Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding biomedicines Article Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding 1, 2, 2 3, Bernardina Scafuri y, Paola Bontempo y , Lucia Altucci , Luigi De Masi * and Angelo Facchiano 4,* 1 Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio 7, 80138 Naples, Italy; [email protected] (P.B.); [email protected] (L.A.) 3 National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), via Università 133, Portici, 80055 Naples, Italy 4 National Research Council (CNR), Institute of Food Science (ISA), via Roma 64, 83100 Avellino, Italy * Correspondence: [email protected] (L.D.M.); [email protected] (A.F.) These authors contributed equally to this research work. y Received: 18 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression. Keywords: epigenetics; histone deacetylase inhibitors; flavones; molecular simulations 1. Introduction The fine remodelling of the chromatin structure by post-translational covalent modifications (acetylation, methylation, phosphorylation, and clipping) of histone tails is a key mechanism for epigenetic regulation of gene expression [1,2]. In this context, histone acetyltransferases (EC 2.3.1.48, HAT) and histone deacetylases (EC 3.5.1.98, HDAC) are essential enzymes in adding and removing, respectively, the acetyl moiety on the amino acid lysine [1]. N-terminal tails of histones deacetylated by HDAC have positive charges that interact with the negatively charged phosphate groups of DNA. Consequently, the chromatin is condensed into a compact structure (heterochromatin) associated with low levels of gene transcription. This structural condition can be reversed by HAT activity to a relaxed and transcriptionally active DNA (euchromatin). Therefore, the levels of histone acetylation are the result of the HAT/HDAC activity balance that plays a crucial role in the regulation of gene transcription through modulation of epigenetic changes. Alterations of this tightly coordinated molecular system have been implicated in a range of diseases including inflammation, cardiovascular and neurodegenerative disorders, diabetes, and cancer [3,4]. Biomedicines 2020, 8, 568; doi:10.3390/biomedicines8120568 www.mdpi.com/journal/biomedicines Biomedicines 2020, 8, x 568 FOR PEER REVIEW 22 of of 10 10 To date, 18 eukaryotic HDAC are known and grouped into four classes on the basis of their structuralTo date, and 18 catalytic eukaryotic similarity HDAC [3]. are Class known I with and HDAC1, grouped 2, into3, and four 8 is classes subdivided on the into basis the of three their subclassesstructural andIa (HDAC1 catalytic and similarity 2), Ib (HDAC3), [3]. Class and I with Ic (HDAC8). HDAC1, Class 2, 3, andII is 8formed is subdivided by the two into subclasses the three IIasubclasses (HDAC4, Ia (HDAC1 5, 7, 9) andand 2), IIb Ib (HDAC3),(HDAC6 and Ic10). (HDAC8). Class III Class consists II is formed of NAD by+ the dependent two subclasses HDAC IIa homologous(HDAC4, 5, 7, to 9) the and yeast IIb (HDAC6Sir2 protein and (Sir2-like 10). Class or III sirtuins: consists Sirt1-7). of NAD Class+ dependent IV only HDACincludes homologous HDAC11. Theto the common yeast Sir2 characteristic protein (Sir2-like to classes or sirtuins: I, II, and Sirt1-7). IV is a Classcatalytic IV onlydomain includes with HDAC11.one histidine The (His) common and twocharacteristic aspartate to (Asp) classes residues I, II, and IVassociated is a catalytic with domain Zn2+ withion cofactor one histidine responsible (His) and for two Zn aspartate2+-dependent (Asp) hydrolysisresidues associated of ε-N-acetylated with Zn2+ ion lysine cofactor residues responsible to yield for Zn deacetylated2+-dependent histone hydrolysis by of a" -N-acetylatedcharge-relay mechanismlysine residues [5]. toOverall, yield deacetylated HDACs have histone a conserved by a charge-relay domain belonging mechanism to [5 the]. Overall, open alpha/beta HDACs have fold a class.conserved This domaincentral belongingcore consists to the of openalpha-helices alpha/beta alternating fold class. Thiswith central parallel core beta-strands consists of alpha-helicesthat build a centralalternating beta-sheet. with parallel From here, beta-strands large loops that associate build a central to form beta-sheet. a