Smooth Structures on Spheres

Total Page:16

File Type:pdf, Size:1020Kb

Smooth Structures on Spheres Math 120B Discussion Session Week 4 Notes April 25, 2019 Today we'll discuss some basic notions about manifolds. First, we'll construct an atlas for the n n+1 unit sphere S ⊂ R , and then we'll obtain some manifolds as level sets of smooth functions. Smooth structures on spheres Recall that a smooth manifold consists of two pieces of data: a metric space1 M, and an atlas, con- sisting of coordinate charts (U; φ) on M. To qualify as an atlas, this collection of charts must cover M, must have smooth transition functions, and must be maximal with respect to this property. It is common to refer to the atlas as a smooth structure on M. Because atlases have this property of being maximal, we can determine a smooth structure on M by covering M with coordinate charts whose pairwise transition maps are smooth. We simply declare that A contains these coordinate charts, and then we're obligated to toss in any other coordinate charts which are compatible with these. Let's see an example of this when M = Sn. Just as in the n = 2 case, we may use stereographic projection to cover Sn with just two charts. We have n 2 2 n+1 S = f(x1; : : : ; xn+1)jx1 + ··· + xn+1 = 1g ⊂ R : n n Now consider open sets U± = S n f(0;:::; 0; ∓1)g and define φ± : U± ! R by x1 xn φ±(x1; : : : ; xn+1) = ; ··· ; : 1 ± xn+1 1 ± xn+1 Notice that φ+ omits the south pole, while φ− omits the north pole, and that the image of each of n these charts is R . By now you've probably computed the transition map −1 n n φ− ◦ φ+ : R n 0 ! R n 0 at least fifteen times and found it to be smooth. This tells us that the coordinate charts (U+; φ+) and (U−; φ−) can live in the same atlas A, but additionally they determine an atlas, since they cover M = Sn. As above, we simply add to A all the coordinate charts which are compatible with (U+; φ+) and (U−; φ−). Recall that smooth manifolds (M; A) and (N; B) are diffeomorphic if there is a homeomorphism f : M ! N with the property that every composition ◦ f ◦ φ−1 is smooth, where (U; φ) 2 A and (V; ) 2 B. This leads to an interesting question. Can we choose an atlas on Sn which is not diffeomorphic to the atlas A constructed above? Perhaps we can start with a different cover of Sn by coordinate charts and end up with a totally new smooth structure. Such an atlas, not diffeo- morphic to the one we've constructed, is known as an exotic smooth structure on Sn. 1This is our textbook's convention. A more common approach is to demand that M be a topological manifold, which means that it's a Hausdorff, second countable, locally Euclidean space. Avoiding the definitions of these terms is nice for now, but you may care about topological manifolds at some point. 1 Figure 1: A family of smooth manifolds, along with a singular space. The smooth Poincar´econjecture asserts that no exotic structures exist on Sn. This means that if we have any atlas A~ on Sn, then (Sn; A) and (Sn; A~) are diffeomorphic. The smooth Poincar´e conjecture is known to be true for some small dimensions, but in 1956, Milnor constructed exotic smooth structures on S7. In fact, Kervaire and Milnor went on to show that S7 admits exactly 28 distinct smooth structures. Here are some other values computed by Kervaire and Milnor: n 1 2 3 4 5 6 7 8 9 10 11 12 smooth structures on Sn 1 1 1 ?? 1 1 28 2 8 6 992 1 Unfortunately we can't get into the construction of exotic structures here, but notice that the smooth Poincar´econjecture remains open for n = 4. Hypersurfaces as manifolds In lecture you showed that a good way to produce a differentiable n-manifold is as a hypersurface n+1 of a smooth function f : R ! R. We're not going to reprove this, but we'll state it in a (slightly) more general form before giving some examples and discussing why this is a reasonable construction. m k Fact. Let F : R ! R be a smooth function, for some 1 ≤ k ≤ m, and let JF (p) be the Jacobian matrix 0 1 1 1 @F ··· @F @x1 @xm B . C JF = B . .. C @ k k A @F ··· @F @x1 @xm m k of F , evaluated at p 2 R . Fix c 2 R and set m Mc = fp 2 R jf(p) = cg: m If rank(JF (p)) = k for all p 2 Mc, then Mc ⊂ R is a smooth manifold of dimension m − k. 2 2 Figure 2: Some level curves of a smooth function h: T ! R, two of which are submanifolds. 