Incorporating Climate Change Into Fisheries Management in Atlantic Canada and the Eastern Arctic

Total Page:16

File Type:pdf, Size:1020Kb

Incorporating Climate Change Into Fisheries Management in Atlantic Canada and the Eastern Arctic 1533 Barrington St, Suite 200, Halifax, NS, B3J 1Z4 www.oceansnorth.org Incorporating climate change into fisheries management in Atlantic Canada and the Eastern Arctic Prepared by Dr. Daniel G. Boyce, The Ocean Frontier Institute at Dalhousie University for Oceans North Citation: Boyce, D. G., Schleit, K., & Fuller, S. (2020). Incorporating climate change into fisheries management in Atlantic Canada and the Eastern Arctic. Halifax, Nova scotia, Canada. 1 Table of Contents Table of Contents ................................................................................................................................ 2 List of tables ........................................................................................................................................ 5 List of figures ....................................................................................................................................... 5 Glossary and abbreviations .............................................................................................................. 7 Acknowledgements ............................................................................................................................ 9 Introduction....................................................................................................................................... 10 1. The value of healthy and productive fisheries ....................................................................... 11 1.1 Culture and nutrition ............................................................................................................... 11 1.2 Economic .................................................................................................................................. 12 1.3 Ecosystem functioning and service provision ....................................................................... 17 1.4 Key points ................................................................................................................................. 18 2. Fisheries productivity in Atlantic Canada and the Eastern Canadian Arctic .................... 19 2.1 The area of interest ................................................................................................................. 19 2.2 Biogeographic overview .......................................................................................................... 21 2.3 Key points ................................................................................................................................. 23 3. Fisheries: status, significant species, and trends ................................................................... 24 3.1 Overview ................................................................................................................................... 24 3.1.1 Major species ................................................................................................................................25 3.1.2 Stock assessments ........................................................................................................................27 3.1.3 Sustainability survey for fisheries ..............................................................................................32 3.2 Key points ................................................................................................................................. 34 4. Observed climate effects on marine ecosystems and fisheries in Canada ....................... 35 4.1 Overview of climate effects on marine ecosystems.............................................................. 35 4.2 Climate effects on the physical–chemical environment ....................................................... 39 4.3 Climate effects on plankton .................................................................................................... 44 4.4 Climate effects on bacteria and viruses ................................................................................. 45 4.5 Climate effects on fisheries ..................................................................................................... 45 4.5.1 Distributional shifts......................................................................................................................46 4.5.2 Phenology ......................................................................................................................................47 4.5.3 Size structure ................................................................................................................................47 4.5.4 Predation .......................................................................................................................................48 4.5.5 Synergistic effects .........................................................................................................................48 4.6 Increasing magnitude and frequency of extreme events..................................................... 50 4.7 Key points ................................................................................................................................. 50 2 5. Future changes in marine ecosystems and fisheries in Canada ......................................... 51 5.1 An overview of climate projection and forecasting............................................................... 51 5.2 Methods ................................................................................................................................... 53 5.3 Ensemble climate projections of temperature, plankton, and animal biomass ................. 54 5.4 Projected timing of climate emergence from natural variability ......................................... 57 5.5 Climate projections of species distribution ........................................................................... 59 5.6 Climate change impacts in relation to fisheries productivity and ecosystem stressors .... 59 5.7 Key points ................................................................................................................................. 63 6. Incorporating climate change into fisheries management: approaches and best practices . 64 6.1 Summary .................................................................................................................................. 64 6.2 Overarching management objectives, principles, and priorities ......................................... 66 6.2.1 Minimizing abatable stressors and promoting healthy fisheries ...........................................67 6.2.2 An ecosystem approach to fisheries ..........................................................................................67 6.2.3 Precautionary approaches .........................................................................................................67 6.2.4 Enhancing ecological stability ....................................................................................................67 6.3 Data and information gathering ............................................................................................. 68 6.3.1 Ecosystem monitoring .................................................................................................................68 6.4 Quantitative stock assessments, knowledge generation, and advice ................................. 70 6.4.1 Climate-considered stock assessment models .........................................................................70 6.4.2 Climate vulnerability of fisheries ................................................................................................76 6.4.3 Climate forecasts and projections .............................................................................................78 6.4.4 Climate change research .............................................................................................................81 6.5 Decision-making ...................................................................................................................... 81 6.6 Implementation of tools & actions ......................................................................................... 86 6.6.1 Spatial management ...................................................................................................................86 6.6.2 Dynamic management ................................................................................................................87 6.6.3 Integration of approaches and solutions ..................................................................................89 7. Climate change integration into Canadian fisheries management .................................... 90 7.1 Overview ................................................................................................................................... 90 7.2 The management structure of Canada’s fisheries ................................................................ 91 7.3 Methods ................................................................................................................................... 93 7.3.1 Data ...............................................................................................................................................93 7.3.2 Analyses .........................................................................................................................................94 7.4 Results .....................................................................................................................................
