Computer Vision – A

Total Page:16

File Type:pdf, Size:1020Kb

Computer Vision – A CS 4495 Computer Vision – A. Bobick Templates/Edges CS 4495 Computer Vision Linear Filtering 2: Templates, Edges Aaron Bobick School of Interactive Computing CS 4495 Computer Vision – A. Bobick Templates/Edges Administrivia • PS1 is out! On the web site… • And…because I was not here last Thurs and so we’re a lecture “behind” the due date is pushed back until Tues evening Sept 9th, 11:55pm. But don’t wait until Sunday please… CS 4495 Computer Vision – A. Bobick Templates/Edges Last time: Convolution • Convolution: • Flip the filter in both dimensions (right to left, bottom to top) • Then apply cross-correlation G= HF ∗ H* H* Notation for F convolution operator K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Convolution vs. correlation Convolution G= HF ∗ (Cross-)correlation • When H is symmetric, no difference. We tend to use the terms interchangeably. • Convolution with an impulse (centered at 0,0) is the identity K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Filters for features • Previously, thinking of filtering as a way to remove or reduce noise • Now, consider how filters will allow us to abstract higher- level “features”. • Map raw pixels to an intermediate representation that will be used for subsequent processing • Goal: reduce amount of data, discard redundancy, preserve what’s useful K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching • Filters as templates: Note that filters look like the effects they are intended to find --- “matched filters” • Use (normalized) cross-correlation score to find a given pattern (template) in the image. • Normalization needed to control for relative brightness. More in problem sets. K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching Template (mask) Scene A toy example K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching Template Detected template K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching Detected template Correlation map K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Where’s Waldo? Template Scene K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Where’s Waldo? Template Detected template K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template demo… • In directory C:\Bobick\matlab\CS4495\Filter • echodemo waldotemplate CS 4495 Computer Vision – A. Bobick Templates/Edges Where’s Waldo? Detected template Correlation map K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching Template Scene What if the template is not identical to some subimage in the scene? K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Template matching Template Detected template Match can be meaningful, if scale, orientation, and general appearance is right. K. Grauman CS 4495 Computer Vision – A. Bobick Templates/Edges Generic features… • When looking for a specific object or pattern, the features can be defined for that pattern – we will do this later in the course for specific object recognition. • But for generic images, what would be good features? What are the parts or properties of the image that encode its “meaning” for human (or other biological) observers? • Some examples of greatly reduced images… CS 4495 Computer Vision – A. Bobick Templates/Edges Edges seem to be important… CS 4495 Computer Vision – A. Bobick Templates/Edges Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity • Edges are caused by a variety of factors • Information theory view: edges encode change, change is what is hard to predict, therefore edges efficiently encode an image CS 4495 Computer Vision – A. Bobick Templates/Edges In a real image Depth discontinuity: Reflectance change: object boundary appearance information, texture Cast shadows Change in surface orientation: shape CS 4495 Computer Vision – A. Bobick Templates/Edges Edge detection • Convert a 2D image into a set of curves • Extracts salient features of the scene • More compact than pixels CS 4495 Computer Vision – A. Bobick Templates/Edges Edge detection • How can you tell that a pixel is on an edge? CS 4495 Computer Vision – A. Bobick Templates/Edges Images as functions… • Edges look like steep cliffs CS 4495 Computer Vision – A. Bobick Templates/Edges Edge Detection Basic idea: