Algorithms, Games, and Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms, Games, and Evolution Algorithms, Games, and Evolution Erick Chastain ∗, Adi Livnat y, Christos Papadimitriou z and Umesh Vazirani z ∗Computer Science Department, Rutgers University, Piscataway, NJ 08854 USA, [email protected].,yDepartment of Biological Sciences, Virginia Tech, Blacks• burg, VA 24061 USA, [email protected]., and zComputer Science Division, University of California at Berkeley, CA, 94720 USA, [email protected], vazi• [email protected]. Contributed by Christos Papadimitriou, April 2, 2014 (sent for review November 16, 2013) Even the most seasoned students of evolution, starting with Dar• so as to maximize a certain convex combination of (a)cumulative ex- win himself, have occasionally expressed amazement that the pected fitness and (b) the entropy of its distribution on alleles. This mechanism of natural selection has produced the whole of Life connection between evolution, game theory, and algorithms seems to as we see it around us. There is a computational way to articulate us rife with productive insights; for example, the dual view just men- the same amazement: “What algorithm could possibly achieve all tioned sheds new light on the maintenance of diversity in evolution. this in a mere three and a half billion years?” In this paper we propose an answer: We demonstrate that in the regime of weak Game theory has been applied to evolutionary theory before, to selection, the standard equations of population genetics describ• study the evolution of strategic individual behavior (see, e.g., [6, 7]). ing natural selection in the presence of sex become identical to The connection between game theory and evolution that we point out those of a repeated game between genes played according to mul• here is at a different level, and arises not in the analysis of strategic tiplicative weight updates (MWUA), an algorithm known in com• individual behavior, but rather in the analysis of the basic population puter science to be surprisingly powerful and versatile. MWUA genetic dynamics in the presence of sexual reproduction. The main maximizes a trade•off between cumulative performance and en• ingredients of evolutionary game theory, namely strategic individual tropy, which suggests a new view on the maintenance of diversity behavior and conflict between individuals, are extraneous to our anal- in evolution. ysis. We now state our assumptions and results. We consider an in- Significance statement: Theoretical biology was founded on the finite panmictic population of haplotypes involving several unlinked mathematical tools of statistics and physics. We believe there are pro- (i.e., fully recombining) loci, where each locus has several alleles. ductive connections to be made with the younger field of theoretical These assumptions are rather standard in the literature. They are computer science, which shares with it an interest in complexity and made here in order to simplify exposition and algebra, and there is functionality. In this paper, we find that the mathematical descrip- no a priori reason to believe that they are essential for the results, tion of evolution in the presence of sexual recombination and weak beyond making them easily accessible. For example, Nagylaki’s the- selection is equivalent to a repeated game between genes played ac- orem [4], which is the main analytical ingredient of our results, holds cording to the multiplicative weight updates algorithm (MWUA), an even in the presence of diploidy and partial recombination. algorithm that has surprised computer scientists time and again in its Nagylaki’s theorem states that weak selection in the presence of usefulness. This equivalence is informative for the pursuit of two key sex proceeds near the Wright manifold, where the population genetic problems in evolution: the role of sex, and the maintenance of varia- dynamics become (SI) tion. ( ) t+1 1 t t xi (j) = xi(j) Fi (j) ; Weak selection j sex and recombination j coordination games j learning Xt algorithms j multiplicative weights update t where xi(j) is the frequency of allele j of locus i in the population at generation t, X is a normalizing constant to keep the frequencies t recisely how does selection change the composition of the gene summing to one, and Fi (j) is the mean fitness at time t amongst Ppool from generation to generation? The field of population ge- genotypes that contain allele j at locus i (see [4] and the SI). Un- netics has developed a comprehensive mathematical framework for der the assumption of weak selection, the fitness of all genotypes are answering this and related questions [1]. Our analysis in this paper close to one another, say within the interval [1 − ϵ, 1 + ϵ], and so the focuses particularly on the regime of weak selection, now a widely fitness of genotype g can be written as Fg = 1 + ϵ∆g, where ϵ is the