Petrography descriptions and U-Pb zircon datasets from the Archean Pavas Block, Precambrian of Henri Masquelin, Tahar Aïfa, Fernando Scaglia, Miguel Basei, Miguel A.S. Basei

To cite this version:

Henri Masquelin, Tahar Aïfa, Fernando Scaglia, Miguel Basei, Miguel A.S. Basei. Petrography de- scriptions and U-Pb zircon datasets from the Archean Pavas Block, Precambrian of Uruguay. Data in Brief, Elsevier, 2021, 37, pp.107179. ￿10.1016/j.dib.2021.107179￿. ￿insu-03268326￿

HAL Id: insu-03268326 https://hal-insu.archives-ouvertes.fr/insu-03268326 Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Data in Brief 37 (2021) 107179

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Petrography descriptions and U-Pb zircon datasets from the Archean Pavas Block, Precambrian of Uruguay

∗ Henri Masquelin a, , Tahar Aïfa b, Fernando Scaglia c,

Miguel A.S. Basei d a Instituto de Ciencias Geológicas, Facultad de Ciencias –UdelaR, Iguá 4225 p12 ala sur, 11400 , Uruguay b Univ. Rennes, CNRS, Géosciences Rennes –UMR6118, Campus Beaulieu, 35042 Rennes, France c Post-graduate Course, PEDECIBA Geosciences, Uruguay d Centro de Pesquisas Geocronológicas, Universidade de São Paulo,

a r t i c l e i n f o a b s t r a c t

Article history: This database is a geological and geochronological compila- Received 7 May 2021 tion made to study a small Archean/Paleoproterozoic block Accepted 26 May 2021 located in the centre of the Precambrian rock exposition of

Available online 29 May 2021 Uruguay. Petrographic and field outcrops data supporting the samples from which the zircons for textural analysis and

Keywords: U-Pb dating (LA-ICP-MS) come are presented at first with Gneiss complex their descriptions. The first table (1) contains the new U- Nico Pérez Terrane

Zircon texture Pb isotopic data. The second table (2) presents a correlation

Orosirian of textures from different zircon samples. The last table (3) U-Pb geochronology contains an inventory of different U-Pb ages found in an- tecedents. All these data are associated with the paper en- titled: “The Archean Pavas Block in Uruguay: extension and tectonic evolution based on LA-ICP-MS U-Pb ages and air- borne geophysics”. © 2021 Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

DOI of original article: 10.1016/j.jsames.2021.103364 ∗ Corresponding author. E-mail address: [email protected] (H. Masquelin). Social media: (H. Masquelin) https://doi.org/10.1016/j.dib.2021.107179 2352-3409/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 2 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

Specifications Table

Subject Earth and Planetary Sciences, Geology. Specific subject area Geochronology, U-Pb dating system. Type of data Figures with descriptive text and tables. How data were acquired Petrographic microscope, binocular microscope, SEM cathodoluminescence, IsoplotR software (Vermeesch 2018), QGis (GNU) software, Oasis-Montaj 8.3.0© (Geosoft Inc.). Laser ablation ICP-MS mass spectrometry using the Excimer laser of ArF gas

(193 nm) coupled to the Neptune TM High-Resolution Multi-collector ICP-MS at the Geochronological Laboratory of the Geosciences Institute from the University of São Paulo (Brazil). Data format Raw (Photos and U-Pb data), analysed, processed, and filtered. Parameters for data collection Representative sample collection for the La China Complex and the Campanero Gneisses for U-Pb geochronology. Petrographic thin sections were prepared. Zircons mounted in epoxy resin were described. Description of data collection Petrography and U-Pb zircon analyses of the granitic – gneisses and migmatites of the Pavas Block, a segment composed of pre-Neoproterozoic basement rocks westward the Neoproterozoic Dom Feliciano Belt. Data source location Zapicán, Route 40, Penitente, El Soldado; Lavalleja Department; Uruguay. All the cartographic coordinates in the text are in the reference system EPSG 32721 (UTM wgs84 21S). Zapicán (Lat. -33.40887, Long. -54.90875; Lat. -33.55428; Long. -54.89335) Route 40 (Lat. -33.74979, Long. -55.09939; Lat. -33.75518, -54.99020) Penitente (Lat. -34.33662, Long. -55.10061) El Soldado (Lat. -34.14855, Long. -55.26246) Primary data sources of data in antecedent are shown in the last column of Table III (see Reference list). Data accessibility Data are available within the article and in the repository. Repository name: Mendeley Data identification number: http://dx.doi.org/10.17632/7hk685mzjn.1 Direct URL to data: http://dx.doi.org/10.17632/7hk685mzjn.1 Related research article H. Masquelin, T. Aïfa, F. Scaglia, M.A.S. Basei, The Archean Pavas Block in Uruguay: extension and tectonic evolution based on LA-ICP-MS U-Pb ages and airborne geophysics, J. South American Earth Sciences. In Press.

Value of the Data

• U-Pb isotopic data in zircon confirm the presence in Uruguay of Archean metamorphic crys- tallisation rocks without subsequent recycling. • These data can be helpful to establish correlations between accreted terranes within the Brasiliano amalgamation. • They can be used together with other U-Pb and Lu-Hf isotopic data to refine model ages and understand the origin of the protoliths. • The exploitation of these U-Pb isotopic analyses varies between 94% and 38% depending on each sample since many spots have a high content of common Pb. • Petrographic data of the La China Complex encompasses more than the samples that were dated because it attempts to show the geodiversity within this gneissic complex to construct a more detailed geological map.

1. Data Description

1.1. Petrographic data

This petrographic description primarily represents the dated samples but not exclusively. Al- most these rock samples come from a migmatite complex and range from highly plastically de- formed to slightly affected by strain. The most abundant rocks are orthogneisses with amphibo- H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 3

Fig. 1. Geological location of the petrographic and zircon isotopic samples in the Pavas Block (central Uruguay).

lite boudins or schlieren. These rocks usually show pegmatite injections. Hydrothermally altered granitoids include grey metatonalites that enclose some xenoliths of retrogressed mafic rocks. The gneissic layering (SL) and mineral lineation (Lm) was added to each sample when available. The gneisses generally show amphibolite facies metamorphic mineral assemblages. However, dif- ferent minerals and microstructures indicate widespread hydrothermalism in the greenschist fa- cies. Interspersed banded felsic gneisses and amphibolites are shown. The studied outcrops are showing in the map ( Fig. 1 ). 4 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

Fig. 2. a) Amphibole-bearing orthogneiss with amphibolite blocks (CNP13F) (a to d), containing b) Ep + Hbl + Pl min- eral assemblage; c) Polygonal texture and grain-boundary migration recrystallisation on Qz; d) Epidote net texture; e) Mus + Ep + Pl orthogneiss (CNP77) (e to h), with f) Ep-Mus hydrothermal veins; g) Saussuritic plagioclase, and epidote veins; h) Detailed mineral inclusions within the saussurite; Mineral abbreviations follow the criteria of Whitney and Evans [5] .