look for a neighborhood with strong signs of change. Problems: 81 82 26 24 82 33 25 25 • neighborhood size 81 82 26 24 • how to detect change CS 4495 Computer Vision – A. Bobick Templates/Edges Derivatives and edges An edge is a place of rapid change in the image intensity function. intensity function image (along horizontal scanline) first derivative edges correspond to extrema of derivative Source: L. Lazebnik CS 4495 Computer Vision – A. Bobick Templates/Edges Differential Operators • Differential operators – here we mean some operation that when applied to the image returns some derivatives. • We will model these “operators” as masks/kernels which when applied to the image yields a new function that is the image gradient function. • We will then threshold the this gradient function to select the edge pixels. • Which brings us to the question: What’s a gradient? CS 4495 Computer Vision – A. Bobick Templates/Edges Image gradient The gradient of an image: The gradient points in the direction of most rapid increase in intensity The gradient direction is given by: • how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude CS 4495 Computer Vision – A. Bobick Templates/Edges Discrete gradient • For 2D function, f(x,y), the partial derivative is: ∂f (x, y) f (x + ε, y) − f (x, y) = lim ∂x ε →0 ε • For discrete data, we can approximate using finite differences: ∂f (x, y) f (x +1, y) − f (x, y) ≈ ∂x 1 ≈+−fx( 1,) y fxy (,)“right derivative” But is it??? CS 4495 Computer Vision – A. Bobick Templates/Edges Finite differences Computer Vision - A Modern Approach Set: Linear Filters Slides by D.A. Forsyth CS 4495 Computer Vision – A. Bobick Templates/Edges Partial derivatives of an image ∂f (x, y) ∂f (x, y) ∂x ∂y -1 ? 1 or -1 1 1 -1 Which shows changes with respect to x? (showing correlation filters) CS 4495 Computer Vision – A. Bobick Templates/Edges Differentiation and convolution • For 2D function, f(x,y), the partial derivative is: ∂f (x, y) f (x + ε, y) − f (x, y) = lim ∂x ε →0 ε • For discrete data, we can approximate using finite differences: ∂f (x, y) f (x +1, y) − f (x, y) ≈ ∂x 1 • To implement above as convolution, what would be the associated filter? CS 4495 Computer Vision – A. Bobick Templates/Edges The discrete gradient • We want an “operator” (mask/kernel) that we can apply to the image that implements: ∂f (x, y) f (x + ε, y) − f (x, y) = lim ∂x ε →0 ε How would you implement this as a cross-correlation? (not flipped) Average of 0 0 Not symmetric 0 0 0 “left” and -1 +1 around image -1/2 0 +1/2 “right” 0 0 point; which is 0 0 0 derivative . “middle” pixel? See? CS 4495 Computer Vision – A. Bobick Templates/Edges Example: Sobel operator -1 0 1 1 2 1 -2 0 2 0 0 0 -1 0 1 -1 -2 -1 On a pixel of the image I •Let gx be the response to mask Sx (sometimes * 1/8) •Let gy be the response to mask Sy What is the gradient? T (Sobel) Gradient is ∇I = [gx gy] 2 2 1/2 g = (gx + gy ) is the gradient magnitude. θ = atan2(gy , gx) is the gradient direction. CS 4495 Computer Vision – A. Bobick Templates/Edges Sobel Operator on Blocks Image original image gradient thresholded magnitude gradient magnitude CS 4495 Computer Vision – A. Bobick Templates/Edges Some Well-Known Masks for Computing Gradients Sx Sy -1 0 1 1 2 1 • Sobel: -2 0 2 0 0 0 -1 0 1 -1 -2 -1 -1 0 1 1 1 1 • Prewitt: -1 0 1 0 0 0 -1 0 1 -1 -1 -1 • Roberts 0 1 1 0 -1 0 0 -1 CS 4495 Computer Vision – A. Bobick Templates/Edges Matlab does edges >> My = fspecial(‘sobel’); >> outim = imfilter(double(im), My); >> imagesc(outim); >> colormap gray; CS 4495 Computer Vision – A. Bobick Templates/Edges But… • Consider a single row or column of the image • Plotting intensity as a function of x • Apply derivative operator…. Uh, where’s the edge? CS 4495 Computer Vision – A. Bobick Templates/Edges Finite differences responding to noise Increasing noise -> (this is zero mean additive gaussian noise) D. Forsyth CS 4495 Computer Vision – A. Bobick Templates/Edges Solution: smooth first f h hf∗ ∂ (hf∗ ) ∂x ∂ (hf∗ ) Where is the edge? Look for peaks in ∂x CS 4495 Computer Vision – A. Bobick Templates/Edges Derivative theorem of convolution ∂∂ (hf∗=)( h ) ∗ f • This saves us one operation: ∂∂xx f ∂ h h ∂x ∂ ()hf∗ ∂x How can we find (local) maxima of a function? CS 4495 