Directed Graphs of Commutative Rings

Total Page:16

File Type:pdf, Size:1020Kb

Directed Graphs of Commutative Rings Rose-Hulman Undergraduate Mathematics Journal Volume 14 Issue 2 Article 11 Directed Graphs of Commutative Rings Seth Hausken University of St. Thomas, [email protected] Jared Skinner University of St. Thomas, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Hausken, Seth and Skinner, Jared (2013) "Directed Graphs of Commutative Rings," Rose-Hulman Undergraduate Mathematics Journal: Vol. 14 : Iss. 2 , Article 11. Available at: https://scholar.rose-hulman.edu/rhumj/vol14/iss2/11 Rose- Hulman Undergraduate Mathematics Journal Directed Graphs of Commutative Rings Seth Hausken a Jared Skinnerb Volume 14, no. 2, Fall 2013 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 a Email: [email protected] University of St. Thomas b http://www.rose-hulman.edu/mathjournal University of St. Thomas Rose-Hulman Undergraduate Mathematics Journal Volume 14, no. 2, Fall 2013 Directed Graphs of Commutative Rings Seth Hausken Jared Skinner Abstract. The directed graph of a commutative ring is a graph representation of its additive and multiplicative structure. Using the mapping (a; b) ! (a + b; a · b) one can create a directed graph for every finite, commutative ring. We examine the properties of directed graphs of commutative rings, with emphasis on the informa- tion the graph gives about the ring. Acknowledgements: We would like to acknowledge the University of St. Thomas for making this research possible and Dr. Michael Axtell for his guidance throughout. Page 168 RHIT Undergrad. Math. J., Vol. 14, no. 2 1 Introduction When studying group theory, especially early on in such an exploration, Cayley tables are used to give a simple visual representation to the structure of the group. Cayley tables can also be used when studying rings, but since rings have both an additive and multiplicative structure, two Cayley tables are necessary to fully represent a ring. It is desirable to create a visual representation of a ring that maintains the structure while being a single representation instead of two. We turn to graph theory to create a directed graph representation of a ring, as first proposed by Lipkovski in [8]. Definition By the directed graph, or digraph for brevity, of R, denoted Ψ(R), we mean the graph with V (Ψ(R)) = R × R, and for distinct (a; b); (c; d) 2 R × R, there is a directed edge, denoted (a; b) ! (c; d), connecting (a; b) to (c; d) if and only if a + b = c and a · b = d. Example 1.1 The digraph of Z4 consists of vertices with entries from Z4 with addition and multiplication modulo 4 [See Figure 1]. 1, 1 2, 3 1, 2 3, 0 3, 1 3, 2 0, 3 2, 1 1, 3 3, 3 1, 0 0, 1 2, 0 0, 2 2, 2 0, 0 Figure 1: Ψ(Z4) The digraph of a ring holds the additive and multiplicative structure of the ring in a simpler, more compressed fashion. Unlike other common graph representations of rings, such as the zero-divisor graph [1], the digraph attempts to retain all the elements and structure of the ring while still being fairly straight forward. Since the digraph does retain the entire RHIT Undergrad. Math. J., Vol. 14, no. 2 Page 169 structure of the ring, the digraph should contain information about algebraic structures, such as ideals and zero-divisors. 2 Background In this paper, we use concepts from both ring theory and graph theory. Both these topics are far too dense to delve into with great detail here. Instead, we define some of the basic concepts needed for this paper, then further define concepts as they become relevant. For further explanation of ring theory, see [2], [5], [6], [4]. For further explanation of graph theory, see [3]. Definition [4] A ring is a set with two binary operations, addition and multiplication, such that for all a, b, and c 2 R: 1. a + b = b + a 2. (a + b) + c = a + (b + c) 3. There is an additive identity 0 in R. That is, there is an element 0 in R such that a + 0 = a for all a 2 R. 4. There is an element −a in R such that a + (−a) = 0. 