Integrated, Flexible, High-efficiency Solar Cells:

Epitaxial Li-Off GaAs Solar Cells and Enabling Substrate Reuse

Jeramy D. Zimmermana, a a, b, c Kyusang Lee , and Stephen R. Forrest

a Department of Electrical Engineering and Computer Science, b Department of Physics, and c Department of and Engineering, University of Michigan

Supported by Army Research Laboratory MAST Program Global Photonic Energy Corporaon Movaon

• Numerous uses for lightweight, high-efficiency, flexible : – Power at temporary off-grid locations. – Autonomous vehicles (e.g. UAVs). Rollable or foldable portable PV – Satellites. • No available technologies provide ARL MAST high-efficiency, high power density photovoltaics on lightweight flexible substrates. • III-V photovoltaics provide >28% power conversion efficiency (ηP). • Specific power densities of >6 W/g & 280 W/m2. NASA Helios • Substantial reduction in III-V PV cost structure: wafer reuse.

Power for UAVs 2 Power/Weight Tradeoff

• Ideal cell: thin + high efficiency. GaAs InP • Active layers for GaAs cell is ~2 µm.

Trip. jun. • Lift-off uses back reflector à active layer Metam. thickness reduced by ~50%. Organic CIGS CdTe • GaAs has highest power:area and α-SI power:weight ratios Trip. Jun. achievable. C-Si Ge sub • Lift-off cells have higher power conversion efficiency than substrate cells.

3 Technologies & Goals

Epitaxial Li-Off (ELO)

• Light Weight & Flexible Thin-Film E. Yablonovitch et al, Appl. Phys. Le. 51, 2222 (1987). Epitaxial Protecon Layers

•Parent Wafer Reuse K. Lee et al, Appl. Phys. Le. 97, 101107 (2010)—UM. Cold Welding

• Simplified Transfer Process K. T. Shiu et al, Appl. Phys. Le. 95, 223503 (2009)—UM.

Mulple Growths on Single Wafer Low-Cost Solar-to-Electrical Energy Conversion

4 Non-Destrucve Wafer Reuse for Thin-Film PV Cells

Cold Welding

Growth Metallizaon Epitaxial Li 0ff

Surface Cleaning GSMBE

Thin-Film Fabricaon

5 MBE Growth of Epi-layers

Molecular beam epitaxy used to grow:

p+-GaAs contact, 0.3 µm p-InGaP BSF, 75 nm

p-GaAs base, 3 µm Solar cell active layers n-GaAs emitter, 0.15 µm n-InGaAlP window, 25 nm n+-GaAs contact, 0.2 µm InGaP, 0.1 µm GaAs, 0.1 µm AlAs, 10 nm Sacrificial and release layers GaAs, 0.1-0.5 µm InGaP, 0.1 µm GaAs buffer, 0.2 µm Substrate + buffer layer

GaAs substrate, 350 µm

6 Cold Welding

• Au deposited on wafer and plastic handle. • Au surfaces bonded by applying pressure. – Metallic bonds formed at room temperature. – Adhesive-free bonding technology. • Simple transfer process.

Stamping head

wafer/epi layer/Au High Pressure

Kapton/Ir/Au

Stamping head

7 Transferring III-V PV Cells to Plasc

Epitaxial lift-off

GaAs Wafer

AlAs release layer GaAs Solar Cell Layer

Mylar/Kapton

GaAs Wafer • Wafer cold welded to Kapton®.

HF AlAs HF • Lift off performed with HF. 7 GaAs Solar Cell Layer – Etch selectivity is ~10 :1 (AlAs:GaAs). – Epitaxial lift-off enables wafer reuse. Mylar/Kapton – Efforts are focused on improving quality and speed of lift-off process. • Fabrication performed on Kapton® GaAs Solar Cell Layer substrate. Mylar/Kapton • Flexible without degradation to radius < 1 cm.

8 Acceleraon of ELO Using Strained Handles

Strain Control by Spuered Ir

Compressive Strain

7 mTorr Spuering Pressure

10 nm Ir 20 nm Ir

50 μm Kapton

8.5 mTorr Spuering Pressure Tensile Strain 7 nm Ir 28 nm Ir

Strain State Etch me (Ir thickness)

Substrate Neutral ~10 days 10nm AlAs Kapton/epi layer Compressive (21 nm) ~24 hrs Tensile (7 nm) <8 hrs 9 Influence of ELO on GaAs Wafer

Scanning Microscopy Atomic Force Microscopy

1 μm RMS = 8 nm

O O

O Ga 3D Laser Microscopy 32 ��

10 Influence of ELO on GaAs Wafer

Scanning Electron Microscopy X-ray Photoelectron Spectroscopy

3d5/2 3d3/2

1 µm

As As2O5 Energy Dispersive Spectroscopy Original Wafer O O Ga As Atomic Concentraon Near Surface Original Wafer

As 49.5% Ga 48.3% ELO Processed Wafer O Ga As ELO Processed Wafer 3D Laser Microscopy As 41.2% Ga 33.2% O 25.6%