Recommended publications
  • Translation Series No.1375
    FISHERIES RESEARCH BOARD OF CANADA Translation Series No. 1375 Bioebenoses and biomass of benthos of the Newfoundland-Labrador region. By Ki1N. Nesis Original title: Biotsenozy i biomassa bentosa N'yufaund- • .lendskogo-Labradorskogo raiona.. From: Trudy Vsesoyuznogo Nauchno-Issledovatel'skogo •Instituta Morskogo Rybnogo Khozyaistva Okeanografii (eNIRO), 57: 453-489, 1965. Translated by the Translation Bureau(AM) Foreign Languages Division Department of the Secretary of State of Canada Fisheries Research Board of Canada • Biological Station , st. John's, Nfld 1970 75 pages typescript 'r OEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS FOREIGN LANGUAGES DIVISION DES LANGUES DIVISION ° CANADA ÉTRANGÈRES TRANSLATED FROM - TR,ADUCTION DE INTO - EN Russian English 'AUTHOR - AUTEUR Nesis K.N. TITLE IN ENGLISH - TITRE ; ANGLAIS Biocoenoses and biomas of benthos of the Newfolindland-Labradoriregion Title . in foreign_iangnage---(tranalitarate_foreisn -ottantatere) Biotsenozy i biomassa bentosa N i yufaundlendSkogo-Labradorskogoraiona. , .ReF5RENCE IN FOREIGN ANGUA2E (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CFiA,IRACTERS. • REFERENCE' EN LANGUE ETRANGERE (NOM DU LIVRE OU PUBLICATION), AU COMPLET. TRANSCRIRE EN CARACTERES PHONETIQUEL •. Trudylesesoyuznogo nauchno-iàsledovaterskogo instituta morskogo — rybnogo khozyaistva i okeanogràfii - :REFEREN CE IN ENGLISH - RÉFÉRENCE EN ANGLAIS • Trudy of the 40.1-Union Scientific-Research Instituteof Marine . Fiseriés and Oceanography. PUBLISH ER ÉDITEUR PAGE,NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMEROS DES PAGES DANS DATE DE PUBLICATION . L'ORIGINAL YE.tR ISSUE.NO . 36 VOLUME ANNEE NUMERO PLACE OF PUBLICATION NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE PAG.ES DACTY LOGRAPHIEES 1965 5 7 REQUEr IN G• DEPA RTMENT Fisheries Research Board TRANSLATION BUREAU NO.
    [Show full text]
  • Shrimp Fishing in Mexico
    235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Newsletter Varnish
    The Cover The outlook's bleak for the future of passenger trains in Newfoundland, as our report on page 78 indicates. In a matter of months, buses will appear on the St. John's- Port aux Basques run, phasing out CN's narrow gauge newsletter varnish. Here's the easthound Caribou waiting for its westbound counterpart at Cooke siding in June, 1967. — Tom Henry Number 270 Published monthly by the Upper Canada Railway Society, Inc., Box 122, Terminal A, Toronto, Ont. James A. Brown, Editor Coming Events :.:.:.;-:.:.;.:.:.:.:.:.:.;.;.:.:.x-:.;'X-:':':-;-:-:'X-:w^^^^^ Regular meetings of the Society are held on the third Friday of Authorized as Second Class Matter by the Post Office Department, each month (except July and August) at 589 Mt. Pleasant Road, Ottawa, Ont. and for payment of postage in cash. Toronto, Ontario. 8.00 p.m. Members are asked to give the Society at least five weeks notice of address changes. Aug 16: Summer meeting and social night at 589 Mt. (Fri) Pleasant Road, featuring refreshments and pro• fessional films of rail interest. Sept 20: Regular Meeting. Please address NEWSLETTER contributions to the Editor at (Fri) 3 Bromley Crescent, Bramalea, Ontario. No responsibility is assumed for loss or nonreturn of material. All other Society business, including membership inquiries, should be addressed to UCRS, Box 122, Terminal A, Toronto, Ontario. Contributors: John Bromley, Reg Button, Tom Henry, Bill Hood, George Horner, Omer Lavallee, Boh McMann, Ernie Modler, Steve Munro, John Thompson, Ted Wickson. Production: John Bromley, Tom Henry, Omer Lavallee. Distribution: Chas. Bridges, George Meek, Bill Miller, Steve Munro, John Thompson, Ted Wickson.