binding pocket From here, where, large in depth, loops associate the Zn2+ ionto form participates a binding in pocketthe enzyme where, active in depth, site. the Zn2+ ion participates in the enzyme active site. HDAC activityactivity can can be regulatedbe regulated at di ffaterent different levels bylevels transcriptional by transcriptional regulation, regulation, post-translational post- translationalmodifications, modifications, subcellular localization,subcellular localization, protein–protein protein–protein interactions, interactions, proteolytic proteolytic regulation, regulation,and small-molecules and small-molecules acting as HDACacting as inhibitors HDAC inhibitors (HDACi). (HDACi). Thus, HDAC Thus, areHDAC attractive are attractive targets targetsfor the developmentfor the development of novel of drugs, novel and drugs, HDACi and mayHDACi constitute may constitute potential potential therapeutic therapeutic agents. Based agents. on Basedtheir structural on their structural characteristics, characteristics, HDACi of HDACi natural originof natural are subdivided origin are subdivided in hydroxamates, in hydroxamates, benzamides, benzamides,cyclic peptides, cyclic and peptides, short-chain and fattyshort-chain acids [ 2fatty]. Among acids [2]. the Among inhibitors the actinginhibitors on classes acting I-IIon classes HDACs, I- IIthe HDACs, anticancer the anticancer agents Vorinostat agents Vorinostat (suberoylanilide (suberoylanilide hydroxamic hydroxamic acid or SAHA, acid or Figure SAHA,1) Figure and the 1) andstructurally the structurally related Trichostatinrelated Trichostatin A (TSA) A exert (TSA) multiple exert multiple biological biological effectsby effects interfering by interfering with the with cell thecycle, cell inducing cycle, inducing apoptosis, apoptosis, autophagy, autophagy, oxidative oxid stress,ative and stress, inhibiting and angiogenesisinhibiting angiogenesis [6,7]. SAHA [6,7]. and SAHATSA reversibly and TSA bind reversibly to the HDAC bind to active the site,HDAC where active chelate site, thewhere cofactor chelate Zn2 +theby cofactor their hydroxamic Zn2+ by their acid hydroxamicgroup. NAD acid+ dependent group. NAD HDAC+ dependent belonging HDAC to class belonging III (sirtuins) to class are III not (sirtuins) inhibited are bynot conventional inhibited by conventionalHDACi such HDACi as TSA andsuch SAHA as TSA [8 ].and SAHA [8]. Figure 1. Molecular structures of vorinostat, flavone, apigenin, and luteolin are from the PubChem database. FigureA, B, and 1. CMolecular indicate the structures different of rings vorinostat, of flavones. flavone, Images apigenin, are generated and luteolin by DiscoveryStudio4.5. are from the PubChem database. A, B, and C indicate the different rings of flavones. Images are generated by DiscoveryStudio4.5.Since clinically used HDACi still experience adverse effects, to identify novel, more potent and specific inhibitors, plant-derived compounds have been screened and tested against human diseases, includingSince cancers,clinically for used their HDACi ability still to restore experience gene adverse expression effects, alterations to identify [2,6 ,novel,9,10]. Amore previous potent study and specificon the acetonic inhibitors, extract plant-deriv from fruitsed compounds of Feijoa sellowiana have beenO. screened Berg has and identified tested theagainst bioactive human component diseases, including2-phenyl-1,4-benzopyrone cancers, for their (known ability to as restore flavone) gene to show expression anti-cancer alterations action on[2,6 solid,9,10]. and A previous haematological study oncancer the acetonic cells via extract HDAC from inhibition fruits of [9 Feijoa]. This sellowiana natural inhibitor,O. Berg has together identified with the apigenin bioactive and component luteolin, 2-phenyl-1,4-benzopyronebelongs to the subclass of flavonoids (known calledas flavone) flavones andto show is structurally anti-cancer different action from on known solid HDACi. and haematologicalFlavonoids have cancer a backbone cells ofvia 15 HDAC carbon inhibition atoms formed [9]. byThis two natural phenyl inhibitor, rings (A andtogether B) and
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
    OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC).
