<<

Lie and Lie algebroids

Songhao Li

University of Toronto, Canada

University of Waterloo July 30, 2013

Li (Toronto) Groupoids and algebroids Waterloo 2013 1 / 22 Outline

Lie Examples of Lie groupoids

Lie algebroid Examples of Lie algebroids of integrations

Poisson groupoid Poisson Poisson groupoid Lie bialgebroids Examples of Poisson groupoids and symplectic groupoids

Li (Toronto) Groupoids and algebroids Waterloo 2013 2 / 22 Lie groupoid Lie groupoid

Lie groupoid

Lie groupoid A Lie groupoid G over the base manifold M is a category such that

I the set of objects is M, and the set of arrows G is a manifold;

I the arrows are invertible;

I the source s and target t are submersions;

I the multiplication m and the identity id are smooth.

Li (Toronto) Groupoids and algebroids Waterloo 2013 3 / 22 Lie groupoid Lie groupoid

Lie groupoid

Lie groupoid A Lie groupoid G over the base manifold M is a category such that

I the set of objects is M, and the set of arrows G is a manifold;

I the arrows are invertible;

I the source s and target t are submersions;

I the multiplication m and the identity id are smooth. The structure maps are summarized by the following commutative diagram: i s  G × G m / G o id M s t A t

Li (Toronto) Groupoids and algebroids Waterloo 2013 3 / 22 Lie groupoid Lie groupoid

Source-simply-connected Lie groupoid

Notation For a Lie groupoid G over M, we denote it by G ⇒ M. Source-simply-connected Lie groupoid For a Lie groupoid G ⇒ M, −1 I for x ∈ M, the source fiber of x is s (x), and the target fiber is t−1(x); −1 I G ⇒ M is source-connected, if s (x) is connected for each x ∈ M; −1 I G ⇒ M is source-simply-connected, if s (x) is connected and simply-connected for each x ∈ M.

Li (Toronto) Groupoids and algebroids Waterloo 2013 4 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

1. Lie If the base M is a point, then G is a .

Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

1. Lie group If the base M is a point, then G is a Lie group.

2. Bundle of Lie groups If the source s : G → M and the target t : G → M coincide, then G ⇒ M is a bundle of Lie groups.

Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

1. Lie group If the base M is a point, then G is a Lie group. 2. Bundle of Lie groups If the source s : G → M and the target t : G → M coincide, then G ⇒ M is a bundle of Lie groups. 3. Pair groupoid For a connected manifold M, we define the pair groupoid Pair(M) ⇒ M: I Pair(M) = M × M;

I s : Pair(M) → M, (x, y) 7→ x;

I t : Pair(M) → M, (x, y) 7→ y;

I id : M → Pair(M), x 7→ (x, x);

I m : Pair(M)s×t Pair(M) → Pair(M), ((x, y), (y, z)) → (x, z).

Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

4. For a connected manifold M, we define the fundamental groupoid Π1(M) → M:

I Π1(M) is the classes of paths;

I s :Π1(M) → M, γ 7→ γ(0);

I t :Π1(M) → M, γ 7→ γ(1);

I id : M → Π1(M), x 7→ id(x) where id(x) is the constant path at x;

I m :Π1(M)s×t Π1(M) → Π1(M) is the concatenation of paths.

Li (Toronto) Groupoids and algebroids Waterloo 2013 6 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

4. Fundamental groupoid For a connected manifold M, we define the fundamental groupoid Π1(M) → M:

I Π1(M) is the homotopy classes of paths;

I s :Π1(M) → M, γ 7→ γ(0);

I t :Π1(M) → M, γ 7→ γ(1);

I id : M → Π1(M), x 7→ id(x) where id(x) is the constant path at x;

I m :Π1(M)s×t Π1(M) → Π1(M) is the concatenation of paths.

Remark Note that (s, t):Π1(M) → Pair(M) is a Lie groupoid morphism.

Li (Toronto) Groupoids and algebroids Waterloo 2013 6 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

5. General linear groupoid For a E → M, we define the general linear groupoid GL(E) ⇒ M: I GL(E) '{(x, y, φxy ) | x ∈ M, y ∈ M} ∼ where φxy : Ex → Ey is an invertible linear transformation;

I s : GL(E) → M, (x, y, φxy ) 7→ x;

I t : GL(E) → M, (x, y, φxy ) 7→ y;

I id : M → GL(E), x 7→ (x, x, idxx );

I m : GL(E)s×t GL(E) → GL(E),  (x, y, φxy ), (y, z, φyz ) 7→ (x, z, φyz ◦ φxy ).

