A Note on Locally Metric Connections

Total Page:16

File Type:pdf, Size:1020Kb

A Note on Locally Metric Connections Mathematics and Statistics 7(4): 146-149, 2019 http://www.hrpub.org DOI: 10.13189/ms.2019.070408 A Note on Locally Metric Connections Mihail Cocos Department of Mathematics, Weber State University, Ogden, UT 84408, USA Received June 17, 2019; Revised August 30, 2019; Accepted September 15, 2019 Copyright c 2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The Fundamental Theorem of Riemannian ifold is related to a long outstanding conjecture of Chern geometry states that on a Riemannian manifold there ex- for affinely flat manifolds. Chern's statement conjectures ist a unique symmetric connection compatible with the that the Euler characteristic of a compact afinely flat man- metric tensor. There are numerous examples of connec- ifold is zero. The author showed in ([5]) that for a locally tions that even locally do not admit any compatible met- metric connection there is a natural cohomology class of rics. A very important class of symmetric connections M that coincides with the Euler class of the bundle E in in the tangent bundle of a certain manifolds (afinnely the case when the connection is globally metric. He also flat) are the ones for which the curvature tensor vanishes. proved that if the set of locally metric connections in the Those connections are locally metric. S.S. Chern con- tangent bundle of an affinely flat manifold is path con- jectured that the Euler characteristic of an affinely flat nected, then Chern's statement is true(see [5]). manifold is zero. A possible proof of this long outstand- If two symmetric and locally metric connections in the ing conjecture of S.S. Chern would be by verifying that tangent bundle of a manifold M share a parallel metric in the space of locally metric connections is path connected. the neighborhood of any point then, by the fundamental In order to do so one needs to have practical criteria for theorem of Riemannain geometry, they are equal. If the the metrizability of a connection. In this paper we give symmetry is dropped one can no longer conclude that they necessary and sufficient conditions for a connection in a are equal and the relationship becomes a weaker equiva- plane bundle above a surface to be locally metric. These lence relation. The global result of this paper proves that conditions are easy to be verified using any local frame. two locally metric equivalent connections have the same Also, as a global result we give a necessary condition for Euler class. two connections to be metric equivalent in terms of their Euler class. 2 On the local metrizability of connections Keywords Affine Connections, Locally Metric Connec- tions, Affinely Flat Manifolds, Euler Class of a Connection We will now establish some conditions for a connection to be metric in terms of local frames. Lemma 2.1. Let D be connection in E: Then D is locally metric if and only if in the neighborhood of any point there 1 Introduction exist a local frame of the bundle Throughout this paper E will denote a real vector bun- σ = (σ1; σ2; ··· ; σm) dle of rank m over a manifold M of dimension n: such that the connection matrix θ with respect to σ is skew Definition 1.1. A connection D in E is called locally symmetric. metric if and only if there is a bundle metric that is par- allel with respect to D in the neighborhood of any point Proof. The only if part is obvious. For the if part let p 2 M: σ = (σ1; σ2; ··· ; σm) Equivalently one can prove that a connection is locally as in hypothesis. Take the metric g that makes the frame metric if its restricted holonomy group Hol0(D) is com- pact( see [3]). However, since the explicit calculation σ orthonormal, that is of holonomy is very difficult, we will not make use of this variant of the definition. The literature for locally g(σi; σj) = δij: metric connections is scarce. There are not very many Differentiating g in the direction X 2 T M; we get practical criteria to verify weather a connection is lo- cally metric. Some promising results can be found in (DX g)(σi; σj) = 0 − (θij(X) + θji(X)) = 0; ([1, 2, 9, 10, 8, 4, 6]) From a pure mathematical point of view the