Computer Vision – A. Bobick Templates/Edges 2nd derivative of Gaussian ∂2 • Consider (hf∗ ) ∂x2 f ∂ h ∂ x 2 ∂ Second derivative of Gaussian h operator ∂x2 ∂2 (hf∗ ) ∂x2 Where is the edge? Zero-crossings of bottom graph CS 4495 Computer Vision – A. Bobick Templates/Edges What about 2D? CS 4495 Computer Vision – A. Bobick Templates/Edges Derivative of Gaussian filter – 2D ()I⊗⊗ g hxx =⊗⊗ I ( gh ) 0.0030 0.0133 0.0219 0.0133 0.0030 0.0133 0.0596 0.0983 0.0596 0.0133 0.0219 0.0983 0.1621 0.0983 0.0219 ⊗−11 = 0.0133 0.0596 0.0983 0.0596 0.0133 [ ] [ 0.0030 0.0133 0.0219 0.0133 0.0030] CS 4495 Computer Vision – A. Bobick Templates/Edges Derivative of Gaussian filter – 2D ()I⊗⊗ g hxx =⊗⊗ I ( gh ) 0.0030 0.0133 0.0219 0.0133 0.0030 0.0133 0.0596 0.0983 0.0596 0.0133 0.0219 0.0983 0.1621 0.0983 0.0219 ⊗−11 = 0.0133 0.0596 0.0983 0.0596 0.0133 [ ] [ 0.0030 0.0133 0.0219 0.0133 0.0030] Why is this preferable? CS 4495 Computer Vision – A.
Recommended publications
  • Fast Image Registration Using Pyramid Edge Images
    Fast Image Registration Using Pyramid Edge Images Kee-Baek Kim, Jong-Su Kim, Sangkeun Lee, and Jong-Soo Choi* The Graduate School of Advanced Imaging Science, Multimedia and Film, Chung-Ang University, Seoul, Korea(R.O.K) *Corresponding author’s E-mail address: [email protected] Abstract: Image registration has been widely used in many image processing-related works. However, the exiting researches have some problems: first, it is difficult to find the accurate information such as translation, rotation, and scaling factors between images; and it requires high computational cost. To resolve these problems, this work proposes a Fourier-based image registration using pyramid edge images and a simple line fitting. Main advantages of the proposed approach are that it can compute the accurate information at sub-pixel precision and can be carried out fast for image registration. Experimental results show that the proposed scheme is more efficient than other baseline algorithms particularly for the large images such as aerial images. Therefore, the proposed algorithm can be used as a useful tool for image registration that requires high efficiency in many fields including GIS, MRI, CT, image mosaicing, and weather forecasting. Keywords: Image registration; FFT; Pyramid image; Aerial image; Canny operation; Image mosaicing. registration information as image size increases [3]. 1. Introduction To solve these problems, this work employs a pyramid-based image decomposition scheme. Image registration is a basic task in image Specifically, first, we use the Gaussian filter to processing to combine two or more images that are remove the noise because it causes many undesired partially overlapped.
    [Show full text]
  • EECS 442 Computer Vision: Homework 2
    EECS 442 Computer Vision: Homework 2 Instructions • This homework is due at 11:59:59 p.m. on Friday February 26th, 2021. • The submission includes two parts: 1. To Canvas: submit a zip file of all of your code. We have indicated questions where you have to do something in code in red. Your zip file should contain a single directory which has the same name as your uniqname. If I (David, uniqname fouhey) were submitting my code, the zip file should contain a single folder fouhey/ containing all required files. What should I submit? At the end of the homework, there is a canvas submission checklist provided. We provide a script that validates the submission format here. If we don’t ask you for it, you don’t need to submit it; while you should clean up the directory, don’t panic about having an extra file or two. 2. To Gradescope: submit a pdf file as your write-up, including your answers to all the questions and key choices you made. We have indicated questions where you have to do something in the report in blue. You might like to combine several files to make a submission. Here is an example online link for combining multiple PDF files: https://combinepdf.com/. The write-up must be an electronic version. No handwriting, including plotting questions. LATEX is recommended but not mandatory. Python Environment We are using Python 3.7 for this course. You can find references for the Python standard library here: https://docs.python.org/3.7/library/index.html.