3 2 2 2 Example 1. Consider the function F : R ! R defined by F (x; y; z) = x + y − z . The Jacobian matrix JF (x; y; z) = 2x 2y −2z will have full rank whenever (x; y; z) 6= (0; 0; 0). So for any constant c 6= 0 = F (0; 0; 0), F −1(c) is a smooth 2-manifold. If c < 0, then Mc is a hyperboloid of two sheets, and in fact we can show that for any c0; c1 < 0, the manifolds Mc0 and Mc1 are diffeomorphic. On the other hand, when c > 0, Mc is a hyperboloid of one sheet, and again we have the property that all such Mc are diffeomorphic. What happens when c = 0? Then M0 is the singular set f(x; y; z)jx2 + y2 = z2g; 3 which is a (double) cone in R . As we can see in Figure1, our family of manifolds Mc, with c < 0, degenerates into this cone as c approaches 0 and comes out on the other side (when c > 0) as a different family of smooth manifolds, topologically distinct from the previous family. The tangent space to a smooth manifold hasn't yet been discussed in lecture, but for hypersur- faces in Euclidean space, we can make sense of this in the same way we approached the tangent 3 N space to a surface in R . Namely, the tangent space to M ⊂ R can be thought of as all the possible velocity vectors of curves in M: TpM = fγ_ (0)jγ :(−, ) ! M has γ(0) = pg: m k If we realize M as a regular hypersurface of a smooth function F : R ! R , then TpM ought to be a vector space of dimension m − k. How can we realize this? Let γ :(−, ) ! M be a curve in k M with γ(0) = p. Because M is a regular hypersurface of F , the function F ◦ γ :(−, ) ! R is constant, so differentiating gives k JF (γ(t)) · γ_ (t) = 0 2 R ; for every t 2 (−, ). In particular, this holds when t = 0. Soγ _ (0) is in the kernel of JF (p), and in fact we can write TpM = ker JF (p): Because JF (p) has rank k, its kernel has dimension m − k | precisely the dimension we expected for TpM. We can think of the regularity condition rank(JF (p)) = k as demanding that the tangent space to F −1(c) be reasonable. 3 Digression. Because we haven't yet defined the tangent space to an abstract manifold, we can't yet speak very rigorously about what it means for a map F : M ! N of manifolds to have full rank. But if we could, then the above fact would continue to hold. In particular, if c 2 N is a regular value of a smooth map F : M ! N of manifolds, then F −1(c) ⊂ M is a smooth submanifold of dimension dim M − dim N. Just as before, these smooth submanifolds vary in continuous families, with changes in their topology occurring whenever c passes through a critical point. For instance, 2 consider the height function h: T ! R on the torus, depicted in Figure2. Can you identify the critical points of this function? Which preimages h−1(c) are smooth submanifolds, and how does the topology of the preimages change as c passes through critical points? A manifold of matrices The last example of a smooth manifold that we'll consider is a bit more abstract. Let M(n; R) n2 denote the collection of n × n matrices with real entries. We can identify M(n; R) with R entry- wise. Now let SL(n; R) denote the special linear group | that is, n × n matrices with determinant 1. Then SL(n; R) is the preimage of 1 under the map f : M(N; R) ! R : A 7! det A: This map is certainly smooth, since det A can be written as a polynomial in the entries of A. The question, then, is whether the Jacobian matrix Jf (A) has full rank whenever A 2 SL(n; R). Let's consider the case n = 2. Then we may write a b A = and f(A) = ad − bc: c d So the Jacobian matrix Jf (A) is given by Jf (A) = d −c −b a : As long as A is not the zero matrix, this will have full rank. In particular, Jf (A) has full rank whenever A 2 SL(2; R), so SL(2; R) is a smooth manifold of dimension 3. For a general n we can similarly check that Jf (A) has full rank whenever A 6= 0, so SL(n; R) is a smooth submanifold of 2 M(n; R) of dimension n − 1.