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Exogenous Hydrogen Sulfide Plays an Important Role by Regulating
    International Journal of Molecular Sciences Review Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases Shuangyu Lv , Huiyang Liu and Honggang Wang * Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China; [email protected] (S.L.); [email protected] (H.L.) * Correspondence: [email protected] Abstract: Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes- related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.
    [Show full text]
  • Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation
    The Journal of Neuroscience, August 2, 2017 • 37(31):7547–7559 • 7547 Neurobiology of Disease Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation Yunjiao Zhu,1* Oscar G. Vidaurre,1* XKadidia P. Adula,1 XNebojsa Kezunovic,1 XMaureen Wentling,1 X George W. Huntley,1 and XPatrizia Casaccia1,2 1Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and 2Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031 Calcium-dependent nuclear export of histone deacetylase 1 (HDAC1) was shown previously to precede axonal damage in culture, but the in vivo relevance of these findings and the potential posttranslational modifications of HDAC1 remained elusive. Using acute hippocam- pal slices from mice of either sex with genetic conditional ablation of Hdac1 in CA1 hippocampal neurons (i.e., Camk2a-cre;Hdac1 fl/fl), we show significantly diminished axonal damage in response to neurotoxic stimuli. The protective effect of Hdac1 ablation was detected also in CA3 neurons in Grik4-cre;Hdac1 fl/f mice, which were more resistant to the excitotoxic damage induced by intraventricular injection of kainic acid. The amino acid residues modulating HDAC1 subcellular localization were identified by site-directed mutagenesis, which identified serine residues 421 and 423 as critical for its nuclear localization. The physiological phosphorylation of HDAC1 was decreased by neurotoxic stimuli, which stimulated the phosphatase enzymatic activity of calcineurin. Treatment of neurons with the calcineurin inhibitors FK506 or cyclosporin A resulted in nuclear accumulation of phospho-HDAC1 and was neuroprotective.
    [Show full text]
  • The Histone Deacetylase HDA15 Interacts with MAC3A and MAC3B to Regulate Intron
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386672; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The histone deacetylase HDA15 interacts with MAC3A and MAC3B to regulate intron 2 retention of ABA-responsive genes 3 4 Yi-Tsung Tu1#, Chia-Yang Chen1#, Yi-Sui Huang1, Ming-Ren Yen2, Jo-Wei Allison Hsieh2,3, 5 Pao-Yang Chen2,3*and Keqiang Wu1* 6 7 1Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan 8 2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan 9 3 Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan 10 University, Taipei, Taiwan 11 12 # These authors contributed equally to this work. 13 * Corresponding authors: Keqiang Wu ([email protected], +886-2-3366-4546) and Pao-Yang 14 Chen ([email protected], +886-2-2787-1140) 15 16 Short title: HDA15 and MAC3A/MAC3B coregulate intron retention 17 One sentence summary: HDA15 and MAC3A/MAC3B coregulate intron retention and reduce 18 the histone acetylation level of the genomic regions near ABA-responsive retained introns. 19 20 The author responsible for distribution of materials integral to the findings presented in this 21 article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) 22 is: Keqiang Wu ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386672; this version posted November 17, 2020.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Distinct Contributions of DNA Methylation and Histone Acetylation to the Genomic Occupancy of Transcription Factors
    Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors Martin Cusack,1 Hamish W. King,2 Paolo Spingardi,1 Benedikt M. Kessler,3 Robert J. Klose,2 and Skirmantas Kriaucionis1 1Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom; 2Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom; 3Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly under- stood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are inte- grated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at ret- rotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced ad- ditive effect of HDAC inhibition in DNA methylation–deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
    [Show full text]
  • Up-Regulation of UVRAG by HDAC1 Inhibition Attenuates 5FU-Induced
    ANTICANCER RESEARCH 38 : 271-277 (2018) doi:10.21873/anticanres.12218 Up-regulation of UVRAG by HDAC1 Inhibition Attenuates 5FU-induced Cell Death in HCT116 Colorectal Cancer Cells YOON KYUNG JO 1* , NA YEON PARK 1* , JI HYUN SHIN 1, DOO SIN JO 1, JI-EUN BAE 1, EUN SUN CHOI 1, SUNGHO MAENG 1, HONG BAE JEON 2, SEON AE ROH 3, JONG WOOK CHANG 4, JIN CHEON KIM 3,5 and DONG-HYUNG CHO 1 1Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Seoul, Republic of Korea; 2Biomedical Research Institute, MEDIPOST Corporation, Seongnam, Republic of Korea; 3Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea; 4Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; 5Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea Abstract. The ultraviolent irradiation resistance-associated Autophagy has important roles in cellular homeostasis gene (UVRAG), a component of the Beclin 1/autophagy- through the degradation of useless or damaged proteins and related 6 complex, regulates the autophagy initiation step organelles via lysosomes (1, 2). The primordial function of and functions in the DNA-damage response. UVRAG is autophagy is a response to stress, such as starvation, frequently mutated in various cancer types, and mutations of oxidative stress, and ion stress (1, 2). Given that multiple UVRAG increase sensitivity to chemotherapy by impairing signaling pathways are involved in the regulation of DNA-damage repair. In this study, we addressed the autophagy progress, various autophagy-related (ATG) epigenetic regulation of UVRAG in colorectal cancer cells.