5. a(bc) = (ab)c 6. a(b + c) = ab + ac and (b + c)a = ba + ca A given ring R is called commutative if multiplication in the ring is commutative. That is, for all a; b 2 R, ab = ba. A given ring R is said to have identity if there exists 1 2 R such that a · 1 = a for all a 2 R. By a ring, we generally mean a commutative ring with identity, denoted R, unless otherwise specified. While it is only feasible to graph finite rings, results are given for all rings, unless otherwise specified. The notion of a subring is exactly as one would expect, a ring that is contained within another ring and has the same structure as the containing ring. Next, we define a special type of subring called an ideal. Definition [4] A subring of a ring R is called an ideal of R is for every r 2 R and every a 2 A, ra and ar are in A. By an ideal, we mean a proper ideal of a ring, that is an ideal that is neither the trivial ring nor the entire ring R. Next, we define a zero-divisor, which is a particular type of element of a ring with peculiar and interesting properties. Page 170 RHIT Undergrad. Math. J., Vol. 14, no. 2 Definition A zero-divisor is an element a of a commutative ring R such that there is a nonzero element b in R such that ab = 0. Note that this implies that 0 is a zero-divisor in every non-trivial ring. Some texts define zero-divisors as strictly nonzero elements, but we adopt the above definition from [2] and [6]. We adopt the notation Z(R) for the set of all zero-divisors of a commutative ring from [6]. The set of units of R is denoted U(R). The remaining definitions are from graph theory. Definition [3] A graph G is an ordered pair of disjoint sets (V; E) such that E is a subset of the set V 2 of unordered pairs of V . The set V is the set of vertices of G and the set E is the set of edges of G. An edge (x; y) joins vertices x and y. For a graph G, the set of vertices is denoted V (G) and the set of edges is denoted E(G). We say G0 is a subgraph of G if V (G0) ⊆ V (G) and E(G0) ⊆ E(G). If G0 contains all edges of G that join two vertices in V (G0), then G0 is an induced subgraph. For our purposes, all subgraphs will be induced, so we will use the term subgraph to mean induced subgraph. The digraph of an ideal I of a ring R, denoted Ψ(I), is a subgraph of Ψ(R) where V (Ψ(I)) = I×I. Definition [3] If the edges of a graph G are ordered pairs of vertices, then G is called a directed graph. An ordered pair (a; b) is directed from a to b. Definition [3] If (a1; b1); (a2; b2);:::; (an; bn) are vertices in Ψ(R), then (a1; b1) (a2; b2) ··· (an; bn) denotes a walk in Ψ(R) from vertex (a1; b1) to vertex (an; bn), where (ai; bi) is adjacent to (ai+1; bi+1) and (ai−1; bi−1) for 1 ≤ i ≤ n − 1 and denotes a connection between two vertices without regard to direction. If (a1; b1); (a2; b2);:::; (an; bn) are distinct, then the walk is a path. For directed graphs, it becomes necessary to make a distinction between a walk (path) and a directed walk (directed path). Definition If (a1; b1); (a2; b2);:::; (an; bn) are vertices in Ψ(R), then (a1; b1) ! (a2; b2) ! ···! (an; bn) denotes a directed walk in Ψ(R) from vertex (a1; b1) to vertex (an; bn), where (ai; bi) is directionally adjacent to (ai+1; bi+1) for 1 ≤ i ≤ n−1. If (a1; b1); (a2; b2);:::; (an; bn) are distinct, then the directed walk is a directed path. Definition A connected graph is one in which there is a path between two distinct vertices. A connected component of a graph G, denoted C, is a maximal connected subgraph of G. RHIT Undergrad. Math. J., Vol. 14, no. 2 Page 171 3 Paths We begin by determining the behavior of paths and walks in the digraph of a ring. It is necessary to begin with such results as they are used later when studying the algebraic structures represented in digraphs. Definition Let (a; b); (x; y) 2 Ψ(R). Suppose (a; b) !···! (x; y), then (x; y) is said to be downstream from (a; b), and (a; b) is said to be upstream from (x; y). Definition If (x; y) ! (z; w), we say that (x; y) points to (z; w). Definition Given a vertex v, the number of vertices that point at v is the incoming degree of v. The number of vertices that v points to is the outgoing degree of v. It should be noted that because (x; y) ! (x + y; xy), the outgoing degree of (x; y) will always be one. Definition A cycle of length n is a directed path such that (x1; y1) ! (x2; y2) !···! (xn; yn) ! (x1; y1).