Recommended publications
  • Geometric Manifolds
    Wintersemester 2015/2016 University of Heidelberg Geometric Structures on Manifolds Geometric Manifolds by Stephan Schmitt Contents Introduction, first Definitions and Results 1 Manifolds - The Group way .................................... 1 Geometric Structures ........................................ 2 The Developing Map and Completeness 4 An introductory discussion of the torus ............................. 4 Definition of the Developing map ................................. 6 Developing map and Manifolds, Completeness 10 Developing Manifolds ....................................... 10 some completeness results ..................................... 10 Some selected results 11 Discrete Groups .......................................... 11 Stephan Schmitt INTRODUCTION, FIRST DEFINITIONS AND RESULTS Introduction, first Definitions and Results Manifolds - The Group way The keystone of working mathematically in Differential Geometry, is the basic notion of a Manifold, when we usually talk about Manifolds we mean a Topological Space that, at least locally, looks just like Euclidean Space. The usual formalization of that Concept is well known, we take charts to ’map out’ the Manifold, in this paper, for sake of Convenience we will take a slightly different approach to formalize the Concept of ’locally euclidean’, to formulate it, we need some tools, let us introduce them now: Definition 1.1. Pseudogroups A pseudogroup on a topological space X is a set G of homeomorphisms between open sets of X satisfying the following conditions: • The Domains of the elements g 2 G cover X • The restriction of an element g 2 G to any open set contained in its Domain is also in G. • The Composition g1 ◦ g2 of two elements of G, when defined, is in G • The inverse of an Element of G is in G. • The property of being in G is local, that is, if g : U ! V is a homeomorphism between open sets of X and U is covered by open sets Uα such that each restriction gjUα is in G, then g 2 G Definition 1.2.
    [Show full text]
  • Spheres in Infinite-Dimensional Normed Spaces Are Lipschitz Contractible
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 88. Number 3, July 1983 SPHERES IN INFINITE-DIMENSIONAL NORMED SPACES ARE LIPSCHITZ CONTRACTIBLE Y. BENYAMINI1 AND Y. STERNFELD Abstract. Let X be an infinite-dimensional normed space. We prove the following: (i) The unit sphere {x G X: || x II = 1} is Lipschitz contractible. (ii) There is a Lipschitz retraction from the unit ball of JConto the unit sphere. (iii) There is a Lipschitz map T of the unit ball into itself without an approximate fixed point, i.e. inffjjc - Tx\\: \\x\\ « 1} > 0. Introduction. Let A be a normed space, and let Bx — {jc G X: \\x\\ < 1} and Sx = {jc G X: || jc || = 1} be its unit ball and unit sphere, respectively. Brouwer's fixed point theorem states that when X is finite dimensional, every continuous self-map of Bx admits a fixed point. Two equivalent formulations of this theorem are the following. 1. There is no continuous retraction from Bx onto Sx. 2. Sx is not contractible, i.e., the identity map on Sx is not homotopic to a constant map. It is well known that none of these three theorems hold in infinite-dimensional spaces (see e.g. [1]). The natural generalization to infinite-dimensional spaces, however, would seem to require the maps to be uniformly-continuous and not merely continuous. Indeed in the finite-dimensional case this condition is automatically satisfied. In this article we show that the above three theorems fail, in the infinite-dimen- sional case, even under the strongest uniform-continuity condition, namely, for maps satisfying a Lipschitz condition.