    [Show full text]
  • Regional Geology of the Scotian Basin
    REGIONAL GEOLOGY OF THE SCOTIAN BASIN David E. Brown, CNSOPB, 2008 INTRODUCTION The Scotian Basin is a classic passive, mostly non-volcanic, conjugate margin. It represents over 250 million years of continuous sedimentation recording the region's dynamic geological history from the initial opening of the Atlantic Ocean to the recent post-glacial deposition. The basin is located on the northeastern flank of the Appalachian Orogen and covers an area of approximately 300,000 km2 with an estimated maximum sediment thickness of about 24 kilometers. The continental-size drainage system of the paleo-St. Lawrence River provided a continuous supply of sediments that accumulated in a number of complex, interconnected subbasins. The basin's stratigraphic succession contains early synrift continental, postrift carbonate margin, fluvial-deltaic-lacustrine, shallow marine and deepwater depositional systems. PRERIFT The Scotian Basin is located offshore Nova Scotia where it extends for 1200 km from the Yarmouth Arch / United States border in the southwest to the Avalon Uplift on the Grand Banks of Newfoundland in the northeast (Figure 1). With an average breadth of 250 km, the total area of the basin is approximately 300,000 km2. Half of the basin lies on the present-day continental shelf in water depths less than 200 m with the other half on the continental slope in water depths from 200 to >4000 m. The Scotian Basin formed on a passive continental margin that developed after North America rifted and separated from the African continent during the breakup of Pangea (Figure 2). Its tectonic elements consist of a series of platforms and depocentres separated by basement ridges and/or major basement faults.
    [Show full text]
  • PGCCDBS Report 2007
    ICES PGCCDBS Report 2007 ICES Advisory Committee on Fisheries Management ICES CM 2007/ACFM:09 Report of the Planning Group on Commercial Catch, Discards and Biological Sampling (PGCCDBS) 5–9 March 2007 Valetta, Malta International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2007. Report of the Planning Group on Commercial Catch, Discards and Biological Sampling (PGCCDBS), 5–9 March 2007, Valetta, Malta. ACFM:09. 115 pp. For permission to reproduce material from this publication, please apply to the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2007 International Council for the Exploration of the Sea. ICES PGCCDBS Report 2007 | i Contents Executive summary.......................................................................................................... 4 1 Introduction ............................................................................................................. 7 1.1 Terms of Reference ......................................................................................... 7 1.2 Background...................................................................................................... 7 1.3 General introductory remarks
    [Show full text]
  • Ices/Nafo Wgdec Report 2015
    ICES/NAFO WGDEC REPORT 2015 ICES ADVISORY COMMITTEE ICES CM 2015/ACOM:27 Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC) 16–20 February 2015 Horta, Azores, Portugal International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2015. Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC), 16–20 February 2015, Horta, Azores, Portugal. ICES CM 2015/ACOM:27. 113 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2015 International Council for the Exploration of the Sea ICES/NAFO WGDEC REPORT 2015 | i Contents Executive summary ................................................................................................................ 4 Opening of the meeting ........................................................................................................ 5 1 Adoption of the agenda ................................................................................................ 6 2 Provide all available new information on distribution of VMEs in the North Atlantic with a view to advising on any new closures to bottom fisheries or revision of existing closures to bottom fisheries (NEAFC standing request). In addition, provide new information on location of habitats sensitive to particular fishing activities (i.e. vulnerable marine ecosystems, VMEs) within EU waters (EC request) ................................... 8 2.1 Introduction ........................................................................................................... 8 2.2 Areas within the NEAFC regulatory area ........................................................