11 Protecon Layers

Protection Layer Structure • Protection layers

… – Inserted between AlAs and In0.49Ga0.51P (0.1 µm) wafer or active layers. AlAs (10 nm) – Prevent HF from contacting the In0.49Ga0.51P (0.1 µm) wafer. GaAs (0.1 µm ) – InGaP removed with H PO :HCl or HCl:H O. In0.49Ga0.51P (0.1 µm) 3 4 2 GaAs wafer – GaAs removed with H3PO4:H2O2: H2O. Atomic Force Microscopy – Reduces RMS roughness to that of original wafer. New wafer 10 nm • As2O5 particles difficult to remove

RMS = 0.20 nm – Tri-layer necessary. Non-protected wafer – Over-etched to undercut particulates. RMS = 0.97 nm

Protected wafer K. Lee et al, APL 97, 101107 (2010). K. Lee et al, JAP 111, 033527 (2012). RMS = 0.21 nm

5 �m 12 Thermal Decomposion

Fresh wafer ELO processed

Protection layer RTA treated removed

• RTA in N2 at 600 °C for 1 min. • GaAs/InGaP bilayer protection removed with wet etches. • Surface returned to like-new condition. 13 Pre-clean

After ELO After plasma cleaning 3d laser microscope

AFM

RMS = 8 nm RMS = 0.2 nm

• SF6+Ar ICP plasma for 1 min. • GaAs/InGaP bilayer protection removed with wet etches. • Surface returned to like-new condition. 14 Surface Chemistry Comparison

X-ray Photoelectron Spectroscopy

Energy Dispersive Spectroscopy 50.0 48.3 49.5 49.3 41.2 25.6 33.2

2.2 0.7 O Ga As O Ga As O Ga As Surface Cleaned Wafer Original Wafer ELO Processed Wafer Aer ELO 15 Epitaxial Protecon Layer & Surface Cleaning

Original wafer Atomic Force Microscopy RHEED 10 nm AlAs 100 nm GaAs RMS = 0.2nm 100 nm InGaP Growth GaAs substrate Metallizaon & Cold Welding Epitaxial li off

RMS = 8 nm Film - Substrate

Surface Pre-cleaning Thin Thermal or Plasma Cleaning Surface Cleaning Protecon layer removal Regrowth

RMS = 0.2 nm Solar Cell Fabricaon 16 Growth Quality Comparison

Cross-Seconal Hall Effect Measurement

Transmission Electron Microscopy Original Growth Grown on Fresh Wafer Doping concentraon 2 1.67 x 1018 /cm3 1950 cm /Vs (110) Regrowth 5 nm Doping concentraon 2 2 nm 1.78 x 1018 /cm3 1930 cm /Vs

1st Regrowth Photoluminescence Measurement

(110)

5 nm 2 nm

2nd Regrowth

(110)

5 nm 2 nm

17 Device Performance Comparison

Current Density-Voltage Curve n+ GaAs Ohmic AlInP window n-GaAs p-GaAs InGaP BSF

GaAs Substrate

External Quantum Efficiency Device Efficiency Parameters

JSC [mA VOC FF PCE -2 cm ] [V] [%] [%] Fresh 27.7±0.5 1.00 83.4 23.1±0.6 Wafer Reused 28.0±0.4 1.00 81.6 22.8±0.5 wafer

18 GaAs Thin-Film Solar Cells

Current Density-Voltage Curve

n+ GaAs Ohmic AlInP window n-GaAs p-GaAs InGaP BSF GaAs Ohmic Gold Kapton®

External Quantum Efficiency

ELO Processed GaAs Thin-Film Solar Cells Device Efficiency Parameters

JSC VOC FF PCE 23.1 mA/cm2 0.92 V 75.6% 16.1%

19 Cost Esmate: Substrate-Based III-V PV

1 m2 GaAs PV Cells: • Substrates (56 x 6”) $17,000 • Source material (4 μm GaAs growth) $80

• Liquid nitrogen for cryo panels $400

• Electricity (~120 kW-hr) $15

• Wafer processing $75 - Convenonal Au contacts $40 - AR coang (ZnS/MgF2)150nm $10 - Lithographic paerning $25 • Total $17,570 • Cost/Wp @ 23% $76

(assumpons: Standard MBE design, no large reducons in price for bulk quanes, and labor and capitol cost not included.)

20 Cost Esmate for Flexible III-V PV 1 m2 GaAs PV Cells: • Substrates (56 x 6”): 50 uses $340 • Source material (2 μm GaAs growth) $40 • Electricity (~120 kW-hr) $15 • Wafer processing $35 - Metal/Kapton® foil $10 - Ag/Cu contacts $10 - AR coang (ZnS/MgF2)150nm $5 - HF etchant (HF:AlAs >106:1), 1 L 10% $5 - Non-Lithographic paerning $5 • Total $430 • Cost/Wp @ 30% $1.43

(assumpon: No LN2—requires MBE redesign.)

21 Concentraon

• Grid parity possible by using concentrators. Diffuse light • 4x concentraon: Direct light Directlight ~$0.70/Wp. • 10x concentraon: ~$0.45/Wp. • Requires solar

MJ cell tracking. PV Cell CompoundReflector Parabolic Reflector

22 Summary

• Solar Cell Fabricaon – Via cold-welding & epitaxial li-off. – Expedited li-off process using strained handle. • Reuse of GaAs Wafers – Lace matched epitaxial protecon layer. – Thermal & plasma surface cleaning. – GaAs regrowth aer protecon layer removal.

– Idencal solar cell performance.

K. Lee et al, J. Appl. Phys. 111, 033527 (2012). [email protected] [email protected] 23