    [Show full text]
  • Image Segmentation Based on Sobel Edge Detection Yuqin Yao1,A
    5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) Image Segmentation Based on Sobel Edge Detection Yuqin Yao 1,a 1 Chengdu University of Information Technology, Chengdu, 610225, China a email: [email protected] Keywords: MM-sobel, edge detection, mathematical morphology, image segmentation Abstract. This paper aiming at the digital image processing, the system research to add salt and pepper noise, digital morphological preprocessing, image filtering noise reduction based on the MM-sobel edge detection and region growing for edge detection. System in this paper, the related knowledge, and application in various fields and studied and fully unifies in together, the four finished a pair of gray image edge detection is relatively complete algorithm, through the simulation experiment shows that the algorithm for edge detection effect is remarkable, in the case of almost can keep more edge details. Research overview The edge of the image is the most important visual information in an image. Image edge detection is the base of image analysis, image processing, computer vision, pattern recognition and human visual [1]. The ultimate goal is image segmentation; the largest premise is image edge detection. Image edge extraction plays an important role in image processing and machine vision. Proper image detection method is always the research hotspots in digital image processing, there are many methods to achieve edge detection, we expect to find an accurate positioning, strong anti-noise, not false, not missing detection algorithm [2]. The edge is an important feature of an image. Typically, when we take the digital image as input, the image edge is that the gray value of the image is changing radically and discontinuous, in mathematics the point is known as the break point of signal or singular point.
    [Show full text]
  • Sobel Operator and Canny Edge Detector ECE 480 Fall 2013 Team 4 Daniel Kim
    P a g e | 1 Sobel Operator and Canny Edge Detector ECE 480 Fall 2013 Team 4 Daniel Kim Executive Summary In digital image processing (DIP), edge detection is an important subject matter. There are numerous edge detection methods such as Prewitt, Kirsch, and Robert cross. Two different types of edge detectors are explored and analyzed in this paper: Sobel operator and Canny edge detector. The performance of two edge detection methods are then compared with several input images. Keywords : Digital Image Processing, Edge Detection, Sobel Operator, Canny Edge Detector, Computer Vision, OpenCV P a g e | 2 Table of Contents 1| Introduction……………………………………………………………………………. 3 2|Sobel Operator 2.1 Background……………………………………………………………………..3 2.2 Example………………………………………………………………………...4 3|Canny Edge Detector 3.1 Background…………………………………………………………………….5 3.2 Example………………………………………………………………………...5 4|Comparison of Sobel and Canny 4.1 Discussion………………………………………………………………………6 4.2 Example………………………………………………………………………...7 5|Conclusion………………………………………………………………………............7 6|Appendix 6.1 OpenCV Sobel tutorial code…............................................................................8 6.2 OpenCV Canny tutorial code…………..…………………………....................9 7|Reference………………………………………………………………………............10 P a g e | 3 1) Introduction Edge detection is a crucial step in object recognition. It is a process of finding sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a scene. In short, the goal of edge detection is to produce a line drawing of the input image. The extracted features are then used by computer vision algorithms, e.g. recognition and tracking. A classical method of edge detection involves the use of operators, a two dimensional filter. An edge in an image occurs when the gradient is greatest.