used assumption [2, 3]. Weak selection assumes that the differences selection strength, assumed here to be small, and ∆g 2 [−1; 1] can in fitness between genotypes are small relative to the recombination be called the differential fitness of the genotype. With this in mind, rate, and consequently, through a result due to Nagylaki et al. [4], the equation above can be written (see also [1] Section II.6.2), evolution proceeds near linkage equi- ( ) librium, a regime where the probability of occurrence of a certain t+1 1 t t xi (j) = xi(j) 1 + ϵ∆i(j) ; (1) genotype involving various alleles is simply the product of the prob- Xt t abilities of each of its alleles. Based on this result, we show that where ∆i(j) is the expected differential fitness amongst genotypes evolution in the regime of weak selection can be formulated as a re- that contain allele j at locus i (see Figure 1 for an illustration of pop- peated game, where the recombining loci are the players, the alleles ulation genetics at linkage equilibrium). in those loci are the possible actions or strategies available to each player, and the expected payoff at each generation is the expected fit- ness of an organism across the genotypes that are present in the pop- Reserved for Publication Footnotes ulation. Moreover, and perhaps most importantly, we show that the equations of population genetic dynamics are mathematically equiva- lent to positing that each locus selects a probability distribution on al- leles according to a particular rule which, in the context of the theory of algorithms, game theory and machine learning, is known as mul- tiplicative weight updates (MWUA). MWUA is known in computer science as a simple but surprisingly powerful algorithm (see [5] for a survey). Moreover, there is a dual view of this algorithm: each locus may be seen as selecting its new allele distribution at each generation www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–5 We now introduce the framework of game theory (see Figure 2 nection between three theoretical fields: evolutionary theory, game for an illustration) and the “multiplicative weight updates” algorithm theory, and the theory of algorithms/machine learning. (MWUA, see SI), studied in computer science and machine learning, So far we have presented the MWUA by “how it works” (infor- and rediscovered many times over the past half-century; as a result mally, it boosts alleles proportionally to how well they do in the cur- of these multiple rediscoveries, the algorithm is known with various rent mix). There is an alternative way of understanding the MWUA names across subfields: “the experts algorithm” in the theory of algo- in terms of “what it is optimizing.” That is, we imagine that the al- rithms, “Hannan consistency” in economics, “regret minimization” in lele frequencies of each locus in each generation is the result of a game theory, “boosting” and “winnow” in artificial intelligence, etc. deliberate optimization by the locus of some quantity, and we wish Here we state it in connection to games, which is only a small part to determine that quantity. P t t τ of its applicability (see the SI for an introduction to the MWUA in Returning to the game formulation, define Ui (j) = τ=0 ui (j) connection to the so-called experts problem in Computer Science). to be the cumulative utility obtained by player i by playing strategy j A game has several players, and each player i has a set Ai of over all t first repetitions of the game, and consider the quantity possible actions. Each player also has a utility, capturing the way X 1 X whereby her actions and the actions of the other players affect this xt(j)U t(j) − xt(j) ln xt(j): (3) i i ϵ i i player’s well being. Formally the utility of a player is a function j j that maps each combination of actions by the players to a real num- The first term is the current (at time t) expected cumulative utility. ber (intuitively denoting the player’s gain, in some monetary unit, if The second term of (3) is the entropy (expected negative logarithm) all players choose these particular actions). In general, rather than of the probability distribution fxi(j); j = 1;::: jAijg, multiplied by choosing a single action, a player may instead choose a mixed or ran- a large constant 1 . Suppose now that player i wished to choose the domized action, that is, a probabilistic distribution over her action ϵ probabilities of actions xt(j)’s with the sole goal of maximizing the set. Here we only need to consider coordination games, in which all i quantity (3). This is a relatively easy optimization problem, because players have the same utility function — that is, the interests of the the quantity (3) to be maximized is strictly concave, and therefore players are perfectly aligned, and their only challenge is to coordinate it has a unique maximum, obtained through the KKT conditions [8] their choices effectively.