investigation of the set of symmetric and lo- hence g is parallel with respect to D: cally metric connections in the tangent bundle of a man- Mathematics and Statistics 7(4): 146-149, 2019 147 For the sake of concreteness let us give a couple of ex- follows immediately from Cartan's equation amples of connections which are locally metric but not globally metric. Let M = T2 be the two dimensional ! = dθ + θ ^ θ torus and let f = (f ; f ) a global frame of commuta- 1 2 by taking the trace of both sides. tive vector fields in T M: The dual frame will be denoted Next let ! be a volume form on E: Whitout loss of gener- f ∗ = (f 1; f 2): Consider the connection D that has its ality we may assume that the frame σ = (σ ; σ ; ··· ; σ ) connection matrix with respect to f 1 2 m is positive with respect to !; that is: 1 f 0 1 2 m θf = ! = fσ ^ σ ^ ::::: ^ σ ; (2) 0 0 This is a flat, symmetric connection in TM hence locally where f > 0 is a local smooth function and σ∗ = metric. However there is no global metric on M that will (σ1; σ2; ··· ; σm) is the dual frame of σ:. Taking the deriva- have D as its Levi Civita connection. Assume, by contra- tive of ! in the direction of an arbitrary tangent vector diction, that there is a global metric g that is preserved by field X we get D and consider γ = γ(t); −∞ < t < 1 an integral curve m of f : On M we have a globally defined smooth function 1 2 m X 1 2 k m 1 DX ! = X(f)σ ^σ :::^σ +f σ ^σ ^::::^DX σ :::^σ defined as k=1 h = g(f1; f1); (3) Since and if we look at its restriction h(t) to γ, then h(t) satisfies k s the differential equation DX e = −θsk(X)e and by using (3) we obtain h0(t) = 2h(t); m X 1 2 m and hence it is an exponential. Consequently h is not DX ! = (X(f) − f θkk(X))σ ^ σ ::: ^ σ (4) bounded on M which is a contradiction. k=1 which shows that Before giving the second example we need to make a D! = 0 definition is equivalent to Definition 2.1. Let D1 and D2 be two locally metric con- df = fT r θ nections in a vector bundle E: We say they are metric equivalent if and only if in the neighborhood of any point or there exist a local bundle metric g such that d(ln f) = T r θ: (5) Obviously (5) is equivalent to T r θ is closed. D1g = D2g = 0: For the case of plane bundles we will be able to give a ~ Our second example is a connection r in the tangent bun- practical test for local metrizability. For this criteria we dle of a generic Riemannian manifold (M; g) that is metric will need the following linear algebra lemmas equivalent (rg ≡ r~ g ≡ 0) to its Levi Civita connection r but not symmetric. We will base our example on The- Lemma 2.3. Let U be a nonsingular 2 × 2: Let A; B two orem 2.1 in ([7]). Take u a one form on M and let u# be matrices with determinant equal to one that satisfy its metric dual with respect to g: Define A−1UA = B−1UB = kJ; ~ # rX Y = rX Y + u(Y )X − G(X; Y )u (1) 0 1 with J = : Then It Is easy to verify that equation (1) defines a connection −1 0 compatible with the metric g and that its torsion satisfies B = AS; T ~ (X; Y ) = u(Y )X − u(X)Y; r with S orthonormal. and therefore r~ is non-symmetric if u 6= 0: Proof. First, let us note the following easy to prove iden- tity for 2 × 2 matrices Next let us note that if a connection preserves a metric (locally) then it also preserves a volume form, hence we XJX−1 = XXT J; (6) have the following criterion where X is any 2 × 2 matrix with determinant equal to Lemma 2.2. Le D be a connection in a bundle E and one and J is as in the hypothesis. Using the hypothesis θ be its connection matrix with respect to the local frame we get σ = (σ1; σ2; ··· ; σm): Then D preserves a local volume U = kAJA−1 = kBJB−1; form if and only if and by using (6) we get T r Ω = d(T r θ) = 0: AAT = BBT (7) Proof. First let us note that and therefore T r Ω = d(T r θ) A−1B = AT (BT )−1: (8) 148 A Note on Locally Metric Connections Let's set Proof. For the "only if" part, since D is assumed to be S = A−1B = AT (BT )−1: locally metric, according to Lemma there exist a frame τ such that the connection matrix with respect to this We have frame is skew and consequently its curvature matrix Ψ is also skew.
Recommended publications
  • When Is a Connection a Metric Connection?