1.2. Petrographic description of dated samples

1.2.1. Sample CNP13F Amphibole-bearing orthogneiss with sharp-angled boudins of amphibolite ( Fig. 2 a; coord.: x = 681875; y = 6251285). The rotated boudins allow deducing a dextral kinematic sense (Lm = 20/190; SL = 50/45). In the thin section, the orthogneiss texture is granoblastic lobate equigranular (~10 0-20 0 μm grain-sized) ( Fig. 2 b). It is composed of brown to green amphibole (tschermakite, hornblende), Ca-plagioclase, quartz, epidote ( Fig. 2 c). Accessories include zircon, opaques, and apatite. Epidote developed a skeletal or net texture around polygonal plagioclase grains ( Fig. 2 d). There are domains almost entirely composed of quartz which contain horn- blende and plagioclase. The “chessboard” pattern is common on quartz sub-fabric [1] . H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 5

1.2.2. Sample CNP77 Flat-lying composite layered rock ( Fig. 2 e; coord.: x = 695628; y = 6285289) which separates into (i) a coarse-grained white augen gneiss and (ii) a biotite-bearing mylonite (SL: 150/18; Lm: 5/230). The coarse-grained rock dominates in the thin section. Epidote-muscovite-bearing quartz veins crosscut the layering both discordant and concordantly ( Fig. 2 f). The texture is porphyrob- lastic heterogranular. Crystal-size is c. 500 μm on average. The coarse-grained rock (i) is com- posed of quartz (35%), poikiloblastic saussuritic Ca-plagioclase (50%), microcline, muscovite, and epidote in veins ( Fig. 2 g). A detailed overview shows minute grains of well-crystallised zoisite and muscovite ( Fig. 2 h). Carlsbad/albite twinned oligoclase (An24) is present. Accessory minerals are pale-brown biotite, opaque minerals, titanite, apatite and zircon. Dynamic recrystallisation of quartz is due to diffusion-assisted grain-boundary migration [1] . Patchy-perthite feldspar is present in the porphyroclasts.

1.2.3. Sample Mi21 Fine-grained amphibole-bearing orthogneiss crosscut by Kfs-rich granitic veins (coord.: x = 689924; y = 6221711) ( Fig. 3 a). A low-temperature mylonitization/cataclasis (Sm: 33/30) crosscut the high-temperature layering ( Fig. 3 b). The texture is grano-nematoblastic hetero- granular. The mineralogy is Ca-plagioclase (40%), quartz (30%), hornblende (10%) and epidote (3%). Accessory minerals include zircon, apatite, and opaque minerals. Hornblende is dark-to- pale green coloured ( Fig. 3 c). There are fibrous amphiboles in contact with fine-grained quartz- feldspar granoblastic domains ( Fig. 3 d). The metamorphic peak assemblage includes hornblende and ternary feldspar (dark), a relic of the pre-mylonitic mineral assemblage ( Fig. 3 e). Quartz rarely shows lobate contacts against plagioclase due to high-temperature grain boundary mi- gration, but the main deformation mechanism is bulging and recovery [1] ( Fig. 3 f). Hornblende presents zonation, epidote coronas and opaque inclusions.

1.2.4. Sample Mi30 Dark green layered migmatite injected by folded Kfs-rich granitic (leucosome) veins (coord.: x = 674723; y = 6198889). The layering (SL: 260/70) becomes partially into a mylonitic foliation, and the grain size is due to mylonitization ( Fig. 4 a). Leucosome veins are deformed ( Fig. 4 b). The main texture is granoblastic inequigranular ( Fig. 4 c). The mineralogy is composed of quartz (35%), Ca-plagioclase (saussurite) (35%), K-feldspar (albite, microcline) (25%), biotite (3%), epidote (0.5%), chlorite (0.2%) and sericite (0.5%). Accessory minerals are opaques, apatite, zircon, and al- lanite. Ca-plagioclase shows a myriad of sericite-epidote inclusions ( Fig. 4 d). There are two kinds of biotite: (i) oriented selvedge of pale-green biotite and (ii) brown biotite aggregates associated with the accessory minerals. Bulging and recovery are the mechanisms of grain-boundary mi- gration recrystallisation in quartz. The allanite is in isolated grains and has at least 500 μm in size ( Fig. 4 e). Zircons usually are associated with sericite-epidote aggregates ( Fig. 4 f).

1.2.5. Sample Mi14 The primary rock is a medium-grained grey orthogneiss, crosscut by a K-feldspar-rich peg- matite (coord.: x = 676057; y = 6263943) ( Fig. 5 a). The texture of the grey orthogneiss is gra- noblastic inequigranular and lobate. The mineralogy contains plagioclase (An43) (45%), quartz (30%), K-feldspar (20%), and very few biotite. Accessory minerals are apatite, zircon, and mus- covite.

1.2.6. Sample Mi19B Composite-layered mylonitic granitoid (coord.: x = 660189, y = 6219998). The “granitic” lay- ers produced a ribbon-quartz, Kfs-rich, porphyroclastic mylonite ( Fig. 5 b). The mylonitic granite crosscut a fine-grained granoblastic metapsammite and a lepidoblastic mica-schist with biotite muscovite and tourmaline. The mylonitic foliation (Sm: 330/26) was affected by upright cylin- drical folding, whose axes parallel the stretching lineation (Lm: 20/195). The thin section reveals a fine-grained muscovite-rich quartz-feldspathic matrix, crosscut by 1-2 mm thick anastomosed quartz ribbons ( Fig. 5 c). Lobate quartz-grains in these ribbons are medium-grained, although 6 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

Fig. 3. Hbl-bearing orthogneisses (sample Mi21): a) Amphibole-bearing orthogneiss with pegmatite injections; b) in- cipient cataclastic deformation on the same outcrop; c) Hornblende associated with epidote and opaque minerals; d) Hbl-Pl-bearing gneiss (crossed Nicols); e) Older Ca-plagioclase surrounded by recrystallised matrix; f) Remnant of older quartz-boundary surrounded by low-temperature recrystallised matrix (crossed Nicols). developing an incipient bulging and undulose extinction. The inequigranular matrix has a gra- noblastic polygonal texture, and the biotite is decussate ( Fig. 5 d). This matrix surrounds large plagioclase grains (An25). Muscovite is often secondary, but there are also large kinked mus- covites. We also found biotite selvedges parallel to the layering.

1.3. Petrographic description of supplementary samples

1.3.1. Sample CNP122 Epidote-bearing tremolite schist represents a set of mafic rocks interspersed within the fel- sic orthogneisses of La China Complex (coord.: x = 697392; y = 6300113). In the field, they usu- ally appear as amphibolite blocks or lenses ( Fig. 5 e). These mafic rocks have different degrees H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 7

Fig. 4. Biotite-bearing migmatite orthogneiss (sample Mi30): a) Composite layered migmatite showing concordant granitic veins; b) Diffuse segregation of in-situ leucosome; c) main texture of the rock showing fine-grained Bt + Ms layers and plagioclase grains in a quartz-feldspathic matrix; d) Altered saussuritic plagioclase with epidote-sericite inclu- sions; e) Isolated crystal of allanite in a matrix with complete alteration of feldspar; f) Subhedral zircon in the quartz- feldspathic matrix. 8 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

Fig. 5. Different orthogneisses and mafic rocks: a) Felsic orthogneiss crosscut by a K-feldspar pegmatite (Mi14); b) Mylonitic K-feldspar granitoid within biotite-tourmaline bearing schist (Mi19b); c) Detailed texture showing a folded ribbon-quartz (vein) crosscutting a quartz-feldspathic granoblastic matrix with decussate biotite and larger kinked mus- covite (centre below; crossed Nicols); d) Idem, granoblastic matrix (natural light); e) Amphibolite boudin (CNP009); f) Twinned tremolite showing symplectite with Ab in retrograde mafic schist (CNP122); g) Low-angle cm-width gneissic banding (LG), showing the alternation between felsic layered gneisses and amphibolites (A)(CNP30A); h) Detail of gneiss layering. H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 9 of retrograde metamorphism. The symplectite between magnetite and tremolite represents the dominant texture. The tremolite texture is an aggregate of fibrous poikiloblastic bundles ( > 2 mm). Basal sections show the trace of twins on (001) face ( Fig. 5 f). Some altered plagioclases (saussurite), quartz and opaques filled up the interstitial space among tremolite crystals.