Recommended publications
  • Curriculum Vitae
    Curriculum Vitae Prof. Michal Feldman School of Computer Science, Tel-Aviv University Personal Details • Born: Israel, 1976 • Gender: Female • email: [email protected] Education • Ph.D.: Information Management and Systems, University of California at Berkeley, May 2005. Thesis title: Incentives for cooperation in peer-to-peer systems. • B.Sc.: Bar-Ilan University, Computer Science, Summa Cum Laude, June 1999. Academic Positions 2013 - present: Associate Professor, School of Computer Science, Tel-Aviv University, Israel. Associate Professor, School of Business Administration and Center for 2011 - 2013: the Study of Rationality, Hebrew University of Jerusalem, Israel. 2007 - 2011: Senior Lecturer, School of Business Administration and Center for the Study of Rationality, Hebrew University of Jerusalem, Israel. Additional Positions 2011 - 2013: Visiting Researcher (weekly visitor), Microsoft Research New England, Cambridge, MA, USA. 2011 - 2013: Visiting Professor, Harvard School of Engineering and Applied Sciences, Center for Research on Computation and Society, School of Computer Science, Cambridge, MA, USA (Marie Curie IOF program). 2008 - 2011: Senior Researcher (part-time), Microsoft Research in Herzliya, Israel. 2007 - 2013: Member, Center for the Study of Rationality, Hebrew University. 2005 - 2007: Post-Doctoral Fellow (Lady Davis fellowship), Hebrew University, School of Computer Science and Engineering. 2004: Ph.D. Intern, HP Labs, Palo Alto, California, USA. 1 Grants (Funding ID) • European Research Council (ERC) Starting Grant: \Algorithmic Mechanism Design - Beyond Truthfulness": 1.4 million Euro, 2013-2017. • FP7 Marie Curie International Outgoing Fellowship (IOF): \Innovations in Algorithmic Game Theory" (IAGT): 313,473 Euro, 2011-2014. • Israel Science Foundation (ISF) grant. \Equilibria Under Coalitional Covenants in Non-Cooperative Games - Existence, Quality and Computation:" 688,000 NIS (172,000 NIS /year), 2009-2013.
    [Show full text]
  • Limitations and Possibilities of Algorithmic Mechanism Design By
    Incentives, Computation, and Networks: Limitations and Possibilities of Algorithmic Mechanism Design by Yaron Singer A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christos Papadimitriou, Chair Professor Shachar Kariv Professor Scott Shenker Spring 2012 Incentives, Computation, and Networks: Limitations and Possibilities of Algorithmic Mechanism Design Copyright 2012 by Yaron Singer 1 Abstract Incentives, Computation, and Networks: Limitations and Possibilities of Algorithmic Mechanism Design by Yaron Singer Doctor of Philosophy in Computer Science University of California, Berkeley Professor Christos Papadimitriou, Chair In the past decade, a theory of manipulation-robust algorithms has been emerging to address the challenges that frequently occur in strategic environments such as the internet. The theory, known as algorithmic mechanism design, builds on the foundations of classical mechanism design from microeconomics and is based on the idea of incentive compatible pro- tocols. Such protocols achieve system-wide objectives through careful design that ensures it is in every agent's best interest to comply with the protocol. As it turns out, however, implementing incentive compatible protocols as advocated in classical mechanism design the- ory often necessitates solving intractable problems. To address this, algorithmic mechanism design focuses on designing
    [Show full text]
  • Satisfiability and Evolution
    2014 IEEE Annual Symposium on Foundations of Computer Science Satisfiability and Evolution Adi Livnat Christos Papadimitriou Aviad Rubinstein Department of Biological Sciences Computer Science Division Computer Science Division Virginia Tech. University of California at Berkeley University of California at Berkeley [email protected] [email protected] [email protected] Gregory Valiant Andrew Wan Computer Science Department Simons Institute Stanford University University of California at Berkeley [email protected] [email protected] Abstract—We show that, if truth assignments on n variables genes are able to efficiently arise in polynomial populations reproduce through recombination so that satisfaction of a par- with recombination. In the standard view of evolution, a ticular Boolean function confers a small evolutionary advan- variant of a particular gene is more likely to spread across tage, then a polynomially large population over polynomially many generations (polynomial in n and the inverse of the initial a population if it makes its own contribution to the overall satisfaction probability) will end up almost surely consisting fitness, independent of the contributions of variants of other exclusively of satisfying truth assignments. We argue that this genes. How can complex, multi-gene traits spread in a theorem sheds light on the problem of the evolution of complex population? This may seem to be especially problematic adaptations. for multi-gene traits whose contribution to fitness does not Keywords-evolution; algorithms; Boolean functions decompose into small additive components associated with each gene variant —traits with the property that even if I. INTRODUCTION one gene variant is different from the one that is needed The TCS community has a long history of applying its for the right combination, there is no benefit, or even a net perspectives and tools to better understand the processes negative benefit.