    [Show full text]
  • Edge Detection Low Level
    Image Processing - Lesson 10 Image Processing - Computer Vision Edge Detection Low Level • Edge detection masks Image Processing representation, compression,transmission • Gradient Detectors • Compass Detectors image enhancement • Second Derivative - Laplace detectors • Edge Linking edge/feature finding • Hough Transform image "understanding" Computer Vision High Level UFO - Unidentified Flying Object Point Detection -1 -1 -1 Convolution with: -1 8 -1 -1 -1 -1 Large Positive values = light point on dark surround Large Negative values = dark point on light surround Example: 5 5 5 5 5 -1 -1 -1 5 5 5 100 5 * -1 8 -1 5 5 5 5 5 -1 -1 -1 0 0 -95 -95 -95 = 0 0 -95 760 -95 0 0 -95 -95 -95 Edge Definition Edge Detection Line Edge Line Edge Detectors -1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1 2 2 2 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 gray value gray x edge edge Step Edge Step Edge Detectors -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 gray value gray -1 -1 1 1 1 -1 1 1 x edge edge Example Edge Detection by Differentiation Step Edge detection by differentiation: 1D image f(x) gray value gray x 1st derivative f'(x) threshold |f'(x)| - threshold Pixels that passed the threshold are -1 -1 1 1 -1 -1 -1 -1 Edge Pixels -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1 -1 1 1 Gradient Edge Detection Gradient Edge - Examples ∂f ∂x ∇ f((x,y) = Gradient ∂f ∂y ∂f ∇ f((x,y) = ∂x , 0 f 2 f 2 Gradient Magnitude ∂ + ∂ √( ∂ x ) ( ∂ y ) ∂f ∂f Gradient Direction tg-1 ( / ) ∂y ∂x ∂f ∇ f((x,y) = 0 , ∂y Differentiation in Digital Images Example Edge horizontal - differentiation approximation: ∂f(x,y) Original FA = ∂x = f(x,y) - f(x-1,y) convolution with [ 1 -1 ] Gradient-X Gradient-Y vertical - differentiation approximation: ∂f(x,y) FB = ∂y = f(x,y) - f(x,y-1) convolution with 1 -1 Gradient-Magnitude Gradient-Direction Gradient (FA , FB) 2 2 1/2 Magnitude ((FA ) + (FB) ) Approx.
    [Show full text]
  • Study and Comparison of Different Edge Detectors for Image
    Global Journal of Computer Science and Technology Graphics & Vision Volume 12 Issue 13 Version 1.0 Year 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Study and Comparison of Different Edge Detectors for Image Segmentation By Pinaki Pratim Acharjya, Ritaban Das & Dibyendu Ghoshal Bengal Institute of Technology and Management Santiniketan, West Bengal, India Abstract - Edge detection is very important terminology in image processing and for computer vision. Edge detection is in the forefront of image processing for object detection, so it is crucial to have a good understanding of edge detection operators. In the present study, comparative analyses of different edge detection operators in image processing are presented. It has been observed from the present study that the performance of canny edge detection operator is much better then Sobel, Roberts, Prewitt, Zero crossing and LoG (Laplacian of Gaussian) in respect to the image appearance and object boundary localization. The software tool that has been used is MATLAB. Keywords : Edge Detection, Digital Image Processing, Image segmentation. GJCST-F Classification : I.4.6 Study and Comparison of Different Edge Detectors for Image Segmentation Strictly as per the compliance and regulations of: © 2012. Pinaki Pratim Acharjya, Ritaban Das & Dibyendu Ghoshal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. Study and Comparison of Different Edge Detectors for Image Segmentation Pinaki Pratim Acharjya α, Ritaban Das σ & Dibyendu Ghoshal ρ Abstract - Edge detection is very important terminology in noise the Canny edge detection [12-14] operator has image processing and for computer vision.