1.3.2. Sample CNP30A Straight layered fine-grained gneiss interspersed with amphibolite (coord. UTM84 21S: x = 698689; y = 6302989) ( Fig. 5 g). The mylonitic foliation (Sm: 70/27) is parallel to the centimetre-width layering ( Fig. 5 h) and contain a stretching lineation (Lm: 21/272). This banding represents the relicts of a wide high-strain zone with relative flat-lying foliation, which limited the Pavas and the Cerro Chato “terranes” (i.e., Sierra de Sosa high strain zone). The layering was produced at relatively high temperature and persisted despite many rocks in the region passed to retrograde conditions. Layered amphibolites are likely the same as those found in straight and short “boudins” or lenses but in the different structural setting. The thin section was unable here due to the alteration of the rock.

1.3.3. Sample CNP132 Fine-grained layered migmatitic gneiss containing biotite schlieren ( Fig. 6 a) (coord. UTM84 21S: x = 686153; y = 6263198). The gneissic layering (SL: 144/25) contains some amphibolite boudins unaffected by anatexis ( Fig. 6 b). Some white pegmatites are showing pinch-and-swell and crosscut the migmatitic gneiss ( Fig. 6 c). We select one pegmatite dyke for zircon sampling. Texture in quartz- feldspathic domains is granoblastic heterogranular with large patchy perthite K-feldspar. Muscovite is present as well as accessory minerals, e.g., zircon and apatite. The rock did not bring enough zircons of good quality (low common Pb) to produce an acceptable Pb-loss Discordia age.

1.3.4. Sample BT48 Medium grained gray granitoid crosscut by veinlets ( Fig. 6 d; coord. UTM wgs84 21S: x = 687409; y = 6280088). Mafic enclaves appear disseminated ( Fig. 6 f). The texture is granular hypidiomorphic and composed of poikilitic Ca-Plagioclase (saussurite) in the process of albitisa- tion, microcline, quartz, chlorite, green biotite, zoisite, apatite, calcite, and sericite ( Fig. 6 g). Ca- plagioclase is subhedral and shows Ab and Carlsbad twins. Although the deformation is weak, the rock developed a domanial cleavage of its secondary hydrothermal mineralogy of chlorite and epidote ( Fig. 6 h). Fine-grained zoisite and sericite within plagioclase are alteration miner- als. Hydrothermal albite is twinned and limpid. Brown biotite is magmatic and arranged around feldspar and quartz. Pressure shadows are often present around euhedral feldspar grains. Quartz texture is granoblastic and lobate.

1.3.5. Sample SY95A Amphibole-biotite coarse-grained mesocratic granodiorite or monzogranite (coord. UTM wgs84 21S: x = 706825; y = 6315572). The hand sample is a porphyroblastic orthogneiss (SL: 265/10; Lm: 10/238) ( Fig. 7 a). A mafic dyke crosscut the main granodiorite. The dyke trans- formed into a medium-grained amphibolite (D: 50/65) ( Fig. 7 b); there is a strong mineral lin- eation on it (Lm: 5/253) ( Fig. 7 c). The texture of the granodiorite is granular hypidiomorphic but slightly deformed. K-feldspar phenocrysts reach 3-4 cm and are surrounded by hornblende- biotite aggregates ( Fig. 7 d). The mineralogy is microcline, plagioclase, hornblende, quartz, biotite (brown), titanite (3%), apatite, opaque minerals, epidote, zircon, and monazite. Biotite and am- phibole are intergrowing with titanite, apatite and monazite ( Fig. 7 e). The amphibolite shows a granoblastic texture composed of hornblende and plagioclase ( Fig. 7 f).

1.3.6. Sample Mi06 Low-angle composite mylonitic rock (SL: 085/20; Lm: 5/170) ( Fig. 8 a; coord.: x = 699986; y = 6285192). The outcrop comprises (i) a white augen gneiss and (ii) a fine-grained biotite my- lonite. The protolith of the augen gneiss may be a pegmatite injected into the mylonite. Its 10 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

Fig. 6. a) Granitic gneiss with biotite schlieren (CNP132) (a to c) containing b) amphibolite boudins, c) “white” pegmatite dyke, concordant with the layering; d) Foliated grey orthogneiss (BT48) (d to g) with e) Magmatic texture observed in the field; f) Mafic enclaves; g) Domanial cleavage around saussuritic altered plagioclase (natural light). g) Chl-Ep bearing cleavage.

mineralogy includes K-feldspar, plagioclase (An50), quartz, muscovite, opaque minerals, biotite, apatite, and zircon. The mylonite has a fine-grained equigranular granoblastic texture. Its min- erals are plagioclase, ternary feldspar, quartz, reddish biotite, apatite, and zircon. Porphyroclasts have a recrystallisation mantle ( Fig. 8 b). The pressure shadows show an aggregate of fine-grained feldspars ( Fig. 8 c, d). Porphyroclasts have an antiperthitic nucleus (Pl + Mic) ( Fig. 8 e, f). Recrys- tallisation could have occurred by rotation of subgrains within the augen themselves ( Fig. 8 g). Metamorphic plagioclase exhibits muscovite and quartz inclusions. Albite twins are fuzzy, ir- regular, and sinuous. Quartz appears in different forms: (i) black quartz fishes ( Fig. 8 c, d), (ii) ribbons ( Fig. 8 b, h) and (iii) equidimensional grains. Quartz ribbons and muscovite aggregates cover the porphyroclasts ( Fig. 8 i). Porphyroclasts define a blurred sigma-delta system, but the shear direction is ambiguous ( Fig. 8 a, b, f). H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 11

Fig. 7. a) Amphibole-biotite granodiorite (SY95) (a to f); b) medium-grained foliated amphibolite from a mafic dyke; c) stretching lineation of the amphibolite; d) texture of the granodiorite with recrystallised microcline phenocrysts, plagio- clase, and quartz: e) Hbl containing titanite, apatite and monazite inclusions; f) granoblastic texture of the amphibolite (crossed Nicols).

2. U-Pb Isotopic Data of Zircons

The new U-Pb isotopic data by Laser ablation –ICP –MS are presented in Table I . The correlation of different textural features between the sample’s zircons is presented in Table II . Older U-Pb age references are presented in Table III . 12 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

)

page

Age: Age:

7.2 16 ± ± next

Concordia Concordia Interpretation (Ma) 3261 3339 on

vs

continued

(

100 98 102 102 96 98 100 100 87 101 101 99 100 100 101 99 99 97 98 93 63 87 99 99 93 99 96 101 97 98 97 97 94 95 95 100 97 100 Conc.206/238 207/206

σ

44 25 43 32 30 47 26 40 28 30 31 56 24 28 28 31 42 33 32 27 64 33 29 28 32 48 29 48 29 84 32 24 46 59 32 31 52 29 1

3206 3273 3215 3292 3289 3233 3302 3289 3077 3233 3316 3312 3326 3310 3183 3257 3271 3295 3060 2884 3269 3117 3254 3290 3307 3275 3287 3134 3145 2850 3313 3287 3229 3182 3224 3241 3200 3219 T207/ 206

σ

26 25 20 18 27 14 24 18 19 14 15 19 19 16 32 21 18 18 18 22 21 36 20 17 17 27 17 29 18 41 14 19 26 18 33 20 31 17 1

AGES

3213 3258 3243 3213 3305 3299 2922 3242 3247 3327 3319 3206 3261 3321 3340 3333 3109 3174 3221 3249 2533 2731 3284 3304 3178 3134 3237 3158 3254 2827 3260 3284 3157 3130 3162 3253 3226 3163 T207/ 235

σ

30 28 25 21 24 27 33 21 23 29 30 22 47 20 19 15 23 21 25 20 47 21 18 22 20 21 19 45 35 55 25 27 22 35 42 23 54 20 1 error.

