidad

    PLANTAS PROHIBIDAS O RESTRINGIDAS POR SU TOXICIDAD: FLORA PSICOTRÓPICA Forbidden or restricted plants for their toxicity: flora psicotrópica Eusebio Cano Carmona1, Antonio Cano Ortiz2 Ana Cano Ortiz3 1 Dpto. Biología animal, Vegetal y Ecología. Área de Botánica. Universidad de Jaén. 2 Servicio de Oftalmología MIR-Hospital Ciudad de Jaén. 3 Dpto. Estudios y Consultorías. Gerencia Ingeniería del Agua. TRAGSATEC. RESUMEN: Se hace un estudio de plantas prohibidas o de uso restringido por su toxicidad, atendien- do a la orden del Ministerio de Sanidad y Consumo (2004). Orden SCO/190/del 28 de Enero por la que se establece la lista de plantas cuya venta al público queda prohibida o restringida por razón de su toxicidad. Dicho listado consta de 197 plantas, de las cuales se encuentran en la provincia de Jaén 68. En este trabajo aportamos diversos estudios sobre plantas ricas en alcaloides, en especial sobre la flora psicotrópica. PALABRAS CLAVE: Plantas, Drogas, Toxicidad, Decreto Ministerial ABSTRACT: A study of forbidden plants is made or of use restricted by its toxicity, to spreading to the order of Department of Health and Consumption (2004). Order SCO/190/del January 28 for that the list of plants settles down which sale to the public is forbidden or restricted by reason of its toxicity. This listing consists of 197 plants, of which are in the county of Jaén 68. In this work we contribute diverse studies on rich plants in alkaloids, especially on the flora psicotrópica KEY WORDS: Plants, Drugs, Toxicity, Ministerial Order INTRODUCCIÓN El uso de las plantas medicinales por el hombre data de muchos años antes de Cristo; ya egipcios, babilónicos, hebreos, fenicios, chinos, grie- gos romanos etc., usaban las plantas para combatir las enfermedades del hombre, por ello existe una fármaco historia que no debe ser despreciada por la medicina moderna, ya que ésta se deriva de ella.
  • Sobre La Presencia Actual De Atropa Baetica Willk. (Solanaceae) En La Alta Alcarria (Utande, Guadalajara)

    Sobre La Presencia Actual De Atropa Baetica Willk. (Solanaceae) En La Alta Alcarria (Utande, Guadalajara)

    Flora Montiberica 63: 18-30 (V-2016). ISSN: 1138-5952, edic. digital: 1988-799X SOBRE LA PRESENCIA ACTUAL DE ATROPA BAETICA WILLK. (SOLANACEAE) EN LA ALTA ALCARRIA (UTANDE, GUADALAJARA) Juan Javier GARCÍA-ABAD ALONSO Departamento de Geología, Geografía y Medio Ambiente. Universidad de Alcalá. C/ Colegios, 2. 2880-Alcalá de Henares (Madrid). [email protected] RESUMEN: Se da noticia del hallazgo y presencia actual de Atropa baetica Willk. (Solanaceae) en una localidad de la Alta Alcarria, municipio de Utande (provincia de Guadalajara). Se indica la cuadrícula U.T.M. de 1×1 km donde se encuentra. Se presentan datos ecológicos y fitogeográficos básicos sobre su emplazamiento, algunos datos vegetativos descriptivos de los dos rodales o conjuntos de tallos encontrados y comentarios sobre posibles amenazas de la escueta población. Finalmente, se comenta la relación de esta nueva cita con referencias antiguas publicadas en la bibliografía. Palabras clave: Atropa baetica, Solanaceae, flora amenazada, conservación, corología, La Alcarria, Guadalajara, Castilla–La Mancha, España. ABSTRACT: On the actual presence of Atropa baetica Willk. (Solanaceae) in the Alta Alcarria (Utande, Guadalajara). This article reports the finding and current presence of Atropa baetica Willk. (Solanaceae) in a municipality (Utande) belonging to the “Alta Alcarria” (province of Guadalajara, Central Iberian Peninsula, Spain). We provide the 1×1 km U.T.M.-grid location. Ecological and phytogeographical data as well as information on the location basic vegetative descriptive data from the two sets of stems and a review on the possible threats are reported. Finally, the relationshio of this new citation with old literature references is discussed.
  • Nature Protection 1991-11

    Nature Protection 1991-11

    Nature Protection 1991-11 NATURE PROTECTION ACT, 1991 Principal Act Act. No. 1991-11 Commencement 9.5.1991 Assent 9.5.1991 Amending Relevant current Commencement enactments provisions date Act. 1992-08 ss. 5(1)(d)(e)(f), (4), 10(1) (d)(e)(f),(2),3(a) and (6) 9.7.1992 LN. 1995/118 ss. 2(1)(3A), 2A, 3(1)(d)(c), 5(1)(e)(ee), 17A to Z, 17AA, 17BB, 17CC, 17DD, 18(1) and Schs 4 to 7 1.9.1995 Act. 1997-15 Sch 5 10.4.1997 2001-23 s. 24A 12.7.2001 2005-41 ss. 2, 5(1)(e) and (ee), 17S, 17W, 17XA, 17Y, 23, Sch. 5, Sch. 7 and Sch. 8 14.7.2005 2007-12 ss. 2, 2A, 3(1)(bb), 17M, 17PA, 17RA, 17RB, 17T, 17U, 17V, 17VA, 17VB, 17VC, 17X, 17Y, 17Z, 17AB, 17EE, 17FF, 17GG, 17HH, 18(1)-(10), 20, 24, 24A, Schs. 4, 5, 7 & 9 30.4.2007* 2007-17 ss. 5(2), 10(4), 13(1), (2), (3) & (7), 17CC(3) & (4), 18(1), (2), (3), (4) & (6), 21(1) & (2), 24 14.6.2007 LN. 2008/026 Sch. 5 10.4.2008 Act. 2009-07 ss. 17PA(1), (1A) & (2), 17RA(1), (2) & (3), 17RB(1) & (2), 17T(1)(b)(i), 17U(5), 17VA(1), (2), (3) & (4), 17VB(1) 15.1.2009 LN. 2010/145 ss. 2(1), (3A), 3(1), 5(1) & (2), 6, 7A, 10, 12, 12A, 13(1)(g) & (h), (5) & (6A), 13A, 17DA , 17DB, 17E, 17G, 17H, 17P, 17PA, 17RA(1), 17XA(2)(a) & Sch.
  • Biotechnology for Medicinal Plants