    [Show full text]
  • Computer Vision: Edge Detection
    Edge Detection Edge detection Convert a 2D image into a set of curves • Extracts salient features of the scene • More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors Edge detection How can you tell that a pixel is on an edge? Profiles of image intensity edges Edge detection 1. Detection of short linear edge segments (edgels) 2. Aggregation of edgels into extended edges (maybe parametric description) Edgel detection • Difference operators • Parametric-model matchers Edge is Where Change Occurs Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero. Image gradient The gradient of an image: The gradient points in the direction of most rapid change in intensity The gradient direction is given by: • how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude The discrete gradient How can we differentiate a digital image f[x,y]? • Option 1: reconstruct a continuous image, then take gradient • Option 2: take discrete derivative (finite difference) How would you implement this as a cross-correlation? The Sobel operator Better approximations of the derivatives exist • The Sobel operators below are very commonly used -1 0 1 1 2 1 -2 0 2 0 0 0 -1 0 1 -1 -2 -1 • The standard defn. of the Sobel operator omits the 1/8 term – doesn’t make a difference for edge detection – the 1/8 term is needed to get the right gradient
    [Show full text]
  • Design of Improved Canny Edge Detection Algorithm
    IJournals: International Journal of Software & Hardware Research in Engineering ISSN-2347-4890 Volume 3 Issue 8 August, 2015 Design of Improved Canny Edge Detection Algorithm Deepa Krushnappa Maladakara; H R Vanamala M.Tech 4th SEM Student; Associate Professor PESIT Bengaluru; PESIT Bengaluru [email protected]; [email protected] ABSTRACT— An improved Canny edge detection detector, Laplacian of Gaussian, etc. Among these, algorithm is implemented to detect the edges with Canny edge detection algorithm is most extensively complexity reduction and without any performance used in industries, as it is highly performance oriented degradation. The existing algorithms for edge detection and provides low error bit rate. are Sobel operator, Robert Operator, Prewitt Operator, The Canny edge detection operator was developed by Laplacian of Gaussian Operator, have various draw John F. Canny in 1986, an approach to derive an backs in edge detection methodologies with respect to optimal edge detector to deal with step edges corrupted noise, performance, etc. Original Canny edge detection by a white Gaussian noise. algorithm based on frame level statistics overcomes the An optimal edge detector should have the flowing 1 drawbacks giving high accuracy but is computationally criteria . more intensive to implement in hardware. Hence a 1) Good Detection: Must have a minimum error novel method is suggested to decrease the complexity detection rate, i.e. there are no significant edges to be without any performance degradation compared to the missed and no false edges are detected. original algorithm. Further enhancements to the 2) Good Localization: The space between actual and proposed algorithm can be made by parallel processing located edges should be minimal.
    [Show full text]
  • Edge Detection
    Edge Detection Outline Part 1 • Introduction Part 2 • Local Edge Operators • Marr-Hildreth Edge Detector – Gradient of image intensity • Multiscale Processing – Robert, Sobel and Prewitt operators – Second Derivative Operators • Canny Edge Detector – Laplacian of Gaussian • Edge Detection Performance References: D. Huttenlocher, “Edge Detection” (http://www.cs.wisc.edu/~cs766-1/readings/edge-detection- huttenlocher.ps) R. Gonzalez, R. Woods, “Digital Image Processing”, Addison Wesley, 1993. D. Marr, E. Hildreth, “Theory of Edge detection”, Proc. R. Soc. Lond., B. 207, 187-217, 1980. Image Processing Applications Edge Detection (by A.Campilho) 1 Edge Detection Introduction Initial considerations Edges are significant local intensity changes in the image and are important features to analyse an image. They are important clues to separate regions within an object or to identify changes in illumination or colour. They are an important feature in the early vision stages in the human eye. There are many different geometric and optical physical properties in the scene that can originate an edge in an image. Geometric: • Object boundary: eg a discontinuity in depth and/or surface colour or texture • Surface boundary: eg a discontinuity in surface orientation and/or colour or texture • Occlusion boundary: eg a discontinuity in depth and/or surface colour or texture Optical: • Specularity: eg direct reflection of light, such as a polished metallic surface • Shadows: from other objects or part of the same object • Interreflections: from other objects or part sof the same object • Surface markings, texture or colour changes Image Processing Applications Edge Detection (by A.Campilho) 2 Edge Detection Introduction Goals of edge detection: Primary To extract information about the two-dimensional projection of a 3D scene.