    NEW ZEALAND JOURNAL OF MATHEMATICS Volume 38 (2008), 225–238 WHEN IS A CONNECTION A METRIC CONNECTION? Richard Atkins (Received April 2008) Abstract. There are two sides to this investigation: first, the determination of the integrability conditions that ensure the existence of a local parallel metric in the neighbourhood of a given point and second, the characterization of the topological obstruction to a globally defined parallel metric. The local problem has been previously solved by means of constructing a derived flag. Herein we continue the inquiry to the global aspect, which is formulated in terms of the cohomology of the constant sheaf of sections in the general linear group. 1. Introduction A connection on a manifold is a type of differentiation that acts on vector fields, differential forms and tensor products of these objects. Its importance lies in the fact that given a piecewise continuous curve connecting two points on the manifold, the connection defines a linear isomorphism between the respective tangent spaces at these points. Another fundamental concept in the study of differential geometry is that of a metric, which provides a measure of distance on the manifold. It is well known that a metric uniquely determines a Levi-Civita connection: a symmetric connection for which the metric is parallel. Not all connections are derived from a metric and so it is natural to ask, for a symmetric connection, if there exists a parallel metric, that is, whether the connection is a Levi-Civita connection. More generally, a connection on a manifold M, symmetric or not, is said to be metric if there exists a parallel metric defined on M.
    [Show full text]
  • Lecture 24/25: Riemannian Metrics
    Lecture 24/25: Riemannian metrics An inner product on Rn allows us to do the following: Given two curves intersecting at a point x Rn,onecandeterminetheanglebetweentheir tangents: ∈ cos θ = u, v / u v . | || | On a general manifold, we would again like to have an inner product on each TpM.Theniftwocurvesintersectatapointp,onecanmeasuretheangle between them. Of course, there are other geometric invariants that arise out of this structure. 1. Riemannian and Hermitian metrics Definition 24.2. A Riemannian metric on a vector bundle E is a section g Γ(Hom(E E,R)) ∈ ⊗ such that g is symmetric and positive definite. A Riemannian manifold is a manifold together with a choice of Riemannian metric on its tangent bundle. Chit-chat 24.3. A section of Hom(E E,R)isasmoothchoiceofalinear map ⊗ gp : Ep Ep R ⊗ → at every point p.Thatg is symmetric means that for every u, v E ,wehave ∈ p gp(u, v)=gp(v, u). That g is positive definite means that g (v, v) 0 p ≥ for all v E ,andequalityholdsifandonlyifv =0 E . ∈ p ∈ p Chit-chat 24.4. As usual, one can try to understand g in local coordinates. If one chooses a trivializing set of linearly independent sections si ,oneob- tains a matrix of functions { } gij = gp((si)p, (sj)p). By symmetry of g,thisisasymmetricmatrix. 85 n Example 24.5. T R is trivial. Let gij = δij be the constant matrix of functions, so that gij(p)=I is the identity matrix for every point. Then on n n every fiber, g defines the usual inner product on TpR ∼= R .
    [Show full text]
  • Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
    International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds.
    [Show full text]
  • Dirac Operators for Matrix Algebras Converging to Coadjoint Orbits
    DIRAC OPERATORS FOR MATRIX ALGEBRAS CONVERGING TO COADJOINT ORBITS MARC A. RIEFFEL Abstract. In the high-energy physics literature one finds statements such as “matrix algebras converge to the sphere”. Earlier I provided a general precise setting for understanding such statements, in which the matrix algebras are viewed as quantum metric spaces, and convergence is with respect to a quantum Gromov-Hausdorff-type distance. But physicists want even more to treat structures on spheres (and other spaces), such as vector bundles, Yang-Mills functionals, Dirac operators, etc., and they want to approximate these by corresponding structures on matrix algebras. In the present paper we provide a somewhat unified construction of Dirac operators on coadjoint orbits and on the matrix algebras that converge to them. This enables us to prove our main theorem, whose content is that, for the quantum metric-space structures determined by the Dirac operators that we construct, the matrix algebras do indeed converge to the coadjoint orbits, for a quite strong version of quantum Gromov-Hausdorff distance. Contents Introduction 2 1. Ergodic actions and Dirac operators 5 2. Invariance under the group actions 9 3. Charge Conjugation 11 4. Casimir operators 12 5. First facts about spinors 14 6. The C*-metrics 16 7. More about spinors 20 8. Dirac operators for matrix algebras 21 arXiv:2108.01136v1 [math.OA] 2 Aug 2021 9. The fuzzy sphere 23 10. Homogeneous spaces and the Dirac operator for G 29 11. Dirac operators for homogeneous spaces 30 12. Complex structure on coadjoint orbits 36 13. Yet more about spinors 40 14.