Recommended publications
  • Midterm (Take Home) – Solution
    Midterm (Take Home) – Solution M552 – Abstract Algebra 1. Let R be a local ring, i.e., a commutative ring with 1 with a unique maximal ideal, say I, and let M be a finitely generated R-modulo. (a) [10 points] If N is a submodule of M and M = N + (I · M), then M = N. [Hint: Last semester I proved Nakayma’s Lemma for ideals. The same proof works for [finitely generated] modules. [See Proposition 16.1 on pg. 751 of Dummit and Foote.] Use it here.] Proof. Since R is local, we have that its Jacobson radical is I. Now, since M is finitely generated, then so is M/N. [Generated by the classes of the generators of M.] So, M/N = (N +IM)/N = (IM)/N = I(M/N). [More formally, let α = m+N ∈ M/N, with m ∈ M. But, M = N + (I · M), and so there are n0 ∈ N, x0 ∈ I, and m0 ∈ M, such that m = n0 + x0m0. Hence, α = (n0 + x0m0) + N = x0m0 + N. Thus, α ∈ I(M/N), and hence M/N = I(M/N) [since the other inclusion is trivial].] By Nakayama’s Lemma, we have that M/N = 0, i.e., M = N. (b) [30 points] Suppose further that M is projective [still with the same hypothesis as above]. Prove that M is free. [Hints: Look at M/(I · M) to find your candidate for a basis. Use (a) to prove it generates M. Then let F be a free module with the rank you are guessing to be the rank of M and use (a) to show that the natural map φ : F → M is an isomorphism.] ∼ Proof.
    [Show full text]
  • The Jacobson Radical of Semicrossed Products of the Disk Algebra
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The aJ cobson radical of semicrossed products of the disk algebra Anchalee Khemphet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Khemphet, Anchalee, "The aJ cobson radical of semicrossed products of the disk algebra" (2012). Graduate Theses and Dissertations. 12364. https://lib.dr.iastate.edu/etd/12364 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Jacobson radical of semicrossed products of the disk algebra by Anchalee Khemphet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Justin Peters, Major Professor Scott Hansen Dan Nordman Paul Sacks Sung-Yell Song Iowa State University Ames, Iowa 2012 Copyright c Anchalee Khemphet, 2012. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my father Pleng and to my mother Supavita without whose support I would not have been able to complete this work. I would also like to thank my friends and family for their loving guidance and to my government for financial assistance during the writing of this work. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . v ABSTRACT . vi CHAPTER 1.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • THE JACOBSON RADICAL for ANALYTIC CROSSED PRODUCTS Allan P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Mathematics Mathematics, Department of 2001 THE JACOBSON RADICAL FOR ANALYTIC CROSSED PRODUCTS Allan P. Donsig University of Nebraska-Lincoln, [email protected] Aristides Katavolos University of Athens, [email protected] Antonios Manoussos [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub Donsig, Allan P.; Katavolos, Aristides; and Manoussos, Antonios, "THE JACOBSON RADICAL FOR ANALYTIC CROSSED PRODUCTS" (2001). Faculty Publications, Department of Mathematics. 133. https://digitalcommons.unl.edu/mathfacpub/133 This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE JACOBSON RADICAL FOR ANALYTIC CROSSED PRODUCTS ALLAN P. DONSIG, ARISTIDES KATAVOLOS, AND ANTONIOS MANOUSSOS Abstract. We characterise the Jacobson radical of an analytic crossed product C0(X) ×φ Z+, answering a question first raised by Arveson and Josephson in 1969. In fact, we characterise the d Jacobson radical of analytic crossed products C0(X) ×φ Z+. This consists of all elements whose ‘Fourier coefficients’ vanish on the recurrent points of the dynamical system (and the first one is zero). The multi-dimensional version requires a variation of the notion of recurrence, taking into account the various degrees of freedom. There is a rich interplay between operator algebras and dynamical systems, going back to the founding work of Murray and von Neumann in the 1930’s.