    [Show full text]
  • Examples of Manifolds
    Examples of Manifolds Example 1 (Open Subset of IRn) Any open subset, O, of IRn is a manifold of dimension n. One possible atlas is A = (O, ϕid) , where ϕid is the identity map. That is, ϕid(x) = x. n Of course one possible choice of O is IR itself. Example 2 (The Circle) The circle S1 = (x,y) ∈ IR2 x2 + y2 = 1 is a manifold of dimension one. One possible atlas is A = {(U , ϕ ), (U , ϕ )} where 1 1 1 2 1 y U1 = S \{(−1, 0)} ϕ1(x,y) = arctan x with − π < ϕ1(x,y) <π ϕ1 1 y U2 = S \{(1, 0)} ϕ2(x,y) = arctan x with 0 < ϕ2(x,y) < 2π U1 n n n+1 2 2 Example 3 (S ) The n–sphere S = x =(x1, ··· ,xn+1) ∈ IR x1 +···+xn+1 =1 n A U , ϕ , V ,ψ i n is a manifold of dimension . One possible atlas is 1 = ( i i) ( i i) 1 ≤ ≤ +1 where, for each 1 ≤ i ≤ n + 1, n Ui = (x1, ··· ,xn+1) ∈ S xi > 0 ϕi(x1, ··· ,xn+1)=(x1, ··· ,xi−1,xi+1, ··· ,xn+1) n Vi = (x1, ··· ,xn+1) ∈ S xi < 0 ψi(x1, ··· ,xn+1)=(x1, ··· ,xi−1,xi+1, ··· ,xn+1) n So both ϕi and ψi project onto IR , viewed as the hyperplane xi = 0. Another possible atlas is n n A2 = S \{(0, ··· , 0, 1)}, ϕ , S \{(0, ··· , 0, −1)},ψ where 2x1 2xn ϕ(x , ··· ,xn ) = , ··· , 1 +1 1−xn+1 1−xn+1 2x1 2xn ψ(x , ··· ,xn ) = , ··· , 1 +1 1+xn+1 1+xn+1 are the stereographic projections from the north and south poles, respectively.
    [Show full text]
  • Affine Connections and Second-Order Affine Structures
    Affine connections and second-order affine structures Filip Bár Dedicated to my good friend Tom Rewwer on the occasion of his 35th birthday. Abstract Smooth manifolds have been always understood intuitively as spaces with an affine geometry on the infinitesimal scale. In Synthetic Differential Geometry this can be made precise by showing that a smooth manifold carries a natural struc- ture of an infinitesimally affine space. This structure is comprised of two pieces of data: a sequence of symmetric and reflexive relations defining the tuples of mu- tual infinitesimally close points, called an infinitesimal structure, and an action of affine combinations on these tuples. For smooth manifolds the only natural infin- itesimal structure that has been considered so far is the one generated by the first neighbourhood of the diagonal. In this paper we construct natural infinitesimal structures for higher-order neighbourhoods of the diagonal and show that on any manifold any symmetric affine connection extends to a second-order infinitesimally affine structure. Introduction A deeply rooted intuition about smooth manifolds is that of spaces that become linear spaces in the infinitesimal neighbourhood of each point. On the infinitesimal scale the geometry underlying a manifold is thus affine geometry. To make this intuition precise requires a good theory of infinitesimals as well as defining precisely what it means for two points on a manifold to be infinitesimally close. As regards infinitesimals we make use of Synthetic Differential Geometry (SDG) and adopt the neighbourhoods of the diagonal from Algebraic Geometry to define when two points are infinitesimally close. The key observations on how to proceed have been made by Kock in [8]: 1) The first neighbourhood arXiv:1809.05944v2 [math.DG] 29 Aug 2020 of the diagonal exists on formal manifolds and can be understood as a symmetric, reflexive relation on points, saying when two points are infinitesimal neighbours, and 2) we can form affine combinations of points that are mutual neighbours.