σ

2 3226 3233 3170 3180 3308 3316 2703 3258 3300 3353 3365 3329 3363 3370 3160 3165 3214 3066 1930 2529 3247 3098 3058 3274 3298 3176 3180 3201 3134 2795 3216 3236 3273 3045 3048 3067 3236 3105 T206/ 238

the

at 0.40 0.99 0.76 0.57 0.39 0.89 0.56 0.63 0.37 1.40 0.58 0.75 0.29 0.01 0.78 0.28 0.41 0.18 3.31 0.09 0.36 0.20 5.05 0.12 - - 0.18 0.22 1.03 0.12 1.59 0.56 ------Th/U

58.1 18.9 30.7 54 46.3 27.1 6.8 62.5 67.5 30.2 13.4 68 82.7 47.8 16.8 7.3 87.9 46.6 45.3 77.1 23.4 9.5 65.2 114 48.6 72.9 5.7 24.8 50.2 60.4 34.8 3.8 7 52 4.3 6.2 8.8 22 ppm U

calculations

orthogneiss

7.5 - 22.5 16.9 - 35 19.2 30.8 0.4 23.5 6.5 22.2 26.7 10.9 4 22.5 61.8 51.3 8.1 17.1 - - 13.8 - - - 36.6 9.1 13 9.8 11.6 17.5 13.3 59.8 13.2 12.8 - 2.1 ppm Th for

–bearing

12.8 5.8 8.4 62 22.5 55.3 18.7 6.2 45.9 41.5 29.1 81.2 46.3 16.9 3.9 5.6 7.7 15 4.2 18.6 49.9 42.9 18.8 30.9 65 12.3 60.1 57.5 43.2 21.1 50.9 66.3 70 44.6 78.5 53.3 27.9 2.1 Pb ppm spots

(%)

amphibole

0.11 0.71 0.22 0.16 1.42 0.95 1.00 1.02 0.24 0.79 0.38 0.17 0.11 0.14 0.25 0.16 0.28 0.30 0.26 0.41 0.34 0.21 0.15 0.16 0.32 0.31 1.77 1.48 0.56 0.04 0.20 0.14 0.18 0.17 0.09 0.04 0.34 2.80 Pb selected

Layered

- σ

0.022 0.010 0.042 0.065 0.006 0.014 0.008 0.029 0.008 0.012 0.018 0.020 0.017 0.027 0.034 0.047 0.006 0.004 0.005 0.014 0.012 0.012 0.030 0.015 0.047 0.032 0.023 0.016 0.020 0.022 0.051 0.020 0.010 0.006 0.019 0.020 0.008 0.036 1 the

CNP13F

but

, 0.207 0.213 0.210 0.174 0.172 0.140 0.161 0.201 0.233 0.255 0.122 0.166 0.135 0.176 0.153 0.208 0.243 0.218 0.121 0.115 0.192 0.218 0.165 0.188 0.227 0.193 0.168 0.196 0.127 0.196 0.201 0.159 0.190 0.134 0.248 0.153 0.047 0.058 208Pb/ 206Pb σ

1

the σ

0.004 0.005 0.007 0.009 0.006 0.008 0.007 0.005 0.005 0.006 0.005 0.005 0.007 0.004 0.007 0.004 0.007 0.006 0.006 0.006 0.005 0.005 0.009 0.005 0.007 0.009 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.010 1 in

are

0.258 0.274 0.257 0.240 0.244 0.264 0.268 0.269 0.267 0.267 0.253 0.264 0.256 0.271 0.264 0.255 0.271 0.268 0.250 0.256 0.242 0.250 0.262 0.267 0.258 0.267 0.261 0.231 0.234 0.259 0.267 0.270 0.272 0.271 0.253 0.265 0.207 0.203 207Pb/ 206Pb

errors σ

0.018 0.031 0.023 0.013 0.013 0.017 0.018 0.017 0.031 0.015 0.013 0.015 0.012 0.012 0.013 0.024 0.029 0.015 0.028 0.029 0.013 0.017 0.021 0.012 0.012 0.013 0.012 0.027 0.026 0.013 0.013 0.012 0.014 0.011 0.013 0.013 0.022 0.045 1

RATIOS 1.547 1.546 1.540 1.536 1.534 1.534 1.527 1.521 1.496 1.466 1.460 1.459 1.656 1.654 1.642 1.621 1.598 1.581 1.578 1.574 1.568 1.568 1.555 1.648 1.642 1.491 1.487 2.865 1.920 1.512 1.511 1.497 1.479 1.456 1.616 2.081 1.843 1.571 238U/ 206Pb analytical

σ The

0.007 0.008 0.007 0.013 0.006 0.005 0.008 0.007 0.006 0.006 0.009 0.011 0.006 0.012 0.011 0.012 0.005 0.007 0.009 0.009 0.005 0.005 0.004 0.005 0.005 0.006 0.003 0.007 0.006 0.006 0.005 0.006 0.005 0.005 0.007 0.005 0.005 0.013 1

data.

0.647 0.649 0.651 0.652 0.652 0.655 0.658 0.669 0.685 0.685 0.604 0.605 0.609 0.617 0.626 0.633 0.634 0.635 0.638 0.638 0.643 0.646 0.607 0.609 0.671 0.673 0.349 0.521 0.662 0.682 0.662 0.668 0.676 0.687 0.619 0.637 0.481 0.543 206Pb/ 238U

analytical σ

1 0.357 0.601 0.372 0.579 0.471 0.511 0.378 0.543 0.491 0.494 0.562 0.712 0.418 0.735 0.483 0.665 0.499 0.354 0.670 0.570 0.456 0.448 0.428 0.419 0.526 0.454 0.253 0.543 0.435 0.475 0.447 0.420 0.479 0.427 0.390 0.409 0.306 0.628

zircon 235U

23.531 23.788 22.683 23.742 22.969 24.380 23.808 23.361 23.481 25.486 25.823 25.285 21.398 20.805 21.523 20.377 20.898 21.775 22.866 23.388 21.434 22.664 23.646 21.866 22.507 24.905 24.770 11.122 16.781 23.631 24.378 24.879 25.327 25.635 21.543 23.228 13.730 15.181 207Pb/ U-Pb

I

# 30.1 34.1 25.1 26.1 12.1 35.1 27.1 2.1 1.1 3.1 36.1 6.1 13.1 15.1 24.1 4.1 19.1 38.1 21.1 42.1 5.1 29.1 23.1 32.1 28.1 8.1 33.1 22.1 18.1 17.1 31.1 16.1 39.1 11.1 14.1 9.1 40.1 7.1 Table LA-ICP-MS H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 13

)

page

5

±

30

9 41 ± ±

± next

UI: 2986 Concordia Age: Concordia Age: Concordia Age: Interpretation (Ma) 3078 3298 2965 on

vs

continued

(

89 97 97 98 89 103 100 100 98 107 99 98 95 106 93 102 102 100 98 102 101 97 103 100 101 105 97 111 101 100 97 102 103 103 100 103 96 101 104 102 207/206 Conc.206/238

σ

0 0 0 0 34 31 29 32 27 38 38 34 35 30 30 60 35 31 33 29 59 72 29 28 34 34 61 56 32 160 34 56 33 48 33 42 31 99 78 91 1

2628 2895 2981 2962 3153 3314 3004 3092 3318 2963 2717 3170 3228 3228 3269 3312 3259 3001 1831 2683 2869 2943 3074 3111 3226 2492 3188 3135 3058 894 2907 3282 3303 2962 3282 2977 3226 2837 2862 2929 206 T207/

σ

0.02 0.02 0.02 0.01 20 18 18 20 17 21 22 21 21 19 19 33 20 18 25 37 18 20 19 18 20 32 29 21 20 44 29 21 21 26 20 18 25 38 47 47 1

AGES

2509 2867 2953 3015 3356 3104 3320 2800 3170 3346 3235 2947 3038 2950 2910 3205 3178 3284 3009 1816 2714 2884 3116 3122 3245 964 3106 2506 3249 3068 3254 2942 2938 3349 3006 3286 3263 2859 2913 2957 235 T207/