    [Show full text]
  • Jacobson Radical and on a Condition for Commutativity of Rings
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 4 Ver. III (Jul - Aug. 2015), PP 65-69 www.iosrjournals.org Jacobson Radical and On A Condition for Commutativity of Rings 1 2 Dilruba Akter , Sotrajit kumar Saha 1(Mathematics, International University of Business Agriculture and Technology, Bangladesh) 2(Mathematics, Jahangirnagar University, Bangladesh) Abstract: Some rings have properties that differ radically from usual number theoretic problems. This fact forces to define what is called Radical of a ring. In Radical theory ideas of Homomorphism and the concept of Semi-simple ring is required where Zorn’s Lemma and also ideas of axiom of choice is very important. Jacobson radical of a ring R consists of those elements in R which annihilates all simple right R-module. Radical properties based on the notion of nilpotence do not seem to yield fruitful results for rings without chain condition. It was not until Perlis introduced the notion of quasi-regularity and Jacobson used it in 1945, that significant chainless results were obtained. Keywords: Commutativity, Ideal, Jacobson Radical, Simple ring, Quasi- regular. I. Introduction Firstly, we have described some relevant definitions and Jacobson Radical, Left and Right Jacobson Radical, impact of ideas of Right quasi-regularity from Jacobson Radical etc have been explained with careful attention. Again using the definitions of Right primitive or Left primitive ideals one can find the connection of Jacobson Radical with these concepts. One important property of Jacobson Radical is that any ring 푅 can be embedded in a ring 푆 with unity such that Jacobson Radical of both 푅 and 푆 are same.
    [Show full text]
  • Nil and Jacobson Radicals in Semigroup Graded Rings
    Faculty of Science Departement of Mathematics Nil and Jacobson radicals in semigroup graded rings Master thesis submitted in partial fulfillment of the requirements for the degree of Master in Mathematics Carmen Mazijn Promotor: Prof. Dr. E. Jespers AUGUST 2015 Acknowledgements When we started our last year of the Master in Mathematics at VUB, none of us knew how many hours we would spend on the reading, understanding and writing of our thesis. This final product as conclusion of the master was at that point only an idea. The subject was chosen, the first papers were read and the first words were written down. And more words were written, more books were consulted, more questions were asked to our promoters. Writing a Master thesis is a journey. Even though next week everyone will have handed in there thesis, we don’t yet understand clearly where this journey took us, for the future is unknown. First of all I would like to thank professor Eric Jespers, for giving me the chance to grow as mathematician in the past years. With every semester the interest in Algebra and accuracy as mathematician grew. Thank you for the guidance through all the books and papers to make this a consistent dissertation. Secondly I would like to thank all my classmates and compa˜nerosde clase. For frowned faces when we didn’t get something in class, the laughter when we realized it was a ctually quite trivial or sometimes not even at all. For the late night calls and the interesting discussions. It was a pleasure.
    [Show full text]
  • Directed Graphs of Commutative Rings
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar Rose-Hulman Undergraduate Mathematics Journal Volume 14 Issue 2 Article 11 Directed Graphs of Commutative Rings Seth Hausken University of St. Thomas, [email protected] Jared Skinner University of St. Thomas, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Hausken, Seth and Skinner, Jared (2013) "Directed Graphs of Commutative Rings," Rose-Hulman Undergraduate Mathematics Journal: Vol. 14 : Iss. 2 , Article 11. Available at: https://scholar.rose-hulman.edu/rhumj/vol14/iss2/11 Rose- Hulman Undergraduate Mathematics Journal Directed Graphs of Commutative Rings Seth Hausken a Jared Skinnerb Volume 14, no. 2, Fall 2013 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 a Email: [email protected] University of St. Thomas b http://www.rose-hulman.edu/mathjournal University of St. Thomas Rose-Hulman Undergraduate Mathematics Journal Volume 14, no. 2, Fall 2013 Directed Graphs of Commutative Rings Seth Hausken Jared Skinner Abstract. The directed graph of a commutative ring is a graph representation of its additive and multiplicative structure. Using the mapping (a; b) ! (a + b; a · b) one can create a directed graph for every finite, commutative ring. We examine the properties of directed graphs of commutative rings, with emphasis on the informa- tion the graph gives about the ring. Acknowledgements: We would like to acknowledge the University of St. Thomas for making this research possible and Dr.