    [Show full text]
  • Prionace Glauca) Across Their Life History
    Movements of Blue Sharks (Prionace glauca) across Their Life History Frederic Vandeperre1,2*, Alexandre Aires-da-Silva3, Jorge Fontes1,2, Marco Santos1,2, Ricardo Serra˜o Santos1,2, Pedro Afonso1,2 1 Centre of IMAR of the University of the Azores; Department of Oceanography and Fisheries, Horta, Portugal, 2 LARSyS Associated Laboratory, Lisboa, Portugal, 3 Inter- American Tropical Tuna Commission, La Jolla, California, United States of America Abstract Spatial structuring and segregation by sex and size is considered to be an intrinsic attribute of shark populations. These spatial patterns remain poorly understood, particularly for oceanic species such as blue shark (Prionace glauca), despite its importance for the management and conservation of this highly migratory species. This study presents the results of a long- term electronic tagging experiment to investigate the migratory patterns of blue shark, to elucidate how these patterns change across its life history and to assess the existence of a nursery area in the central North Atlantic. Blue sharks belonging to different life stages (n = 34) were tracked for periods up to 952 days during which they moved extensively (up to an estimated 28.139 km), occupying large parts of the oceanic basin. Notwithstanding a large individual variability, there were pronounced differences in movements and space use across the species’ life history. The study provides strong evidence for the existence of a discrete central North Atlantic nursery, where juveniles can reside for up to at least 2 years. In contrast with previously described nurseries of coastal and semi-pelagic sharks, this oceanic nursery is comparatively vast and open suggesting that shelter from predators is not its main function.
    [Show full text]
  • Atlantic Zone Based on Satellite Data, and (3) Egg and Larval Distributions of Cod and Haddock from Cape Hatteras to the Laurentian Channel
    Fisheries and Oceans Pêches et Océans Science Sciences C S A S S C É S Canadian Stock Assessment Secretariat Secrétariat canadien pour l’évaluation des stocks Proceedings Series 2000/17 Série des compte rendus 2000/17 Final Report of the 2000 Annual Meeting of the Fisheries Oceanography Committee Including the Report of the Workshop on the Cod Recruitment Dilemma February 22-25, 2000 Northwest Atlantic Fisheries Center St. John’s, Newfoundland 1D.P. Swain, Chairperson (FOC) 2M. Castonguay, Chairperson (Cod Recruitment Workshop) 1Fisheries and Oceans Canada 343 Ave Université Ave Moncton, New-Brunswick E1C 9B6 2Fisheries and Oceans Canada Institut Maurice Lamontagne 850 Route de la Mer, C.P. 1000 G5H 3Z4 September 2000 ii Executive Summary of the 2000 FOC Annual Meeting The Fisheries Oceanography Committee (FOC) of the Department of Fisheries and Oceans (DFO) met in St. John’s, Newfoundland at the Northwest Atlantic Fisheries Center on 22-25 February 2000. The Committee reviewed environmental conditions in the Northwest Atlantic during 1999, convened a workshop on the Cod Recruitment Dilemma, reviewed additional papers on physical and biological oceanography and on changes in cod diets, and conducted its annual business meeting. 1. Physical Environment in 1999: Eight papers were reviewed on the meteorological and physical oceanographic conditions in 1999. Air temperature warmed relative to 1998 throughout most of the northwest Atlantic, reaching record high values in the Gulf of St. Lawrence, on the Scotian Shelf and over eastern Newfoundland. Sea ice coverage and duration were below average in most areas. Water temperatures from southern Labrador to the Grand Bank and off southern Newfoundland were generally above normal values.This was reflected in below-average volumes of the cold intermediate layer (CIL) and warmer- than-average bottom waters off Newfoundland, especially on the Grand Bank where bottom temperatures were 1-3°C above average.