σ

0.02 22 25 18 20 14 22 24 24 25 22 21 0.02 0.02 48 25 19 0.02 17 18 50 17 20 18 21 15 30 26 43 22 33 25 22 28 21 17 36 58 49 72 1

3122 2917 3170 3113 2365 2826 2911 2812 3429 3091 3324 2932 3168 3099 3476 3326 3022 995 1803 2905 2862 3181 3140 3275 2925 2756 3060 2523 3349 3084 2993 3210 3425 3071 3293 2882 3324 2889 2987 2997 T206/ 238

0.31 1.01 1.03 0.19 0.06 0.26 1.48 0.39 0.89 1.10 0.31 0.86 0.47 0.43 0.11 0.39 0.60 1.14 1.64 1.24 0.63 0.86 1.49 0.00 0.58 0.25 - 0.98 - - - 1.71 - 0.43 1.06 0.12 2.73 - - - Th/U

295 308 216 65.5 65.8 75.1 75.4 65.8 39.5 36 27 49.2 61.3 52.2 24.8 61.9 25.7 49.5 86.9 234 20 68.6 38.7 96.8 18 25.1 94.4 72.8 53 94.8 22.8 17.9 44.1 13.9 11 79.3 4.5 2.2 81.7 6.1 ppm U

orthogneiss

39.8 31.1 9.2 16.9 80.9 319 25.4 - 58.6 - 23.2 - - 23.1 30.8 48 - 40.3 0.3 50.4 42 24.1 31.3 28.3 11.9 385 28.2 58.7 21.1 6.3 - - 19.5 56.1 30 - 61.3 30.7 40.2 9.9 ppm Th

–bearing

21.5 15 12.9 55.3 43.1 27.8 28.3 27.3 60.1 57.1 21.2 61.5 58.5 187.4 251 49.1 65.3 39 14.5 73.7 7.6 53.3 7.7 13.8 2.2 1.4 72.4 38.7 54.2 41.2 22.9 105.7 187.5 20.7 64.8 3.4 11.5 42.1 80 76 Pb ppm

(%)

amphibole

0.32 1.22 2.19 3.70 0.05 0.00 0.30 0.17 4.13 0.57 0.43 0.14 0.53 0.16 0.00 0.21 0.24 0.46 0.37 0.57 0.00 0.79 0.05 0.98 0.57 3.48 5.49 0.34 0.44 0.00 0.49 0.28 0.24 0.12 0.10 0.50 1.69 0.85 1.05 0.37 Pb

Layered

- σ

0.005 0.008 0.007 0.021 0.007 0.005 0.016 0.003 0.016 0.069 0.011 0.019 0.013 0.017 0.024 0.006 0.063 0.019 0.023 0.014 0.018 0.011 0.025 0.029 0.025 0.041 0.002 0.006 0.010 0.024 0.038 0.009 0.008 0.066 0.045 0.044 0.017 0.012 0.006 0.006 1

CNP13F

0.017 0.023 0.016 0.024 0.018 0.011 0.104 0.134 0.220 0.139 0.018 0.056 0.018 0.151 0.006 0.201 0.286 0.235 0.087 0.067 0.047 0.067 0.065 0.180 0.002 0.010 0.015 0.145 0.098 0.246 0.162 0.021 0.062 0.149 0.108 0.065 0.310 0.291 0.007 0.167 206Pb 208Pb/

σ

0.006 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.006 0.005 0.003 0.005 0.005 0.009 0.006 0.006 0.007 0.006 0.007 0.004 0.007 0.009 0.012 0.010 0.004 0.006 0.006 0.006 0.005 0.003 0.003 0.004 0.005 0.008 0.006 0.012 0.006 0.004 0.005 0.006 1

0.223 0.187 0.205 0.215 0.220 0.233 0.257 0.218 0.245 0.270 0.271 0.242 0.218 0.236 0.266 0.257 0.272 0.210 0.218 0.164 0.183 0.201 0.204 0.239 0.248 0.257 0.257 0.264 0.271 0.177 0.209 0.220 0.231 0.223 0.262 0.213 0.069 0.112 0.251 0.266 206Pb 207Pb/

σ

0.016 0.013 0.014 0.013 0.014 0.018 0.012 0.013 0.029 0.019 0.012 0.012 0.021 0.012 0.024 0.011 0.012 0.031 0.043 0.035 0.013 0.012 0.015 0.013 0.015 0.017 0.012 0.013 0.023 0.018 0.017 0.015 0.031 0.014 0.050 0.097 0.035 0.043 0.015 0.016 1

RATIOS 1.829 1.426 1.424 1.646 1.639 1.605 1.500 1.482 1.482 1.692 1.736 1.672 2.088 1.747 1.769 1.696 1.757 1.789 1.774 1.568 1.594 1.575 1.511 1.575 1.620 1.399 1.611 2.257 1.817 1.752 1.742 1.630 1.625 1.481 1.689 5.994 3.100 1.875 1.468 1.550 206Pb 238U/

σ

0.005 0.006 0.007 0.011 0.007 0.005 0.006 0.009 0.005 0.008 0.004 0.004 0.007 0.005 0.014 0.012 0.004 0.005 0.004 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.004 0.006 0.006 0.005 0.006 0.012 0.006 0.018 0.003 0.004 0.012 0.007 0.007 1

0.547 0.701 0.702 0.608 0.610 0.623 0.667 0.675 0.591 0.576 0.598 0.479 0.572 0.565 0.590 0.569 0.559 0.564 0.638 0.627 0.635 0.662 0.635 0.617 0.715 0.621 0.443 0.571 0.574 0.613 0.615 0.675 0.675 0.592 0.323 0.533 0.681 0.550 0.167 0.645 206Pb/ 238U

σ

1 0.385 0.550 0.487 0.691 0.467 0.380 0.503 0.516 0.522 0.286 0.340 0.412 0.333 0.745 0.704 0.340 0.354 0.327 0.410 0.388 0.475 0.489 0.475 0.482 0.524 0.458 0.194 0.310 0.188 0.406 0.608 0.516 0.807 0.566 0.239 0.644 0.113 0.149 0.500 0.504

)

235U

26.053 16.115 16.562 20.508 23.419 17.222 18.475 26.264 20.296 18.297 20.255 24.435 23.869 25.306 17.125 17.275 18.365 1.583 4.979 10.794 14.761 15.698 16.612 17.062 20.642 21.695 22.482 21.863 25.983 23.190 10.832 15.832 17.318 19.519 18.933 24.398 17.392 13.478 23.527 23.653 207Pb/ continued

(

I

CNP77 - Augen Gneiss (muscovite-bearing mylonitic orthogneiss) Mi21 – Amphibole – bearing orthogneiss # 20.1 37.1 10.1 21.1 24.1 1.1 6.1 27.1 16.1 10.1 20.1 3.1 23.1 9.1 26.1 29.1 34.1 11.1 15.1 7.1 28.2 22.1 18.1 33.1 14.1 31.1 35.1 28.1 13.1 2.1 17.1 12.1 25.1 30.1 4.1 32.1 31.1 18.1 13.1 17.1 Table 14 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

)

page

17

±

7

2 ± next ±

1804

Concordia age: LI: Concordia age: Interpretation (Ma) 3074 1840 on

vs

continued

(

100 99 102 101 102 95 98 97 98 99 99 101 100 103 103 104 99 101 99 102 99 101 99 101 104 98 101 101 100 90 96 100 104 100 101 207/206 Conc.206/238

σ

0 0 0 0 0 0 0 0 0 0.02 0.02 0.03 0.02 0.02 0 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0 0 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 1

2981 2999 3025 3022 2975 3081 2968 3097 3052 3004 3088 2951 2971 2997 3040 2996 3046 2972 2913 2962 3055 3053 3021 2980 2978 3041 3060 2981 2977 2970 3038 2959 2309 3051 2958 206 T207/