Li (Toronto) Groupoids and algebroids Waterloo 2013 7 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

5. General linear groupoid For a vector bundle E → M, we define the general linear groupoid GL(E) ⇒ M: I GL(E) '{(x, y, φxy ) | x ∈ M, y ∈ M} ∼ where φxy : Ex → Ey is an invertible linear transformation;

I s : GL(E) → M, (x, y, φxy ) 7→ x;

I t : GL(E) → M, (x, y, φxy ) 7→ y;

I id : M → GL(E), x 7→ (x, x, idxx );

I m : GL(E)s×t GL(E) → GL(E),  (x, y, φxy ), (y, z, φyz ) 7→ (x, z, φyz ◦ φxy ).

Remark A Lie groupoid action of G ⇒ M on a vector bundle E → M is a Lie groupoid morphism ρ : G → GL(E).

Li (Toronto) Groupoids and algebroids Waterloo 2013 7 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

6. Holonomy groupoid For a vector bundle E → M, we define the holonomy groupoid Hol(E) ⇒ M: I Hol(E) = {(γ, φst ) | γ ∈ Π1D. ∼ where φst : Eγ(0) → Eγ(1)} is an invertible linear transformation;

I s : Hol(E) → M, (γ, φst ) 7→ γ(0);

I t : Hol(E) → M, (γ, φst ) 7→ γ(1);

I id : M → Hol(E), x 7→ (id(x), idxx );

I m : Hol(E)s×t Hol(E) → Hol(E), ((γ, φst ), (σ, ψst )) 7→ (γ ◦ σ, φst ◦ ψst ).

Li (Toronto) Groupoids and algebroids Waterloo 2013 8 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

6. Holonomy groupoid For a vector bundle E → M, we define the holonomy groupoid Hol(E) ⇒ M: I Hol(E) = {(γ, φst ) | γ ∈ Π1D. ∼ where φst : Eγ(0) → Eγ(1)} is an invertible linear transformation;

I s : Hol(E) → M, (γ, φst ) 7→ γ(0);

I t : Hol(E) → M, (γ, φst ) 7→ γ(1);

I id : M → Hol(E), x 7→ (id(x), idxx );

I m : Hol(E)s×t Hol(E) → Hol(E), ((γ, φst ), (σ, ψst )) 7→ (γ ◦ σ, φst ◦ ψst ).

Remark There is an obvious surjective groupoid morphism Hol(E) → GL(E) which covers Π1(M) → Pair(M).

Li (Toronto) Groupoids and algebroids Waterloo 2013 8 / 22 Lie groupoid Examples of Lie groupoids

Examples: Lie groupoids

7. Gauge groupoid For a principal G-bundle p : P → M, we consider the diagonal action of G on P × P: g(u, v) = (gu, gv).

We define the gauge groupoid Gauge(P) ⇒ M: I Gauge(P) = (P × P)/G. For u, v, v 0, w ∈ P such that p(v) = p(v 0) = x,

I s([u, v]) = p(u);

I t([u, v]) = p(v);

I id(x) = ([v, v]); 0 I m ([u, v], [v , w]) = ([u, w]).

Li (Toronto) Groupoids and algebroids Waterloo 2013 9 / 22 Lie algebroid Lie algebroid

Lie algebroid

Lie algebroid A Lie algebroid A over the base manifold M is a vector bundle A → M with a Lie bracket [·, ·] on Γ(A) and an anchor map a : A → TM that preserves the bracket and satisfies the Leibniz rule

[X, fY ] = f [X, Y ] + a(X)(f )Y . (2.1)

Li (Toronto) Groupoids and algebroids Waterloo 2013 10 / 22 Lie algebroid Lie algebroid

Lie algebroid

Lie algebroid A Lie algebroid A over the base manifold M is a vector bundle A → M with a Lie bracket [·, ·] on Γ(A) and an anchor map a : A → TM that preserves the bracket and satisfies the Leibniz rule

[X, fY ] = f [X, Y ] + a(X)(f )Y . (2.1)

Lie For a Lie groupoid G ⇒ M, the vector bundle . Lie(G) = id∗ ker (Ts : T G → TM) (2.2)

with the bracket on left invariant vector fields, and the anchor Tt : Lie(G) → TM, is Lie algebroid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 10 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

1. If the base M is a point, then A is a Lie algebra.

Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

1.Lie algebra If the base M is a point, then A is a Lie algebra.