    [Show full text]
  • Introduction to Gauge Theory Arxiv:1910.10436V1 [Math.DG] 23
    Introduction to Gauge Theory Andriy Haydys 23rd October 2019 This is lecture notes for a course given at the PCMI Summer School “Quantum Field The- ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic approach to construction of invariants of manifolds. The main example considered here is the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which is suitable for other gauge-theoretic invariants too. Contents 1 Introduction2 2 Bundles and connections4 2.1 Vector bundles . .4 2.1.1 Basic notions . .4 2.1.2 Operations on vector bundles . .5 2.1.3 Sections . .6 2.1.4 Covariant derivatives . .6 2.1.5 The curvature . .8 2.1.6 The gauge group . 10 2.2 Principal bundles . 11 2.2.1 The frame bundle and the structure group . 11 2.2.2 The associated vector bundle . 14 2.2.3 Connections on principal bundles . 16 2.2.4 The curvature of a connection on a principal bundle . 19 arXiv:1910.10436v1 [math.DG] 23 Oct 2019 2.2.5 The gauge group . 21 2.3 The Levi–Civita connection . 22 2.4 Classification of U(1) and SU(2) bundles . 23 2.4.1 Complex line bundles . 24 2.4.2 Quaternionic line bundles . 25 3 The Chern–Weil theory 26 3.1 The Chern–Weil theory . 26 3.1.1 The Chern classes . 28 3.2 The Chern–Simons functional . 30 3.3 The modui space of flat connections . 32 3.3.1 Parallel transport and holonomy .
    [Show full text]
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • Convolution on the N-Sphere with Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1157 Convolution on the n-Sphere With Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE Abstract—In this paper, we derive an explicit form of the convo- emphasis on wavelet transform in [8]–[12]. Computation of the lution theorem for functions on an -sphere. Our motivation comes Fourier transform and convolution on groups is studied within from the design of a probability density estimator for -dimen- the theory of noncommutative harmonic analysis. Examples sional random vectors. We propose a probability density function (pdf) estimation method that uses the derived convolution result of applications of noncommutative harmonic analysis in engi- on . Random samples are mapped onto the -sphere and esti- neering are analysis of the motion of a rigid body, workspace mation is performed in the new domain by convolving the samples generation in robotics, template matching in image processing, with the smoothing kernel density. The convolution is carried out tomography, etc. A comprehensive list with accompanying in the spectral domain. Samples are mapped between the -sphere theory and explanations is given in [13]. and the -dimensional Euclidean space by the generalized stereo- graphic projection. We apply the proposed model to several syn- Statistics of random vectors whose realizations are observed thetic and real-world data sets and discuss the results. along manifolds embedded in Euclidean spaces are commonly termed directional statistics. An excellent review may be found Index Terms—Convolution, density estimation, hypersphere, hy- perspherical harmonics, -sphere, rotations, spherical harmonics. in [14]. It is of interest to develop tools for the directional sta- tistics in analogy with the ordinary Euclidean.
    [Show full text]
  • Minkowski Products of Unit Quaternion Sets 1 Introduction
    Minkowski products of unit quaternion sets 1 Introduction The Minkowski sum A⊕B of two point sets A; B 2 Rn is the set of all points generated [16] by the vector sums of points chosen independently from those sets, i.e., A ⊕ B := f a + b : a 2 A and b 2 B g : (1) The Minkowski sum has applications in computer graphics, geometric design, image processing, and related fields [9, 11, 12, 13, 14, 15, 20]. The validity of the definition (1) in Rn for all n ≥ 1 stems from the straightforward extension of the vector sum a + b to higher{dimensional Euclidean spaces. However, to define a Minkowski product set A ⊗ B := f a b : a 2 A and b 2 B g ; (2) it is necessary to specify products of points in Rn. In the case n = 1, this is simply the real{number product | the resulting algebra of point sets in R1 is called interval arithmetic [17, 18] and is used to monitor the propagation of uncertainty through computations in which the initial operands (and possibly also the arithmetic operations) are not precisely determined. A natural realization of the Minkowski product (2) in R2 may be achieved [7] by interpreting the points a and b as complex numbers, with a b being the usual complex{number product. Algorithms to compute Minkowski products of complex{number sets have been formulated [6], and extended to determine Minkowski roots and powers [3, 8] of complex sets; to evaluate polynomials specified by complex{set coefficients and arguments [4]; and to solve simple equations expressed in terms of complex{set coefficients and unknowns [5].