    [Show full text]
  • Jacobson Radical and Nilpotent Elements
    East Asian Math. J. Vol. 34 (2018), No. 1, pp. 039{046 http://dx.doi.org/10.7858/eamj.2018.005 JACOBSON RADICAL AND NILPOTENT ELEMENTS Chan Huh∗ y, Jeoung Soo Cheon, and Sun Hye Nam Abstract. In this article we consider rings whose Jacobson radical con- tains all the nilpotent elements, and call such a ring an NJ-ring. The class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We also prove that the Koethe conjecture holds if and only if the polynomial ring R[x] is NJ for every NI-ring R. 1. Introduction Throughout R denotes an associative ring with identity unless otherwise stated. An element a 2 R is nilpotent if an = 0 for some integer n ≥ 1, and an (one-sided) ideal is nil if all the elements are nilpotent. R is reduced if it has no nonzero nilpotent elements. For a ring R, Nil(R), N(R), and J(R) denote the set of all the nilpotent elements, the nil radical, and the Jacobson radical of R, respectively. Note that N(R) ⊆ Nil(R) and N(R) ⊆ J(R). Due to Marks [14], R is called an NI-ring if Nil(R) ⊆ N(R) (or equilvalently N(R) = Nil(R)). Thus R is NI if and only if Nil(R) forms an ideal if and only if the factor ring R=N(R) is reduced. Hong et al [8, corollary 13] proved that R is NI if and only if every minimal strongly prime ideal of R is completely prime.
    [Show full text]
  • MATH 210C: HOMEWORK 5 Problem 40. Recall That the Nilradical of A
    MATH 210C: HOMEWORK 5 Problem 40. Recall that the nilradical of a commutative ring A is the set of all nilpotent elements, that is, all x 2 A such that xn = 0 for some n 2 N. (a) Prove that the nilradical is the intersection of all prime ideals, and hence itself an ideal. Prove that the nilradical is always contained in the Jacobson radical. (b) Let A = k[X1;:::;Xn]=I be a finitely generated k-algebra for k a field. Prove that its nilradical and its Jacobson radical coincide. (c) Let A = R[[X]], the formal power series ring of a Noetherian commutative ring R. Compute the nilradical and the Jacobson radical of A, and conclude that these ideals are not equal in general. Problem 41. If A is a noncommutative ring, we can still consider the subset of nilpotent elements of A. Prove that this subset is generally neither closed under addition nor under left or right multiplication by elements of A. Further, give an example of two nilpotent elements whose product is no longer nilpotent. Problem 42. Let A be a ring with nilradical N. Suppose that every ideal I not contained in N contains a nonzero idempotent. Prove that Jac(A) = N. Problem 43. Compute the Jacobson radical of Z. Problem 44. Compute the Jacobson radical of Z=24Z. Generally, what is the Jacobson radical of Z=nZ? Problem 45. Let e 2 A be a central idempotent, i.e. it belongs to the center of A and satisfies e2 = e. Let M be a left A-module.
    [Show full text]
  • Some Remarks on the Formal Power Series Ring Bulletin De La S
    BULLETIN DE LA S. M. F. MATTHEW J. O’MALLEY Some remarks on the formal power series ring Bulletin de la S. M. F., tome 99 (1971), p. 247-258 <http://www.numdam.org/item?id=BSMF_1971__99__247_0> © Bulletin de la S. M. F., 1971, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 99, 1971, p. 247 a a58. SOME REMARKS ON THE FORMAL POWER SERIES RING BY MATTHEW J. (TMALLEY [Houston, Texas.] Let R be an integral domain with identity, let X be an indeterminate over jR, let S be the formal power series ring jR[[X]], and let G be a finite group of .R-automorphisms of S. If J? is a local ring (that is, a noetherian ring with unique maximal ideal M), and if R is complete in the M-adic topology, then P. SAMUEL shows the existence of f^S such that the ring S° of invariants of G is R[[f]] [9]. This paper was motivated by an attempt to generalize this result. Specifically, we will prove that the same conclusion holds if R is any noetherian integral domain with identity whose integral closure is a finite jR-module.