    [Show full text]
  • A Decade of Lattice Cryptography
    Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • 6.5 X 11.5 Doublelines.P65
    Cambridge University Press 978-0-521-87282-9 - Algorithmic Game Theory Edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani Copyright Information More information Algorithmic Game Theory Edited by Noam Nisan Hebrew University of Jerusalem Tim Roughgarden Stanford University Eva´ Tardos Cornell University Vijay V. Vazirani Georgia Institute of Technology © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-87282-9 - Algorithmic Game Theory Edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani Copyright Information More information cambridge university press Cambridge, New York,Melbourne, Madrid, Cape Town, Singapore, Sao˜ Paulo, Delhi Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA www.cambridge.org Information on this title: www.cambridge.org/9780521872829 C Noam Nisan, Tim Roughgarden, Eva´ Tardos, Vijay V. Vazirani 2007 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2007 Printed in the United States of America A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data Algorithmic game theory / edited by Noam Nisan ...[et al.]; foreword by Christos Papadimitriou. p. cm. Includes index. ISBN-13: 978-0-521-87282-9 (hardback) ISBN-10: 0-521-87282-0 (hardback) 1. Game theory. 2. Algorithms. I. Nisan, Noam. II. Title. QA269.A43 2007 519.3–dc22 2007014231 ISBN 978-0-521-87282-9 hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLS for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.
    [Show full text]
  • Linked Decompositions of Networks and the Power of Choice in Polya Urns
    Linked Decompositions of Networks and the Power of Choice in Polya Urns Henry Lin¤ Christos Amanatidisy Martha Sideriz Richard M. Karpx Christos H. Papadimitriou{ October 12, 2007 Abstract balls total, and each arriving ball is placed in the least loaded A linked decomposition of a graph with n nodes is a set of m bins, drawn independently at random with probability of subgraphs covering the n nodes such that all pairs of proportional to load. Our analysis shows that in our new subgraphs intersect; we seek linked decompositions such process, with high probability the bin loads become roughly p 2+² that all subgraphs have about n vertices, logarithmic balanced some time before O(n ) further balls have arrived diameter, and each vertex of the graph belongs to either and stay roughly balanced, regardless of how the initial O(n) one or two subgraphs. A linked decomposition enables balls were distributed, where ² > 0 can be arbitrarily small, many control and management functions to be implemented provided m is large enough. locally, such as resource sharing, maintenance of distributed directory structures, deadlock-free routing, failure recovery 1 Introduction and load balancing, without requiring any node to maintain Throwing balls into bins uniformly at random is well- information about the state of the network outside the known to produce relatively well-balanced occupancies subgraphs to which it belongs. Linked decompositions also with high probability. In contrast, when each new ball is enable e±cient routing schemes with small routing tables, added to a bin selected with probability proportional to which we describe in Section 5.