    [Show full text]
  • Lecture Notes on Foliation Theory
    INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial.
    [Show full text]
  • Math 600 Day 6: Abstract Smooth Manifolds
    Math 600 Day 6: Abstract Smooth Manifolds Ryan Blair University of Pennsylvania Tuesday September 28, 2010 Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 1 / 21 Outline 1 Transition to abstract smooth manifolds Partitions of unity on differentiable manifolds. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 2 / 21 A Word About Last Time Theorem (Sard’s Theorem) The set of critical values of a smooth map always has measure zero in the receiving space. Theorem Let A ⊂ Rn be open and let f : A → Rp be a smooth function whose derivative f ′(x) has maximal rank p whenever f (x) = 0. Then f −1(0) is a (n − p)-dimensional manifold in Rn. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 3 / 21 Transition to abstract smooth manifolds Transition to abstract smooth manifolds Up to this point, we have viewed smooth manifolds as subsets of Euclidean spaces, and in that setting have defined: 1 coordinate systems 2 manifolds-with-boundary 3 tangent spaces 4 differentiable maps and stated the Chain Rule and Inverse Function Theorem. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 4 / 21 Transition to abstract smooth manifolds Now we want to define differentiable (= smooth) manifolds in an abstract setting, without assuming they are subsets of some Euclidean space. Many differentiable manifolds come to our attention this way. Here are just a few examples: 1 tangent and cotangent bundles over smooth manifolds 2 Grassmann manifolds 3 manifolds built by ”surgery” from other manifolds Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 5 / 21 Transition to abstract smooth manifolds Our starting point is the definition of a topological manifold of dimension n as a topological space Mn in which each point has an open neighborhood homeomorphic to Rn (locally Euclidean property), and which, in addition, is Hausdorff and second countable.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Hausdorff Morita Equivalence of Singular Foliations
    Hausdorff Morita Equivalence of singular foliations Alfonso Garmendia∗ Marco Zambony Abstract We introduce a notion of equivalence for singular foliations - understood as suitable families of vector fields - that preserves their transverse geometry. Associated to every singular foliation there is a holonomy groupoid, by the work of Androulidakis-Skandalis. We show that our notion of equivalence is compatible with this assignment, and as a consequence we obtain several invariants. Further, we show that it unifies some of the notions of transverse equivalence for regular foliations that appeared in the 1980's. Contents Introduction 2 1 Background on singular foliations and pullbacks 4 1.1 Singular foliations and their pullbacks . .4 1.2 Relation with pullbacks of Lie groupoids and Lie algebroids . .6 2 Hausdorff Morita equivalence of singular foliations 7 2.1 Definition of Hausdorff Morita equivalence . .7 2.2 First invariants . .9 2.3 Elementary examples . 11 2.4 Examples obtained by pushing forward foliations . 12 2.5 Examples obtained from Morita equivalence of related objects . 15 3 Morita equivalent holonomy groupoids 17 3.1 Holonomy groupoids . 17 arXiv:1803.00896v1 [math.DG] 2 Mar 2018 3.2 Morita equivalent holonomy groupoids: the case of projective foliations . 21 3.3 Pullbacks of foliations and their holonomy groupoids . 21 3.4 Morita equivalence for open topological groupoids . 27 3.5 Holonomy transformations . 29 3.6 Further invariants . 30 3.7 A second look at Hausdorff Morita equivalence of singular foliations . 31 4 Further developments 33 4.1 An extended equivalence for singular foliations . 33 ∗KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium.
    [Show full text]