2. Bundle of Lie algebras If the anchor a : A → TM is trivial, then A is a bundle of Lie algebras.

Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

1.Lie algebra If the base M is a point, then A is a Lie algebra.

2. Bundle of Lie algebras If the anchor a : A → TM is trivial, then A is a bundle of Lie algebras.

3. Tangent algebroid

I For a connected manifold M, the TM itself is a Lie algebroid.

I Both the pair groupoid Pair(M) and the fundamental groupoid Π1(M) integrates the tangent algebroid TM.

Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

4. General linear algebroid For a vector bundle E → M of rank r, we define the general linear algebroid gl(E):

I Let E be the Euler vector field, we have

Γ(gl(E)) = {X ∈ Γ(TE) | LEX = 0}. (2.3)

I The anchor a : gl(E) → TM is the pushforward of the projection E → M.

Li (Toronto) Groupoids and algebroids Waterloo 2013 12 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

Remark

I The general linear algebroid gl(E) fits into the following exact sequence 0 −→ V −→ gl(E) −→a TM −→ 0 (2.4) where V is the vector bundle whose sections are the vertical vector fields.

I Both the holonomy groupoid Hol(E) and the general linear groupoid GL(E) integrates the general linear algebroid gl(E).

I A Lie algebroid action A → M on a vector bundle E → M is a Lie algebroid morphism from A to gl(E).

Li (Toronto) Groupoids and algebroids Waterloo 2013 13 / 22 Lie algebroid Examples of Lie algebroids

Examples: Lie algebroids

5. For a principal G-bundle P → M, the Atiyah algebroid At(P) of P is the Lie algebroid of the gauge groupoid Gauge(P) ⇒ P, which fits in the following short exact sequence:

0 / P ×G g / At(P) / TM / 0 (2.5)

where P ×G g is the associated bundle.

Li (Toronto) Groupoids and algebroids Waterloo 2013 14 / 22 Lie algebroid Category of integrations

Category of integrations

I In general, it is not always true that a Lie algebroid integrates to a Lie groupoid. The integrability condition was given in [Crainic-Fernandes, ’03].

I For an integrable Lie algebroid A, the source-connected groupoids integrating A form a category Gpd(A).

I The initial object in Gpd(A) is the source-simply-connected groupoid integrating A; the terminal object, if exists, is the adjoint groupoid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 15 / 22 Lie algebroid Category of integrations

Category of integrations

I In general, it is not always true that a Lie algebroid integrates to a Lie groupoid. The integrability condition was given in [Crainic-Fernandes, ’03].

I For an integrable Lie algebroid A, the source-connected groupoids integrating A form a category Gpd(A).

I The initial object in Gpd(A) is the source-simply-connected groupoid integrating A; the terminal object, if exists, is the adjoint groupoid.

Lie groups For a Lie algebra g, the category of integrations Gpd(g) is equivalent to the lattice of normal subgroups of the fundamental group of sc simply-connected Lie group, Λ(π1(G )).

Li (Toronto) Groupoids and algebroids Waterloo 2013 15 / 22 Lie algebroid Category of integrations

Category of tangent integrations

I For a connected manifold M, the category of tangent integrations Gpd(TM) is equivalent to the lattice of normal subgroups of the fundamental group, Λ(π1(M, x)). I The equivalence is given by

−1 G ⇒ M 7→ t∗(π1(s (x), id(x))). (2.6)

I The fundamental groupoid Π1(M) is the source-simply-connected integration, and corresponds to the trivial group {id} inside π1(M, x). I The pair groupoid Pair(M) is the adjoint integration, and corresponds to π1(M, x).