    [Show full text]
  • Sharing Non-Anonymous Costs of Multiple Resources Optimally
    Sharing Non-Anonymous Costs of Multiple Resources Optimally Max Klimm∗ Daniel Schmand† July 18, 2018 Abstract In cost sharing games, the existence and efficiency of pure Nash equi- libria fundamentally depends on the method that is used to share the resources’ costs. We consider a general class of resource allocation prob- lems in which a set of resources is used by a heterogeneous set of selfish users. The cost of a resource is a (non-decreasing) function of the set of its users. Under the assumption that the costs of the resources are shared by uniform cost sharing protocols, i.e., protocols that use only lo- cal information of the resource’s cost structure and its users to determine the cost shares, we exactly quantify the inefficiency of the resulting pure Nash equilibria. Specifically, we show tight bounds on prices of stabil- ity and anarchy for games with only submodular and only supermodular cost functions, respectively, and an asymptotically tight bound for games with arbitrary set-functions. While all our upper bounds are attained for the well-known Shapley cost sharing protocol, our lower bounds hold for arbitrary uniform cost sharing protocols and are even valid for games with anonymous costs, i.e., games in which the cost of each resource only depends on the cardinality of the set of its users. 1 Introduction Resource allocation problems are omnipresent in many areas of economics, com- puter science, and operations research with many applications, e.g., in routing, network design, and scheduling. Roughly speaking, when solving these prob- arXiv:1412.4456v2 [cs.GT] 4 Feb 2015 lems the central question is how to allocate a given set of resources to a set of potential users so as to optimize a given social welfare function.
    [Show full text]
  • Pairwise Independence and Derandomization
    Pairwise Independence and Derandomization Pairwise Independence and Derandomization Michael Luby Digital Fountain Fremont, CA, USA Avi Wigderson Institute for Advanced Study Princeton, NJ, USA [email protected] Boston – Delft Foundations and TrendsR in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 A Cataloging-in-Publication record is available from the Library of Congress The preferred citation for this publication is M. Luby and A. Wigderson, Pairwise R Independence and Derandomization, Foundation and Trends in Theoretical Com- puter Science, vol 1, no 4, pp 237–301, 2005 Printed on acid-free paper ISBN: 1-933019-22-0 c 2006 M. Luby and A. Wigderson All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Identifying the Roles of Race-Based Choice and Chance in High School Friendship Network Formation
    Identifying the roles of race-based choice and chance in high school friendship network formation Sergio Currarinia, Matthew O. Jacksonb,c,1, and Paolo Pind aDipartimento di Scienze Economiche, Università Ca′ Foscari di Venezia, and School for Advanced Studies in Venice, 30123 Venice, Italy; bDepartment of Economics, Stanford University, Stanford, CA 94305; cSanta Fe Institute, Santa Fe, NM 87501; and dDipartimento di Economia Politica, Università degli Studi di Siena, 53100 Siena, Italy Edited* by Christos Papadimitriou, University of California, Berkeley, CA, and approved January 13, 2010 (received for review October 12, 2009) Homophily, the tendency of people to associate with others similar preferences of the individual by careful observation of the choices to themselves, is observed in many social networks, ranging from that they make based on the opportunities that they have. We adapt friendships to marriages to business relationships, and is based on a these techniques for the analysis of social behavior and friendship variety of characteristics, including race, age, gender, religion, and formation. Here we infer students’ preferences by observing how the education. We present a technique for distinguishing two primary number of friendships they have changes with the racial composition sources of homophily: biases in the preferences of individuals over of their school. We employ the friendship formation model (3), here the types of their friends and biases in the chances that people meet extended to allow for differentbiases across race in both preferences individuals of other types. We use this technique to analyze racial and opportunities. Using a parameterized version of this model, we patterns in friendship networks in a set of American high schools are able to distinguish between the two primary sources of homo- from the Add Health dataset.