σ

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 1

AGES

3057 2972 2980 3030 3047 3095 2961 3121 3015 3103 2958 2986 3052 3011 3090 2900 2896 2935 3037 3049 3018 3052 3017 3027 3050 3074 2963 2999 3040 3050 2994 2199 2919 3057 3008 235 T207/

σ

0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 1

3112 2966 2979 3077 3080 3118 2951 3159 3184 2939 2969 3032 3062 3071 3094 2827 2898 3033 3050 3072 3100 3096 2873 3041 3044 3051 3068 3063 2938 3019 3069 2083 2861 3084 3067 T206/ 238

0.29 0.97 1.83 0.62 1.27 0.49 0.85 0.80 0.86 0.35 0.88 0.98 0.63 0.45 0.59 0.40 0.72 0.18 0.05 0.38 0.54 0.27 0.89 0.72 0.50 0.43 0.45 0.47 0.08 0.55 0.31 0.14 0.16 0.30 0.68 Th/U

201 281 98.8 56.7 79.9 62.3 124 86.6 147 306 155 299 182 255 236 157 147 266 155 309 166 229 92.8 119 186 226 231 119 85 145 168 124 45 124 135 ppm U

orthogneiss

515 58.3 54.9 49.3 92 158 48.8 53.1 127 45 13 60 108 135 294 92 83 107 44 67 85 69.2 98 119 123 14 12 92 104 39 31 203 56.2 17 40 ppm Th

–bearing

43.7 66.3 157.3 160 109 99.1 60.4 280.6 73.7 50.9 57 170 103 95 219 140 268 147 165 242 118 143 88 216 113 14 95 76.6 68.8 109.4 79 116 99 167 216 Pb ppm

(%)

amphibole

0.59 0.00 0.35 0.47 0.00 0.04 0.00 0.30 0.12 0.00 0.02 0.05 0.00 1.08 0.00 0.01 0.00 0.25 0.00 0.00 0.04 0.01 0.04 0.00 0.02 1.74 0.19 0.05 0.00 0.02 0.10 0.00 2.37 0.22 0.19 Pb

Layered

- σ

0.032 0.006 0.062 0.038 0.065 0.001 0.008 0.004 0.002 0.003 0.006 0.010 0.002 0.007 0.008 0.005 0.010 0.107 0.004 0.009 0.007 0.031 0.008 0.010 0.024 0.003 0.003 0.094 0.004 0.020 0.005 0.007 0.025 0.009 0.001 1

CNP13F

0.077 0.273 0.132 0.104 0.137 0.038 0.090 0.021 0.192 0.159 0.113 0.073 0.153 0.178 0.225 0.087 0.012 0.096 0.171 0.097 0.108 0.097 0.121 0.112 0.067 0.180 0.166 0.169 0.178 0.133 0.191 0.019 0.155 0.094 0.093 206Pb 208Pb/

σ

0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.004 0.005 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 1

0.218 0.220 0.223 0.226 0.226 0.216 0.217 0.211 0.217 0.220 0.219 0.223 0.228 0.228 0.220 0.219 0.235 0.234 0.222 0.230 0.219 0.222 0.230 0.229 0.219 0.217 0.228 0.231 0.237 0.230 0.147 0.219 0.230 0.226 0.220 206Pb 207Pb/

σ

0.015 0.024 0.014 0.016 0.016 0.024 0.028 0.027 0.023 0.025 0.022 0.022 0.025 0.021 0.025 0.021 0.025 0.026 0.026 0.024 0.024 0.026 0.026 0.027 0.025 0.024 0.019 0.024 0.027 0.023 0.038 0.024 0.020 0.020 0.020 1

RATIOS 1.817 1.665 1.723 1.711 1.703 1.634 1.633 1.612 1.607 1.790 1.781 1.762 1.732 1.731 1.709 1.665 1.659 1.657 1.653 1.652 1.645 1.640 1.639 1.638 1.630 1.624 1.622 1.582 2.621 1.674 1.641 1.619 1.644 1.566 1.640 206Pb 238U/

σ

0.008 0.005 0.007 0.008 0.005 0.006 0.006 0.008 0.007 0.009 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009 0.010 0.009 0.011 0.006 0.009 0.009 0.008 0.007 0.009 0.007 0.008 1

0.601 0.580 0.584 0.587 0.612 0.612 0.621 0.622 0.550 0.559 0.562 0.568 0.577 0.578 0.585 0.601 0.603 0.604 0.605 0.608 0.610 0.610 0.611 0.614 0.616 0.632 0.382 0.605 0.618 0.608 0.617 0.639 0.597 0.609 0.610 206Pb/ 238U

σ

1 0.336 0.269 0.331 0.358 0.282 0.277 0.420 0.298 0.349 0.273 0.364 0.320 0.317 0.387 0.344 0.347 0.348 0.320 0.412 0.370 0.361 0.388 0.374 0.345 0.514 0.575 0.175 0.363 0.365 0.476 0.499 0.368 0.290 0.285 0.291

)

235U

18.912 17.472 17.662 17.819 18.772 19.094 19.308 20.085 7.722 16.386 16.718 16.333 17.012 17.513 17.417 17.923 18.483 19.144 18.181 18.530 19.208 19.203 19.170 18.412 18.511 18.352 19.156 19.973 19.645 20.622 20.251 18.075 19.306 18.960 18.706 207Pb/ continued

(

I

Mi30 - Migmatite of (quartz-feldspathic biotite gneiss with Kfs ad-situ veins) # 21.1 36.1 33.1 9.1 23.1 15.1 1.1 5.1 19.1 10.1 7.1 4.1 18.1 16.1 10.1 21.1 32.1 19.1 26.1 31.1 9.1 15.1 17.1 36.1 25.1 13.1 33.1 27.1 5.1 2.2 28.1 30.1 14.1 22.1 2.1 Table H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 15

)

page

15 18

13 LI: 28 ±

±

±

±

146 next ±

UI: 1917 UI: 1986 UI: 2973 LI: 1887 Interpretation (Ma) 1037 on

vs

continued

(

102 103 103 93 94 103 102 104 103 107 82 102 106 100 120 102 101 104 102 103 103 103 100 101 100 99 91 100 98 94 100 101 101 96 99 95 94 104 207/206 Conc.206/238

σ

0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1

3035 3011 3035 3019 3039 1935 1971 1944 2929 2964 3007 1962 1975 2200 2575 2912 3040 2974 3042 3021 3021 3054 1889 1903 1922 1942 2772 2907 2994 2218 1976 2838 1974 1986 3011 1847 2012 1953 206 T207/

σ

0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 1

AGES

0

0

3063 2964 3050 3065 2957 1970 1992 1984 1999 2049 2687 3064 3073 3068 1939 2958 3037 3011 2401 2608 3029 3069 3093 1899 1913 1930 2674 2912 2971 20 2161 1980 1990 2002 2801 3010 1798 1958 235 T207/

σ

0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.02 1

3107 3111 2837 2862 2022 2124 2397 3101 3136 1937 2003 2014 3002 3149 3018 2036 2646 2650 3113 3120 3140 3142 3153 1908 1923 1937 2547 2919 2937 2101 1985 2006 2018 2750 3007 1756 2046 1907 T206/ 238

0.70 0.55 0.67 0.41 0.45 0.31 0.52 0.32 0.23 0.19 0.52 0.50 0.52 0.16 0.22 0.13 0.30 0.27 0.52 0.90 0.22 0.12 0.35 0.52 0.36 0.24 0.22 0.19 0.36 0.25 0.29 0.24 0.29 0.39 0.17 0.39 0.29 0.39 Th/U