    [Show full text]
  • Fluxes, Bundle Gerbes and 2-Hilbert Spaces
    Lett Math Phys DOI 10.1007/s11005-017-0971-x Fluxes, bundle gerbes and 2-Hilbert spaces Severin Bunk1 · Richard J. Szabo2 Received: 12 January 2017 / Revised: 13 April 2017 / Accepted: 8 May 2017 © The Author(s) 2017. This article is an open access publication Abstract We elaborate on the construction of a prequantum 2-Hilbert space from a bundle gerbe over a 2-plectic manifold, providing the first steps in a programme of higher geometric quantisation of closed strings in flux compactifications and of M5- branes in C-fields. We review in detail the construction of the 2-category of bundle gerbes and introduce the higher geometrical structures necessary to turn their cate- gories of sections into 2-Hilbert spaces. We work out several explicit examples of 2-Hilbert spaces in the context of closed strings and M5-branes on flat space. We also work out the prequantum 2-Hilbert space associated with an M-theory lift of closed strings described by an asymmetric cyclic orbifold of the SU(2) WZW model, pro- viding an example of sections of a torsion gerbe on a curved background. We describe the dimensional reduction of M-theory to string theory in these settings as a map from 2-isomorphism classes of sections of bundle gerbes to sections of corresponding line bundles, which is compatible with the respective monoidal structures and module actions. Keywords Bundle gerbes · Higher geometric quantisation · Fluxes in string and M-theory · Higher geometric structures Mathematics Subject Classification 81S10 · 53Z05 · 18F99 B Severin Bunk [email protected] Richard J.
    [Show full text]
  • Hodge Theory of SKT Manifolds
    Hodge theory and deformations of SKT manifolds Gil R. Cavalcanti∗ Department of Mathematics Utrecht University Abstract We use tools from generalized complex geometry to develop the theory of SKT (a.k.a. pluriclosed Hermitian) manifolds and more generally manifolds with special holonomy with respect to a metric connection with closed skew-symmetric torsion. We develop Hodge theory on such manifolds show- ing how the reduction of the holonomy group causes a decomposition of the twisted cohomology. For SKT manifolds this decomposition is accompanied by an identity between different Laplacian operators and forces the collapse of a spectral sequence at the first page. Further we study the de- formation theory of SKT structures, identifying the space where the obstructions live. We illustrate our theory with examples based on Calabi{Eckmann manifolds, instantons, Hopf surfaces and Lie groups. Contents 1 Linear algebra 3 2 Intrinsic torsion of generalized Hermitian structures8 2.1 The Nijenhuis tensor....................................9 2.2 The intrinsic torsion and the road to integrability.................... 10 2.3 The operators δ± and δ± ................................. 12 3 Parallel Hermitian and bi-Hermitian structures 12 4 SKT structures 14 5 Hodge theory 19 5.1 Differential operators, their adjoints and Laplacians.................. 19 5.2 Signature and Euler characteristic of almost Hermitian manifolds........... 20 5.3 Hodge theory on parallel Hermitian manifolds...................... 22 5.4 Hodge theory on SKT manifolds............................. 23 5.5 Relation to Dolbeault cohomology............................ 23 5.6 Hermitian symplectic structures.............................. 27 6 Hodge theory beyond U(n) 28 6.1 Integrability......................................... 29 Keywords. Strong KT structure, generalized complex geometry, generalized K¨ahlergeometry, Hodge theory, instan- tons, deformations.
    [Show full text]
  • WHAT IS a CONNECTION, and WHAT IS IT GOOD FOR? Contents 1. Introduction 2 2. the Search for a Good Directional Derivative 3 3. F
    WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG Abstract. In the study of differentiable manifolds, there are several different objects that go by the name of \connection". I will describe some of these objects, and show how they are related to each other. The motivation for many notions of a connection is the search for a sufficiently nice directional derivative, and this will be my starting point as well. The story will by necessity include many supporting characters from differential geometry, all of whom will receive a brief but hopefully sufficient introduction. I apologize for my ungrammatical title. Contents 1. Introduction 2 2. The search for a good directional derivative 3 3. Fiber bundles and Ehresmann connections 7 4. A quick word about curvature 10 5. Principal bundles and principal bundle connections 11 6. Associated bundles 14 7. Vector bundles and Koszul connections 15 8. The tangent bundle 18 References 19 Date: 26 March 2008. 1 1. Introduction In the study of differentiable manifolds, there are several different objects that go by the name of \connection", and this has been confusing me for some time now. One solution to this dilemma was to promise myself that I would some day present a talk about connections in the Olivetti Club at Cornell University. That day has come, and this document contains my notes for this talk. In the interests of brevity, I do not include too many technical details, and instead refer the reader to some lovely references. My main references were [2], [4], and [5].