Li (Toronto) Groupoids and algebroids Waterloo 2013 16 / 22 Poisson groupoid

Poisson manifold

Schouten–Nijenhuis breacket For a manifold M, the bracket [·, ·] on vector fields X(M) may be extended to make the alternating multi-vectors X•(M) a Gerstenhaber algebra

[X1 ··· Xm, Y1 ··· Yn] X i+j ˆ ˆ (3.1) = (−1) [Xi , Yj ]X1 ··· Xi ··· XmY1 ··· Yj ··· Yn. i,j

Li (Toronto) Groupoids and algebroids Waterloo 2013 17 / 22 Poisson groupoid Poisson manifold

Poisson manifold

Schouten–Nijenhuis breacket For a manifold M, the bracket [·, ·] on vector fields X(M) may be extended to make the alternating multi-vectors X•(M) a Gerstenhaber algebra

[X1 ··· Xm, Y1 ··· Yn] X i+j ˆ ˆ (3.1) = (−1) [Xi , Yj ]X1 ··· Xi ··· XmY1 ··· Yj ··· Yn. i,j

Poisson manifold A Poisson manifold is a manifold M with a bivector π ∈ X2(M) such that

[π, π] = 0. (3.2)

Li (Toronto) Groupoids and algebroids Waterloo 2013 17 / 22 Poisson groupoid Poisson manifold

Poisson algebroid

Poisson algebroids ∗ For a Poisson manifold (M, π), we define the Poisson algebroid Tπ M: ∗ ∗ I Tπ M = T M; ] ∗ I the anchor is π : T M → TM, α 7→ ιαπ; I the bracket is the Koszul bracket

[α, β] = Lπ](α)β − Lπ](β)α − dπ(α, β). (3.3)

Li (Toronto) Groupoids and algebroids Waterloo 2013 18 / 22 Poisson groupoid Poisson manifold

Poisson algebroid

Poisson algebroids ∗ For a Poisson manifold (M, π), we define the Poisson algebroid Tπ M: ∗ ∗ I Tπ M = T M; ] ∗ I the anchor is π : T M → TM, α 7→ ιαπ; I the bracket is the Koszul bracket

[α, β] = Lπ](α)β − Lπ](β)α − dπ(α, β). (3.3)

Coisotropic submanifold

I A coisotropic submanifold of (M, π) is a submanifold C ⊂ M such ] ∗ that π (T M|C) ⊂ TC. ∗ I The conormal bundle N C is a Lie subalgebroid of the Poisson ∗ algebroid Tπ M.

Li (Toronto) Groupoids and algebroids Waterloo 2013 18 / 22 Poisson groupoid Poisson groupoid

Poisson groupoid

Poisson groupoid A Poisson groupoid is a Lie groupoid G ⇒ M with a Poisson structure σ on G such that the graph of multiplication

Graph(m) = {(g, h, m(g, h)) | (g, h) ∈ Gs×t G} (3.4)

is coisotropic with respect to σ ⊕ σ ⊕ −σ.

Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22 Poisson groupoid Poisson groupoid

Poisson groupoid

Poisson groupoid A Poisson groupoid is a Lie groupoid G ⇒ M with a Poisson structure σ on G such that the graph of multiplication

Graph(m) = {(g, h, m(g, h)) | (g, h) ∈ Gs×t G} (3.4)

is coisotropic with respect to σ ⊕ σ ⊕ −σ.

I The pushforward π = s∗(σ) = −t∗(σ) is Poisson on M.

Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22 Poisson groupoid Poisson groupoid

Poisson groupoid

Poisson groupoid A Poisson groupoid is a Lie groupoid G ⇒ M with a Poisson structure σ on G such that the graph of multiplication

Graph(m) = {(g, h, m(g, h)) | (g, h) ∈ Gs×t G} (3.4)

is coisotropic with respect to σ ⊕ σ ⊕ −σ.

I The pushforward π = s∗(σ) = −t∗(σ) is Poisson on M.

Symplectic groupoid A symplectic groupoid is a Poisson groupoid (G, σ) ⇒ (M, π) such that σ is non-degenerate.

Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22 Poisson groupoid Poisson groupoid

Poisson groupoid

Poisson groupoid A Poisson groupoid is a Lie groupoid G ⇒ M with a Poisson structure σ on G such that the graph of multiplication

Graph(m) = {(g, h, m(g, h)) | (g, h) ∈ Gs×t G} (3.4)

is coisotropic with respect to σ ⊕ σ ⊕ −σ.