183 241 250 190 102 413 330 624 245 809 438 305 222 241 684 158 180 159 108 178 170 124 852 425 494 548 725 96 204 161 76 379 268 348 239 176 204 205 ppm U

orthogneiss

128 79 134 47 38 81 20 94 55 54 168 93 89 45 46.4 92 92 87 174 137 214 96 61 116 59 217 13 104 141 149 94 204 78 85 69 69 59 80 ppm Th

–bearing

150 78 167 82 76 35 199 206 93 238 88 105 140 127 207 140 130 162 184 235 364 184 182 405 169 172 211 96 89 103 267 98 473 233 109 144 104 353 Pb ppm

(%)

amphibole

0.10 0.71 0.02 0.39 0.00 0.27 0.13 0.06 0.00 0.05 0.02 0.18 0.04 0.15 0.00 0.52 0.58 0.12 1.31 0.00 0.00 0.06 0.00 0.14 0.00 0.00 0.00 0.25 0.75 0.00 0.03 1.45 0.34 0.10 0.00 0.00 0.03 0.24 Pb

Layered

- σ

0.002 0.005 0.003 0.003 0.005 0.005 0.012 0.003 0.002 0.005 0.012 0.003 0.001 0.020 0.002 0.016 0.004 0.001 0.002 0.001 0.002 0.001 0.010 0.088 0.006 0.002 0.004 0.010 0.029 0.008 0.003 0.006 0.005 0.005 0.051 0.004 0.002 0.002 1

CNP13F

0.091 0.111 0.055 0.040 0.133 0.098 0.078 0.056 0.073 0.080 0.096 0.086 0.031 0.117 0.071 0.127 0.100 0.117 0.067 0.063 0.046 0.109 0.087 0.082 0.031 0.078 0.109 0.124 0.039 0.096 0.063 0.087 0.046 0.048 0.098 0.093 0.110 0.085 206Pb 208Pb/

σ

0.004 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.002 0.002 0.002 0.002 1

0.228 0.229 0.228 0.202 0.224 0.211 0.230 0.228 0.213 0.222 0.224 0.172 0.228 0.219 0.225 0.226 0.226 0.117 0.118 0.119 0.119 0.121 0.119 0.194 0.210 0.218 0.224 0.113 0.120 0.120 0.121 0.124 0.138 0.139 0.116 0.121 0.121 0.122 206Pb 207Pb/

σ

0.027 0.024 0.026 0.030 0.024 0.024 0.028 0.021 0.020 0.020 0.018 0.022 0.020 0.020 0.020 0.020 0.023 0.037 0.034 0.032 0.032 0.031 0.032 0.026 0.023 0.023 0.040 0.037 0.026 0.030 0.032 0.024 0.034 0.036 0.034 0.034 0.021 0.036 1

RATIOS 1.615 1.606 1.585 1.809 1.790 1.880 1.686 1.733 1.683 1.612 1.967 2.220 1.619 1.611 1.596 1.593 1.592 2.878 2.854 2.728 2.714 2.064 1.746 1.675 3.194 2.677 2.692 2.563 2.905 2.596 2.852 2.774 2.744 1.588 1.971 2.903 2.740 2.720 206Pb 238U/

σ

0.009 0.010 0.010 0.007 0.009 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.008 0.008 0.008 0.008 0.009 0.004 0.004 0.006 0.008 0.005 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.008 0.008 0.004 0.004 0.006 0.004 0.005 0.005 0.005 1

0.619 0.623 0.631 0.553 0.559 0.532 0.593 0.577 0.594 0.620 0.509 0.451 0.618 0.621 0.627 0.628 0.628 0.350 0.368 0.485 0.573 0.374 0.390 0.385 0.348 0.351 0.365 0.367 0.630 0.597 0.313 0.372 0.344 0.507 0.345 0.361 0.365 0.368 206Pb/ 238U

σ

1 0.409 0.446 0.401 0.319 0.360 0.291 0.323 0.259 0.358 0.286 0.210 0.261 0.290 0.294 0.298 0.387 0.103 0.221 0.303 0.123 0.282 0.104 0.098 0.092 0.110 0.093 0.332 0.339 0.088 0.123 0.087 0.095 0.245 0.142 0.092 0.108 0.108 0.110

)

235U

19.622 5.753 14.778 6.526 13.098 19.431 20.030 17.391 17.529 5.581 5.691 5.959 6.115 6.055 17.422 17.649 18.374 19.170 4.876 6.170 6.165 5.878 9.642 7.400 12.043 19.438 18.755 19.463 19.525 19.534 5.490 6.030 6.100 6.184 12.929 16.598 18.908 18.409 207Pb/ continued

(

I

# 4.1 34.1 6.1 35.1 1.1 7.1 8.1 11.1 20.1 12.1 3.1 16.1 15.1 35.1 6.1 22.1 7.1 34.1 5.1 24.1 1.1 14.1 4.1 30.1 2.1 29.1 8.1 31.1 26.1 19.1 12.1 28.1 33.1 25.1 23.1 11.1 36.1 17.1 Table 16 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

3.2 18 ±

±

1987 783

UI: LI: Interpretation (Ma)

vs

87 89 94 95 95 98 98 101 101 100 103 103 74 94 94 97 99 100 95 94 97 96 98 101 100 104 103 102 103 106 106 100 102 207/206 Conc.206/238

σ

0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 1

1919 2028 1.976 1940 1966 1996 1973 2010 2001 2021 2015 2020 1527 1963 2031 2031 1937 1994 1941 2025 2007 2049 1997 2017 2013 2027 1941 1999 1987 1985 2007 1988 2025 206 T207/

σ

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1

AGES

1792 1871 1884 1921 1957 2011 2020 2018 2029 2055 1278 1948 2049 1883 1902 2002 2029 2039 2087 1892 1942 1916 1959 1996 2007 2053 2027 2034 2045 2050 2071 1991 2051 235 T207/

σ

0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 1

1685 1778 1995 1833 1880 1903 1942 2030 2034 2038 2084 2090 1136 1835 1846 1979 2026 2048 2149 1893 1894 1921 1985 2057 2071 2074 2088 1848 2025 2068 2136 1994 2077 T206/ 238

0.60 0.45 0.55 0.80 0.63 0.40 1.05 0.35 0.72 0.52 0.50 0.47 1.04 0.34 0.90 0.49 1.31 1.24 0.54 0.95 0.44 0.47 0.02 0.36 0.18 0.34 0.49 0.44 0.47 0.33 0.78 0.39 0.34 Th/U

345 275 262 377 460 247 311 232 289 371 271 281 670 288 222 246 149 165 280 183 165 138 219 179 287 215 277 188 217 287 222 212 183 ppm U

orthogneiss 205 123 145 98 268 140 188 4 366 155 124 244 133 102 699 200 89 121 78 194 205 30 98 67 96 83 150 93 203 122 82 62 173 ppm Th

–bearing

106 102 100 110 93 126 108 80 142 82 103 125 93 62 102 123 103 74 71 43 94 122 72 118 167 122 91 98 90 101 72 97 101 Pb ppm

(%)

amphibole 0.14 0.00 0.89 0.00 0.19 0.08 0.00 0.25 0.08 1.88 0.00 0.63 0.39 0.05 0.40 0.11 0.13 0.34 0.00 0.73 0.60 0.21 0.00 0.00 3.30 0.22 0.73 0.11 0.59 0.11 1.44 0.00 0.21 Pb

Layered

σ -

0.007 0.022 0.007 0.033 0.011 0.016 0.017 0.009 0.016 0.018 0.016 0.035 0.023 0.009 0.038 0.015 0.020 0.054 0.055 0.024 0.009 0.014 0.016 0.002 0.051 0.009 0.007 0.002 0.005 0.029 0.005 0.003 0.033 1

CNP13F 0.114 0.147 0.152 0.111 0.198 0.120 0.129 0.101 0.129 0.105 0.121 0.196 0.113 0.142 0.134 0.141 0.243 0.140 0.132 0.131 0.108 0.138 0.109 0.097 0.163 0.181 0.110 0.110 0.095 0.107 0.108 0.199 0.117 206Pb 208Pb/