    Biotechnology for Medicinal Plants

    Biotechnology for Medicinal Plants Micropropagation and Improvement Bearbeitet von Suman Chandra, Hemant Lata, Ajit Varma 1. Auflage 2012. Buch. xvi, 464 S. Hardcover ISBN 978 3 642 29973 5 Format (B x L): 15,5 x 23,5 cm Gewicht: 878 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Botanik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Agrobacterium rhizogenes-Mediated Transformation in Medicinal Plants: Prospects and Challenges Dipasree Roychowdhury, Anrini Majumder and Sumita Jha 2.1 Introduction Root cultures have been studied since the early days of tissue culture research, but have created little interest because of their slow growth rate, although root and shoot organ cultures have been used for studies of alkaloids (Hashimoto et al. 1986; Hirata et al. 1990; Jha et al. 1991; Baíza et al. 1999a; Khanam et al. 2001; Ghosh et al. 2002; Ghosh and Jha; 2005), coumarins (Panichayupakarananta et al. 1998), saponins (Kusakari et al. 2000; Kim et al. 2005a), phenolic acids (Karam et al. 2003), essential oils (Olszowska et al. 1996), terpenes (Pannuri et al. 1993), glycosides (Swanson et al. 1992), steroidal lactones (Ray and Jha 2001), etc. However, in all but a few species, they are difficult to culture and the auxin concentrations optimal for growth may reduce productivity (Siah and Doran 1991; Bourgaud et al.
  • Monitoring of Tropane Alkaloids in Foods As

    Monitoring of Tropane Alkaloids in Foods As

    FINAL REPORT Monitoring of tropane alkaloids in foods FS 102116 March 2017 J. Stratton, J. Clough, I. Leon, M. Sehlanova and S. MacDonald Fera Science Ltd. Page 1 of 103 This report has been produced by FeraScience Ltd. under a contract placed by the UK Food Standards Agency. The views expressed herein are not necessarily those of the funding body. Fera Science Ltd. warrants that all reasonable skill and care has been used in preparing this report. Notwithstanding this warranty, Fera Science Ltd. shall not be under any liability for loss of profit, business, revenues or any special indirect or consequential damage of any nature whatsoever or loss of anticipated saving or for any increased costs sustained by the client or his or her servants or agents arising in any way whether directly or indirectly as a result of reliance on this report or of any error or defect in this report. Page 2 of 103 1. Summary A literature review was undertaken to understand the potential sources of tropane alkaloids (TAs) in the diet. Following the literature review a sampling plan was developed to carry out a survey of UK foods to determine their tropane alkaloid content. Sources of contamination were identified as Datura type seeds and the increase of Convulvulus type weeds in fields of food crops. Sampling was carried out for the UK FSA and as a part of a wider EFSA survey. A total of 286 samples were analysed for TAs and calystegines for the EFSA survey. 227 UK samples (197 cereal products, 10 green beans and stir fry vegetables and 20 teas) were analysed for TAs, and 59 UK samples (44 potatoes and 15 aubergines) were analysed for calystegines as part of the EFSA survey.
  • Application of Metabolic Engineering to the Production of Scopolamine

    Application of Metabolic Engineering to the Production of Scopolamine

    Molecules 2008, 13, 1722-1742; DOI: 10.3390/molecules13081722 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Review Application of Metabolic Engineering to the Production of Scopolamine Javier Palazón 1,*, Arturo Navarro-Ocaña 2, Liliana Hernandez-Vazquez 1 and Mohammad Hossein Mirjalili 3 1 Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain; E-mail: [email protected] 2 Departamento de Alimentos y Biotecnologia, Facultad de Química, Universidad Nacional Autónoma de México, México DF, México; E-mail: [email protected] 3 Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran; E-mail: [email protected] * Author to whom correspondence should be addressed; E-mail: [email protected]. Received: 3 June 2008; in revised form: 12 August 2008 / Accepted: 14 August 2008 / Published: 18 August 2008 Abstract: Scopolamine is an alkaloid widely used in medicine for its anticholinergic activity. The aim of this review is to show that metabolic engineering techniques constitute a suitable tool to improve the production of tropane alkaloids, focusing in particular on scopolamine. We present an overview of results obtained by various research groups, including our own, who have studied the overexpression of genes involved in the biosynthesis of scopolamine in different plant species that produce tropane alkaloids. Experiments carried out to improve production in hairy root cultures will also be described, as well as those attempting to biotransform hyoscyamine into scopolamine in roots and transgenic tobacco cells. Keywords: Scopolamine, hyoscyamine, hairy roots, putrescine N-methyltransferase, hyoscyamine-6-β-hydroxylase. Molecules 2008, 13 1723 Introduction In developing countries, plants are the main source of medicines: according to the World Health Organization, as much as 80% of the world’s population in developing countries relies on traditional medicine for its primary health care, and this is mainly based on plant remedies.