    [Show full text]
  • ON a RECENT GENERALIZATION of SEMIPERFECT RINGS 3 Is a Semilocal Noetherian Ring Which Is Not Semiperfect and Hence Gives Such Example
    ON A RECENT GENERALIZATION OF SEMIPERFECT RINGS ENGIN BUY¨ UKAS¸IK¨ AND CHRISTIAN LOMP Abstract. It follows from a recent paper by Ding and Wang that any ring which is generalized supplemented as left module over itself is semiperfect. The purpose of this note is to show that Ding and Wang’s claim is not true and that the class of generalized supplemented rings lies properly between the class of semilocal and semiperfect rings. Moreover we rectify their “theorem” by introducing a wider notion of local submodules. 1. Introduction H. Bass characterized in [3] those rings R whose left R-modules have projective covers and termed them left perfect rings. He characterized them as those semilocal rings which have a left t-nilpotent Jacobson radical Jac(R). Bass’s semiperfect rings are those whose finitely generated left (or right) R-modules have projective covers and can be characterized as those semilocal rings which have the property that idempotents lift modulo Jac(R). Kasch and Mares transferred in [9] the notions of perfect and semiperfect rings to modules and characterized semiperfect modules by a lattice-theoretical condition as follows. A module M is called supplemented if for any submodule N of M there exists a submodule L of M minimal with respect to M = N + L. The left perfect rings are then shown to be exactly those rings whose left R-modules are supplemented while the semiperfect rings are those whose finitely generated left R-modules are supplemented. Equivalently it is enough for a ring R to be semiperfect if the left (or right) R-module R is supplemented.
    [Show full text]
  • Theory of Noncommutative Rings and Representation Theory
    An Introduction to Non-Commutative Rings,Representations of Groups and Local Fields Student: Guide: Ayush Kumar Tewari Dr. B Sury Roll No. : 1211011 Professor ,STAT-MATH Summer Project Report Unit National Institute of Science Indian Statistical Education and Research, Institute, Bhubaneswar Bangalore 1 PART - 1 - NON COMMUTATIVE RINGS AND REPRESENTATION OF GROUPS 2 Contents Preface . .4 0.1 Wedderburn-Artin Theorem and Semisimplicity . .5 0.1.1 Semi Simplicity . .5 0.1.2 Wedderburn-Artin-Theorem . .9 0.2 Jacobson-radical-theory . 11 0.2.1 Quasi-regularity and Circle Decomposition . 14 0.2.2 Characterisations of the Jacobson Radical . 14 0.3 Jacobson Radical Under Change of Rings . 16 0.4 Group Rings and the J-Semisimplicity Problem . 18 0.4.1 Maschke's Theorem . 18 0.5 Introduction to Representation Theory . 23 0.5.1 Modules Over Finite Dimensional Algebras . 23 0.6 Representation of Groups . 24 0.7 Localisation . 28 0.8 Discrete Valuation Rings . 30 0.9 Complete-Fields . 32 0.9.1 Finite Extensions of Complete Fields . 32 0.10 Local-Fields . 37 0.10.1 General-Properties . 37 3 Preface The theory of Non Commutative Ring theory has gone forward with the most transitional phase in the latter part of the 20th century , initially starting with a very natural Wedderburn-Artin Theory, which also has natural occur- rences in the study of Lie Groups and Algebras,leading into Jacobson Radical Theory and then moving onto group rings and representations of groups and algebras.The end results of these theories provide a very innovative outlook to even problems related to different aspects of mathematics like Representation theory ,Central Simple Algebras , Group-cohomology .
    [Show full text]