    [Show full text]
  • Small-Molecule Suppressors of Cytokine-Induced Beta-Cell Apoptosis
    Small-Molecule Suppressors of Cytokine-Induced Beta-Cell Apoptosis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chou, Danny Hung-Chieh. 2011. Small-Molecule Suppressors of Cytokine-Induced Beta-Cell Apoptosis. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10121978 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA © 2011- Hung-Chieh Chou All rights reserved. Professor Stuart Schreiber Danny Hung-Chieh Chou Small-molecule suppressors of cytokine-induced beta-cell apoptosis Abstract Type-1 diabetes is caused by the autoimmune destruction of insulin-producing beta cells in the pancreas. Beta-cell apoptosis involves a complex set of signaling cascades initiated by interleukin-1 (IL-1), interferon- (IFN-), and tumor necrosis factor- (TNF- ). IL-1 and TNF- induce NFB expression, while IFN- induces STAT1 activation. These cytokines lead to a decrease of beta-cell function. The goal of this thesis is to identify small-molecule suppressors of cytokine-induced beta-cell apoptosis using high- throughput screening approach. Using the rat INS-1E beta-cell line, I developed an assay to measure cellular viability after 48 hours of cytokine treatment. I screened 29,760 compounds for their ability to suppress the negative effects of the cytokines. I identified several compounds to be suppressors of beta-cell apoptosis.
    [Show full text]
  • Biotin Rescues Mitochondrial Dysfunction and Neurotoxicity in a Tauopathy Model
    Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model Kelly M. Lohra,b, Bess Frostc, Clemens Scherzerd, and Mel B. Feanya,1 aDepartment of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; bDepartment of Biology, Washington & Jefferson College, Washington, PA 15301; cDepartment of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and dNeurogenomics Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 17, 2020 (received for review December 21, 2019) Mitochondrial and metabolic dysfunction are often implicated in We combined Drosophila genetics with a variety of molecular neurological disease, but effective mechanism-based therapies re- and cellular approaches to explore the role of mitochondrial and main elusive. We performed a genome-scale forward genetic metabolic pathways in tauopathy and neuronal survival. We screen in a Drosophila model of tauopathy, a class of neurodegen- identified dysfunction within the biotin pathway in tauopathy and erative disorders characterized by the accumulation of the protein showed that biotin supplementation both rescues mitochondrial tau, and identified manipulation of the B-vitamin biotin as a po- deficits and improves neuronal health in vivo. Furthermore, we tential therapeutic approach in tauopathy. We show that tau demonstrate parallel mechanisms in human Alzheimer’s disease transgenic flies have an innate biotin deficiency due to tau-medi- brain. Together, these findings emphasize the importance of ated relaxation of chromatin and consequent aberrant expression biotin handling in mitochondrial and metabolic processes in of multiple biotin-related genes, disrupting both carboxylase and neurons, suggesting a key role for biotin in both the healthy and mitochondrial function.
    [Show full text]