    [Show full text]
  • Preliminary Program (Ver
    Preliminary Program (ver. 12) 39th International Colloquium on Automata, Languages and Programming University of Warwick, July 9 – 13, 2012 39th ICALP 2012, University of Warwick Monday 9 July 2012 Invited Talk 08.45 – 09.00 Opening and Welcome Stefano Leonardi 09.00 – 10.00 On Multiple Keyword Sponsored Search Auctions with Budgets 10.00 – 10.30 COFFEE BREAK Track A1 Inge Li Gørtz, Viswanath Nagarajan and Rishi Saket 10.30 – 10.50 Stochastic Vehicle Routing with Recourse Nicole Megow, Martin Skutella, Jose Verschae and Andreas 10.55 – 11.15 Wiese The Power of Recourse for Online MST and TSP Yossi Azar and Iftah Gamzu 11.20 – 11.40 Efficient Submodular Function Maximization under Linear Packing Constraints Alberto Marchetti-Spaccamela, Cyriel Rutten, Suzanne van der 11.45 – 12.05 Ster and Andreas Wiese Assigning Sporadic Tasks to Unrelated Parallel Machines Siddharth Barman, Shuchi Chawla, David Malec and Seeun 12.10 – 12.30 Umboh Secretary Problems with Convex Costs Track C1 Ning Chen, Xiaotie Deng, Hongyang Zhang and Jie Zhang 10.30 – 10.50 Incentive Ratios of Fisher Markets Ilias Diakonikolas, Christos Papadimitriou, George 10.55 – 11.15 Pierrakos and Yaron Singer Efficiency-Revenue Trade-offs in Auctions Khaled Elbassioni 11.20 – 11.40 A QPTAS for -Envy-Free Profit-Maximizing Pricing on Line Graphs Elias Koutsoupias and Katia Papakonstantinopoulou 11.45 – 12.05 Contention Issues in Congestion Games Fedor Fomin, Petr Golovach, Jesper Nederlof and Michał 12.10 – 12.30 Pilipczuk Minimizing Rosenthal Potential in Multicast Games Page
    [Show full text]
  • Christos-Alexandros (Alex) Psomas
    CHRISTOS-ALEXANDROS (ALEX) PSOMAS Address: Gates-Hillman Center, Office #9116, Pittsburgh PA, USA 15213 Phone: (+1)5105178185 Email: [email protected] Website: http://www.cs.cmu.edu/∼cpsomas/ EMPLOYMENT Carnegie Mellon University, Pittsburgh PA, USA Post Doctoral Fellow hosted by Ariel Procaccia. 2017-present Microsoft Research, Redmond WA, USA Research Internship under the supervision of Nikhil R. Devanur. Summer 2015 International Computer Science Institute (ICSI), Berkeley CA, USA Research Internship under the supervision of Eric J. Friedman. Summers 2013 and 2014 National Center for Scientific Research ( NCSR ) "Demokritos", Athens, Greece Research Internship under the supervision of Sergios Petridis. March, 2011 - July, 2011 EDUCATION University of California, Berkeley, USA 2012-2017 Ph.D. in Computer Science Thesis: Algorithmic Mechanism Design in Dynamic Environments Advisor: Christos H. Papadimitriou University of Athens, Greece 2011-2012 M.Sc. in Logic, Algorithms and Computation GPA: 8.62/10 Thesis: Strategyproof Allocation of Multidimensional Tasks on Clusters Athens University of Economics and Business, Greece 2007-2011 B.S. in Computer Science GPA: 9.18/10 ( ranked 1st in a class of more than 200 students ) TEACHING EXPERIENCE Carnegie Mellon University, USA Instructor for the course Truth, Justice, and Algorithms. Fall 2018 Course website: http://www.cs.cmu.edu/∼15896/ University of California, Berkeley, USA Instructor for the course Discrete Mathematics and Probability Theory. Summer 2016 Course website: https://inst.eecs.berkeley.edu/∼cs70/su16/ Teaching assistant for the course Discrete Mathematics and Probability Theory. Spring 2016 CS Scholars Tutor for the course Discrete Mathematics and Probability Theory. Spring 2016 Teaching assistant for the course Efficient Algorithms and Intractable Problems.
    [Show full text]
  • The Algorithmic Foundations of Differential Privacy
    Full text available at: http://dx.doi.org/10.1561/0400000042 The Algorithmic Foundations of Differential Privacy Cynthia Dwork Microsoft Research, USA [email protected] Aaron Roth University of Pennsylvania, USA [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000042 Foundations and TrendsR in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foundations and TrendsR in Theoretical Computer Science, vol. 9, nos. 3–4, pp. 211–407, 2013. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-60198-819-5 c 2014 C. Dwork and A. Roth All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC).
    [Show full text]