    [Show full text]
  • Linear Connections and Curvature Tensors in the Geometry Of
    LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS Nabil L. Youssef and Amr M. Sid-Ahmed Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt. [email protected] and [email protected] Dedicated to the memory of Prof. Dr. A. TAMIM Abstract. In this paper we discuss linear connections and curvature tensors in the context of geometry of parallelizable manifolds (or absolute parallelism geometry). Different curvature tensors are expressed in a compact form in terms of the torsion tensor of the canonical connection. Using the Bianchi identities, some other identities are derived from the expressions obtained. These identities, in turn, are used to reveal some of the properties satisfied by an intriguing fourth order tensor which we refer to as Wanas tensor. A further condition on the canonical connection is imposed, assuming it is semi- symmetric. The formulae thus obtained, together with other formulae (Ricci tensors and scalar curvatures of the different connections admitted by the space) are cal- arXiv:gr-qc/0604111v2 8 Feb 2007 culated under this additional assumption. Considering a specific form of the semi- symmetric connection causes all nonvanishing curvature tensors to coincide, up to a constant, with the Wanas tensor. Physical aspects of some of the geometric objects considered are pointed out. 1 Keywords: Parallelizable manifold, Absolute parallelism geometry, dual connection, semi-symmetric connection, Wanas tensor, Field equations. AMS Subject Classification. 51P05, 83C05, 53B21. 1This paper was presented in “The international Conference on Developing and Extending Ein- stein’s Ideas ”held at Cairo, Egypt, December 19-21, 2005. 1 1.
    [Show full text]
  • Working Title
    The Gauss-Bonnet Theorem for Surfaces Bachelor thesis for Mathematics Utrecht University Lay de Jong Supervisor: Dr. G.R. Cavalcanti July 2018 Contents 1 Introduction2 2 Vector Bundles and Connections4 2.1 Vector Bundles..........................4 2.2 Sections..............................5 2.3 Operations on Vector Bundles..................8 2.3.1 Dual Bundle........................8 2.3.2 Tensor Product and Endomorphism Bundle......9 2.3.3 Direct Sum Bundle....................9 2.3.4 Pull-back Bundle.....................9 2.4 Connections............................ 10 2.5 Constructed Connections..................... 12 2.5.1 Tensor Product Connection............... 12 2.5.2 Direct Sum Connection.................. 14 2.5.3 Endomorphism Connection................ 14 2.5.4 Dual Connection..................... 15 2.5.5 Pull-back Connection................... 16 2.6 Curvature of a Connection.................... 17 3 The Euler Class 21 3.1 Connections and Metrics..................... 21 3.2 Euler Class of a Vector Bundle.................. 24 3.3 Properties of the Euler Class................... 28 4 The Levi-Civita Connection 33 4.1 Tangent Bundle Connections................... 33 4.2 Torsion............................... 35 4.3 Levi-Civita Connection...................... 36 4.4 Curvature Tensor......................... 39 5 The Scalar Curvature 42 5.1 Scalar Curvature Function.................... 42 5.1.1 The Plane......................... 43 5.1.2 The Sphere........................ 44 5.1.3 The Torus......................... 47 5.2 Euler Class and Scalar Curvature................ 49 6 The Gauss-Bonnet Theorem 50 7 Conclusion 53 1 INTRODUCTION 1 Introduction Imagine skipping on a skippyball. When you look at it whilst it is not being used, you will probably observe a normal sphere, if not: you might want to pump up the ball a bit further.
    [Show full text]
  • Cartan Connection and Curvature Forms
    CARTAN CONNECTION AND CURVATURE FORMS Syafiq Johar syafi[email protected] Contents 1 Connections and Riemannian Curvature 1 1.1 Affine Connection . .1 1.2 Levi-Civita Connection and Riemannian Curvature . .2 1.3 Riemannian Curvature . .3 2 Covariant External Derivative 4 2.1 Connection Form . .4 2.2 Curvature Form . .5 2.3 Explicit Formula for E = TM ..................................5 2.4 Levi-Civita Connection and Riemannian Curvature Revisited . .6 3 An Application: Uniformisation Theorem via PDEs 6 1 Connections and Riemannian Curvature Cartan formula is a way of generalising the Riemannian curvature for a Riemannian manifold (M; g) of dimension n to a differentiable manifold. We start by defining the Riemannian manifold and curvatures. We begin by defining the usual notion of connection and the Levi-Civita connection. 1.1 Affine Connection Definition 1.1 (Affine connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) with the 1 properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1. D is tensorial over TpM i.e. DfV +W σ = fDV σ + DW σ: 2. D is R-linear in Γ(E) i.e. DV (σ + τ) = DV σ + DV τ: 3. D satisfies the Leibniz rule over Γ(E) i.e. if f 2 C1(M), we have DV (fσ) = df(V ) · σ + fDV σ: Note that we did not require any condition of the metric g on the manifold, nor the bundle metric on E in the abstract definition of a connection.