    [Show full text]
  • Canadian Rail No162 1965
    <:;an..adi J~mnn Number 162 / Janua r y 1965 Cereal box coupons and soap package enclosures do not general­ ly excite much enthusiasm from the editor of 'Canadian Rail', but we must admit we are looking forward with some eagerness to comp­ leting our collection of RAILWAY MUGS currently being distribut e d by the Quaker Oats Company, in their specially-marked packages of Quaker Oats. This series of twelve hot chocolate mugs depicts the develop - ment of the steam locomotive in Canada from the 0-6-0 "Samson", to the CPR 2-10-4 #8000. The mugs are being offered by the Quaker Oats Company of Cana­ da to salute Canada's Centennial, and the part played by the rail­ ways and their steam locomotives in furthering the pro ~ ress of the nation. Each cup pictures an authentic locomotive design -- one shows a Canadian Northern 2-8-0, a type of locomotive that made a major contribution to the country's prairie economy by moving grain from the Western provinces to the Lakehead -- another shows one of the Canadian Pacific's ubiquitous D-10 engines. There are 12 different locomotives in the series - each a col­ lector's item. The reproductions are precisely etched in decora­ tive colours and trimmed with 22k gold. Canadian Rail Par,e 3 &eee_eIPIrWB __waBS} -- E.L.Modler. Once a Ga in this year, the Canadian National Railways has leased a number of road switcher type diesels from the Duluth, Missabe and Iron Range Railroad. :,ihile last year all the uni ts leased from the D.I.L& I.R.
    [Show full text]
  • Review and Analysis of International Legal and Policy Instruments Related
    REVIEW AND ANALYSIS OF INTERNATIONAL LEGAL AND POLICY INSTRUMENTS RELATED TO DEEP-SEA FISHERIES AND BIODIVERSITY CONSERVATION IN AREAS BEYOND NATIONAL JURISDICTION Cover photograph: Unknown fish (possibly Antimora spp.) photographed in waters 1 800–3 000 m, 300 km northeast of St John’s, Canada. Courtesy of Bedford Institute of Oceanography. REVIEW AND ANALYSIS OF INTERNATIONAL LEGAL AND POLICY INSTRUMENTS RELATED TO DEEP-SEA FISHERIES AND BIODIVERSITY CONSERVATION IN AREAS BEYOND NATIONAL JURISDICTION Dr James Harrison Director of the Scottish Centre for International Law University of Edinburgh Law School Mr Terje Lobach International Legal specialist Prof Elisa Morgera Director of the Strathclyde Centre for Environmental Law and Governance University of Strathclyde Law School with technical inputs by Mr Pio Manoa Development Law Service FAO Legal Office The ABNJ Deep Seas Project Sustainable Fisheries Management and Biodiversity Conservation of Deep-sea Living Marine Resources and Ecosystems in the Areas Beyond National Jurisdiction (ABNJ) )RRGDQG$JULFXOWXUH2UJDQL]DWLRQRIWKH8QLWHG1DWLRQV 5RPH The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Country Note on Fisheries Management Systems -- Canada
    COUNTRY NOTE ON FISHERIES MANAGEMENT SYSTEMS -- CANADA 1. Overview of Canadian Fisheries 1. Canada has traditionally benefited from the abundant fisheries resources in some of the world’s most productive marine and freshwater systems. These rich fisheries resources have maintained an important fishing industry that provides employment and supports the livelihood of hundreds of small communities in coastal areas. 2. In addition, there is a large recreational fisheries sector comprised of some 3.6 million anglers with annual expenditures of close to CAD 4.7 billion exclusively on sport fishing activities and investments. Furthermore, fishing has been entrenched in the daily life of Canadian aboriginal people in more than 300 First Nations who participate in fisheries for food, social and ceremonial purposes. 3. Aside from capture fisheries, aquaculture has been growing rapidly in Canada. In 1986, the total farm gate value of aquaculture was CAD 35 million. By 2000, production had increased to CAD 600 million, of which 81% was salmon. Trout, mussels and oysters are also major aquaculture species. 4. Canada’s commercial fisheries operate in three broad regions - along the Atlantic and Pacific coasts and inland (mainly near the Great Lakes and Lake Winnipeg). The last decade has seen major changes in the Canadian commercial fisheries on both coasts. The collapse of the Atlantic groundfishery in the early 1990s and the subsequent failure of Pacific salmon fishery in the mid-1990s -- the two traditional staple species in the Atlantic and Pacific fisheries respectively -- have completely changed the landscape of the Canadian fishing industry. 5. The rapid expansion of shrimp and crab fisheries along with continuing strong price performance for shellfish in general, have not only made shellfish the most dominant sector on the Atlantic coast but also brought the overall landed value past the historical record prior to the groundfish moratoria.
    [Show full text]