International Journal of Molecular Sciences Article De Novo Transcriptome Assembly of Two Microsorum Fern Species Identifies Enzymes Required for Two Upstream Pathways of Phytoecdysteroids Siriporn Sripinyowanich 1 , Eui-Joon Kil 2 , Sahanat Petchsri 1, Yeonhwa Jo 3, Hoseong Choi 3, Won Kyong Cho 3,*,† and Sukchan Lee 4,*,† 1 Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
[email protected] (S.S.);
[email protected] (S.P.) 2 Department of Plant Medicals, Andong National University, Andong 36729, Korea;
[email protected] 3 Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
[email protected] (Y.J.);
[email protected] (H.C.) 4 Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea * Correspondence:
[email protected] (W.K.C.);
[email protected] (S.L.) † These authors contributed equally to this work. Abstract: Microsorum species produce a high amount of phytoecdysteroids (PEs), which are widely used in traditional medicine in the Pacific islands. The PEs in two different Microsorum species, M. punctatum (MP) and M. scolopendria (MS), were examined using high-performance liquid chro- matography (HPLC). In particular, MS produces a high amount of 20-hydroxyecdysone, which is the main active compound in PEs. To identify genes for PE biosynthesis, we generated reference transcriptomes from sterile frond tissues using the NovaSeq 6000 system. De novo transcriptome Citation: Sripinyowanich, S.; Kil, assembly after deleting contaminants resulted in 57,252 and 54,618 clean transcripts for MP and MS, E.-J.; Petchsri, S.; Jo, Y.; Choi, H.; Cho, respectively.