    [Show full text]
  • Vision Review: Image Processing
    Vision Review: Image Processing Course web page: www.cis.udel.edu/~cer/arv September 17, 2002 Announcements • Homework and paper presentation guidelines are up on web page • Readings for next Tuesday: Chapters 6, 11.1, and 18 • For next Thursday: “Stochastic Road Shape Estimation” Computer Vision Review Outline • Image formation • Image processing • Motion & Estimation • Classification Outline •Images • Binary operators •Filtering – Smoothing – Edge, corner detection • Modeling, matching • Scale space Images • An image is a matrix of pixels Note: Matlab uses • Resolution – Digital cameras: 1600 X 1200 at a minimum – Video cameras: ~640 X 480 • Grayscale: generally 8 bits per pixel → Intensities in range [0…255] • RGB color: 3 8-bit color planes Image Conversion •RGB → Grayscale: Mean color value, or weight by perceptual importance (Matlab: rgb2gray) •Grayscale → Binary: Choose threshold based on histogram of image intensities (Matlab: imhist) Color Representation • RGB, HSV (hue, saturation, value), YUV, etc. • Luminance: Perceived intensity • Chrominance: Perceived color – HS(V), (Y)UV, etc. – Normalized RGB removes some illumination dependence: Binary Operations • Dilation, erosion (Matlab: imdilate, imerode) – Dilation: All 0’s next to a 1 → 1 (Enlarge foreground) – Erosion: All 1’s next to a 0 → 0 (Enlarge background) • Connected components – Uniquely label each n-connected region in binary image – 4- and 8-connectedness –Matlab: bwfill, bwselect • Moments: Region statistics – Zeroth-order: Size – First-order: Position (centroid)
    [Show full text]
  • Computer Vision Based Human Detection Md Ashikur
    Computer Vision Based Human Detection Md Ashikur. Rahman To cite this version: Md Ashikur. Rahman. Computer Vision Based Human Detection. International Journal of Engineer- ing and Information Systems (IJEAIS), 2017, 1 (5), pp.62 - 85. hal-01571292 HAL Id: hal-01571292 https://hal.archives-ouvertes.fr/hal-01571292 Submitted on 2 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 1 Issue 5, July– 2017, Pages: 62-85 Computer Vision Based Human Detection Md. Ashikur Rahman Dept. of Computer Science and Engineering Shaikh Burhanuddin Post Graduate College Under National University, Dhaka, Bangladesh [email protected] Abstract: From still images human detection is challenging and important task for computer vision-based researchers. By detecting Human intelligence vehicles can control itself or can inform the driver using some alarming techniques. Human detection is one of the most important parts in image processing. A computer system is trained by various images and after making comparison with the input image and the database previously stored a machine can identify the human to be tested. This paper describes an approach to detect different shape of human using image processing.
    [Show full text]
  • Edges and Binary Image Analysis
    1/25/2017 Edges and Binary Image Analysis Thurs Jan 26 Kristen Grauman UT Austin Today • Edge detection and matching – process the image gradient to find curves/contours – comparing contours • Binary image analysis – blobs and regions 1 1/25/2017 Gradients -> edges Primary edge detection steps: 1. Smoothing: suppress noise 2. Edge enhancement: filter for contrast 3. Edge localization Determine which local maxima from filter output are actually edges vs. noise • Threshold, Thin Kristen Grauman, UT-Austin Thresholding • Choose a threshold value t • Set any pixels less than t to zero (off) • Set any pixels greater than or equal to t to one (on) 2 1/25/2017 Original image Gradient magnitude image 3 1/25/2017 Thresholding gradient with a lower threshold Thresholding gradient with a higher threshold 4 1/25/2017 Canny edge detector • Filter image with derivative of Gaussian • Find magnitude and orientation of gradient • Non-maximum suppression: – Thin wide “ridges” down to single pixel width • Linking and thresholding (hysteresis): – Define two thresholds: low and high – Use the high threshold to start edge curves and the low threshold to continue them • MATLAB: edge(image, ‘canny’); • >>help edge Source: D. Lowe, L. Fei-Fei The Canny edge detector original image (Lena) Slide credit: Steve Seitz 5 1/25/2017 The Canny edge detector norm of the gradient The Canny edge detector thresholding 6 1/25/2017 The Canny edge detector How to turn these thick regions of the gradient into curves? thresholding Non-maximum suppression Check if pixel is local maximum along gradient direction, select single max across width of the edge • requires checking interpolated pixels p and r 7 1/25/2017 The Canny edge detector Problem: pixels along this edge didn’t survive the thresholding thinning (non-maximum suppression) Credit: James Hays 8 1/25/2017 Hysteresis thresholding • Use a high threshold to start edge curves, and a low threshold to continue them.
    [Show full text]