    [Show full text]
  • Real and Complex Submanifolds,Springerproceedings in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4__5 44 Y.-G
    Canonical Connection on Contact Manifolds Yong-Geun Oh and Rui Wang Abstract We introduce a family of canonical affine connections on the contact manifold .Q; !/,whichisassociatedtoeachcontacttriad.Q; ";J/ where " is a contact form and J ! ! is an endomorphism with J 2 id compatible to d". We call a particularW one! in this family the contact triadD connection! of .Q; ";J/ and prove its existence and uniqueness. The connection is canonical in that the pull-back connection # of a triad connection becomes the triad connection of !r r the pull-back triad .Q; #!";#!J/ for any diffeomorphism # Q Q.Italso preserves both the triad metric g d". ;J / " " andW J regarded! as an WD " " C ˝ endomorphism on TQ R X" !,andischaracterizedbyitstorsionproperties and the requirement thatD thef contactg˚ form " be holomorphic in the CR-sense. In particular, the connection restricts to a Hermitian connection $ on the Hermitian r vector bundle .!; J; g! / with g! d". ;J / ! ,whichwecallthecontact Hermitian D " " j connection of .!; J; g! /.Theseconnectionsgreatlysimplifytensorialcalculations in the sequels (Oh and Wang, The Analysis of Contact Cauchy-Riemann maps I: a priori Ck estimates and asymptotic convergence, preprint. arXiv:1212.5186, 2012; Oh and Wang, Analysis of contact instantons II: exponential convergence for the Morse-Bott case, preprint. arXiv:1311.6196, 2013) performed in the authors’ analytic study of the map w,calledcontactinstantons,whichsatisfythenonlinear elliptic system of equations $ @ w 0; d.w!" j/ 0 D ı D of the contact triad .Q; ";J/. Y.-G. Oh ( !) Center for Geometry and Physics, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-784, Korea POSTECH, Pohang 790-784, Korea e-mail: [email protected] R.
    [Show full text]
  • Chapter 3 Connections
    Chapter 3 Connections Contents 3.1 Parallel transport . 69 3.2 Fiber bundles . 72 3.3 Vector bundles . 75 3.3.1 Three definitions . 75 3.3.2 Christoffel symbols . 80 3.3.3 Connection 1-forms . 82 3.3.4 Linearization of a section at a zero . 84 3.4 Principal bundles . 88 3.4.1 Definition . 88 3.4.2 Global connection 1-forms . 89 3.4.3 Frame bundles and linear connections . 91 3.1 The idea of parallel transport A connection is essentially a way of identifying the points in nearby fibers of a bundle. One can see the need for such a notion by considering the following question: Given a vector bundle π : E ! M, a section s : M ! E and a vector X 2 TxM, what is meant by the directional derivative ds(x)X? If we regard a section merely as a map between the manifolds M and E, then one answer to the question is provided by the tangent map T s : T M ! T E. But this ignores most of the structure that makes a vector 69 70 CHAPTER 3. CONNECTIONS bundle interesting. We prefer to think of sections as \vector valued" maps on M, which can be added and multiplied by scalars, and we'd like to think of the directional derivative ds(x)X as something which respects this linear structure. From this perspective the answer is ambiguous, unless E happens to be the trivial bundle M × Fm ! M. In that case, it makes sense to think of the section s simply as a map M ! Fm, and the directional derivative is then d s(γ(t)) − s(γ(0)) ds(x)X = s(γ(t)) = lim (3.1) dt t!0 t t=0 for any smooth path with γ_ (0) = X, thus defining a linear map m ds(x) : TxM ! Ex = F : If E ! M is a nontrivial bundle, (3.1) doesn't immediately make sense because s(γ(t)) and s(γ(0)) may be in different fibers and cannot be added.
    [Show full text]