I The pushforward π = s∗(σ) = −t∗(σ) is Poisson on M.

Symplectic groupoid A symplectic groupoid is a Poisson groupoid (G, σ) ⇒ (M, π) such that σ is non-degenerate.

I For a symplectic groupoid (G, σ), the graph Graph(m) is Lagrangian.

Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22 Poisson groupoid Lie bialgebroids

Lie bialgebroid

Lie bialgebroid Let (A, M, a, [·, ·]) be a Lie algebroid. If the dual bundle A∗ carries a Lie ∗ algebroid structure (A , M, a∗, [·, ·]∗) such that

d∗[X, Y ] = LX d∗Y − LY d∗X, (3.5)

∗ where d∗ is the A -differential and L is the Lie direvative with respect to A, then (A, A∗) is a Lie bialgebroid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 20 / 22 Poisson groupoid Lie bialgebroids

Lie bialgebroid

Lie bialgebroid Let (A, M, a, [·, ·]) be a Lie algebroid. If the dual bundle A∗ carries a Lie ∗ algebroid structure (A , M, a∗, [·, ·]∗) such that

d∗[X, Y ] = LX d∗Y − LY d∗X, (3.5)

∗ where d∗ is the A -differential and L is the Lie direvative with respect to A, then (A, A∗) is a Lie bialgebroid.

Lie functor for Poisson groupoid . For a Poisson groupoid (G, σ) (M, π), the Lie algebroids A = Lie(G) . ⇒ and A∗ = N∗ (id(M)) form a Lie bialgebroid, and we write

Lie(G, σ) = (A, A∗). (3.6)

Li (Toronto) Groupoids and algebroids Waterloo 2013 20 / 22 Poisson groupoid Examples of Poisson groupoids and symplectic groupoids

Examples: Poisson groupoids

1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M × M with the Poisson structrure π ⊕ −π is a Poisson groupoid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22 Poisson groupoid Examples of Poisson groupoids and symplectic groupoids

Examples: Poisson groupoids

1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M × M with the Poisson structrure π ⊕ −π is a Poisson groupoid.

2. Fundamental groupoid

For a Poisson manifold (M, π), the fundamental groupoid Π1(M) with the Poisson structrure σ = (s, t)∗(π ⊕ −π) is a Poisson groupoid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22 Poisson groupoid Examples of Poisson groupoids and symplectic groupoids

Examples: Poisson groupoids

1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M × M with the Poisson structrure π ⊕ −π is a Poisson groupoid.

2. Fundamental groupoid

For a Poisson manifold (M, π), the fundamental groupoid Π1(M) with the Poisson structrure σ = (s, t)∗(π ⊕ −π) is a Poisson groupoid.

I The Lie bialgebroid of (Pair(M), π ⊕ −π) and (Π1(M), σ) is ∗ (TM, Tπ M). I If (M, π) is symplectic, then both (Pair(M), π ⊕ −π) and (Π1(M), σ) are symplectic groupoids.

Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22 Poisson groupoid Examples of Poisson groupoids and symplectic groupoids

Examples: Poisson groupoids

∗ 3. (T M, ω0) ⇒ (M, 0) For a manifold M with the zero Poisson structure, the cotangent bundle ∗ T M with the canonical symplectic structrue ω0 is a symplectic groupoid.

Li (Toronto) Groupoids and algebroids Waterloo 2013 22 / 22 Poisson groupoid Examples of Poisson groupoids and symplectic groupoids

Examples: Poisson groupoids

∗ 3. (T M, ω0) ⇒ (M, 0) For a manifold M with the zero Poisson structure, the cotangent bundle ∗ T M with the canonical symplectic structrue ω0 is a symplectic groupoid.

∗ ∗ 4. (T G, ω0) ⇒ (g , πkks) Let G be a Lie group, and let g be its Lie algebra. ∗ I The dual g is equipped with the KKS Poisson structure πkks. ∗ I The cotangent bundle (T G, ω0) is a symplectic groupoid of ∗ (g , πkks). I The source and the target are left and right translations.

Li (Toronto) Groupoids and algebroids Waterloo 2013 22 / 22