σ

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 1

0.118 0.121 0.119 0.119 0.120 0.121 0.123 0.123 0.121 0.125 0.124 0.125 0.122 0.125 0.124 0.123 0.124 0.125 0.126 0.123 0.124 0.124 0.124 0.124 0.095 0.119 0.123 0.119 0.122 0.122 0.125 0.124 0.125 206Pb 207Pb/

σ

0.032 0.034 0.023 0.035 0.034 0.033 0.035 0.032 0.028 0.028 0.027 0.031 0.030 0.029 0.030 0.026 0.031 0.029 0.028 0.029 0.025 0.026 0.029 0.031 0.106 0.032 0.035 0.029 0.028 0.026 0.031 0.024 0.024 1

RATIOS 3.347 3.149 3.040 3.016 2.952 2.880 2.844 2.774 2.757 2.708 2.701 2.696 2.690 2.674 2.661 2.640 2.635 2.621 2.615 2.611 5.191 3.037 2.911 2.782 2.709 3.013 2.931 2.929 2.758 2.644 2.631 2.545 2.527 206Pb 238U/

σ

0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.005 0.004 0.004 1

0.299 0.318 0.329 0.332 0.339 0.363 0.370 0.371 0.379 0.380 0.329 0.344 0.347 0.352 0.359 0.361 0.369 0.369 0.372 0.374 0.376 0.382 0.382 0.383 0.193 0.332 0.341 0.341 0.363 0.378 0.380 0.393 0.396 206Pb/ 238U

σ

1 0.097 0.132 0.105 0.095 0.097 0.072 0.111 0.068 0.080 0.121 0.090 0.132 0.107 0.094 0.083 0.104 0.104 0.111 0.140 0.132 0.137 0.100 0.107 0.102 0.100 0.085 0.091 0.081 0.089 0.089 0.100 0.092 0.091

)

235U

metagranite

4.841 5.313 5.393 5.390 5.506 5.635 5.811 5.884 5.874 6.180 6.139 6.246 6.215 6.374 6.312 6.294 6.379 6.451 6.551 6.413 6.496 6.524 6.533 6.570 2.522 5.446 5.768 5.600 6.107 6.360 6.536 6.690 6.813 207Pb/ continued

(

– Mylonitic I

# Mi19B 7.1 14.1 24.1 18.1 12.1 34.1 6.1 21.1 9.1 2.1 13.1 26.1 36.1 20.1 11.1 1.1 27.1 30.1 28.1 33.1 16.1 32.1 25.1 35.1 5.1 22.1 19.1 8.1 15.1 31.1 10.1 3.1 4.1 Table H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 17

1.0) (0.1-1.0)

(0.4-1.0) -

0.1)

trends (0.2-0.4) U

<

2 ( (0.1 - /

trend trends

Overdispersed Overdispersed Overdispersed Magmatic 2 1 Th

±

2.7

an- Ga

Ga 2.0

Ga; Ga; 1.9 46

rim: Ga;

+

Ga;

2.0

Ga;

2.8 1.77 3.0 3.1 2.outer

rim1: core2: sector bright 3.3-3.0

Ga

Ma

3.3 2.95

2: 2:

44 rim: Ga; Ga; 2.0-1.8 rim2? CL- unzoned growth 2.2 sector zoning: Ga? rim: sector zoning nealing: Ga Ga; zoning: Core: Core1: Core Core: Inherited: Ages Core

on

the

in

non

cores cores

loss

zircons

few of

observed

(%) (black cauliflower) cataclastic elongated zircons (40%); cauliflowers (10%) -luminescent inner (metamict) inner fractures 30% Metamictization Non-luminescent Not Very Abundant Material

and

and

damage

fractures fractures;

fractured;

inclusions Non- luminescent healed- fractures (50%) healed- fractures composite zircons after fracturing; healed- fractures altered fractures (metamict infilling) cracks -decay Fractures Healed Very Fractured; Recrystallisation Healed α

and

cores,

round

fronts

sector

fronts fronts cores) pattern,

unzoned

the

fluids

transgressive concordant through

infilling; in-filling, outer

resorbed

patches void CL-bright patches convolute void transgressive fronts “ghost” OZP (internal and affecting zoning recrystallisation; leaching front. Transgressive Convolute/patchy Highly CL-bright Transgressive Hydrothermal CL-bright

CL

fir- grey

sector new

zoning

sector

dark

fuzzy and

/ homoge-

growth

medium CL sector pattern; planar growth banding convolute growth banding; tree radial zoning patterns planar growth banding (dominant); fir-tree zoning overgrowth zone: CL neous planar zoning. Overgrowth Homogeneous Dark-CL Planar Transgressive New Medium-grey

by CL of

of of

bands zoned

dark

sector zoning unzoned

Replacement oscillatory bands; darkening wider overgrowth. Transgressive fuzzy or recrystallisa- tion OZP; thickened sectors: some overgrowth controlled healed fractures luminescent overgrowth (transgressive over inherited structures) zoning recrystallisa- tion recrystallisa- tion. Recrystallisation/ Broadening Dark Broadening Bright Planar Sector interpretation.

and

in

by

OZP zoning. OZP bands.

CL

dark-CL;

Smooth distinct

euhedral

of zircon; annealed

pattern sections

OZP

zoning

rim

cloudy

affected

“ghost” OZP;

texture

samples

zoning broadened

magmatic

preserve

2) euhedral

surface; and

Original

totally

broaden; centre. resorbed,

sector

bright core 2:

blurred pyramidal w/ 2. crystallisation medium-grey oscillatory zoning. (core sector recrystallisation (60%), the (polygonal) some but core core broadening broadened blurred

studied Main Highly 1. Core Original Almost a

the

CL

ho-

OZP

(2.04

dark

CL outer

very dark cores core core

CL

patchy from

Inherited internal

convolute

texture 1:

CL-dark

convolute, non- luminescent; inner seam; bright seam resorbed patchy inner (25%) dark and transgressive bulging; completely resorbed non- luminescent roots. mogeneous inner or inner (20%) resorbed magmatic zircons Ga) Core Patchy, Inherited Core The CL-dark Inherited grains

and

very (2:1),

zircon

to to rough (5:1), ratio ratio

to

Aspect

shape 3:1; rough brown, rough

of

(2:1)

pale round subhedral round, surface, fractured (subhedral); zircon mixture anhedral (round) smooth surface; fractured (round); aspect 2:1; borders; fractured ratio mostly fractured; very borders; annealed metamict round; aspect 2:1 External Elongated Stubby Subhedral Subhedral Subhedral Euhedral. features

II

sample CNP13F CNP77 Mi21 Mi30 Mi14 Mi19B Table Textural 18 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

)

[6] page [6]

(1971)

al.

(2005) (2005)

et

[7] [7] [7] [7]

al. al. next

(2014)

al. al. al. al. et et

(2016b) (2016b) (2016b) (2016a) (2016ab) (2016a) (2016a) (2016b) (2016a) (2016a) (2016a) (2016a) Halpern [11]

al.

[8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] et et et et [9]

[10] [10] [10] [10] [10] on

&

al. al. al. al. al. al. al. al. al. al. al. al.

et

al. al. al. al. al. al. al. al. al. al. al. al. al. al. al. al. al.

et et et et et et et et et et et et Rifas

et et et et et et et et et et et et et et et et et

Oriolo Oriolo Peel Sánchez-Bettucci Oriolo Lenz Oriolo Peel Oriolo Lenz Peel Masquelin Masquelin Gaucher Lenz Peel Peel Lenz Masquelin Lenz Oriolo Lenz Oyhantçabal Oriolo Oriolo Lenz Umpierre Masquelin Lenz Sánchez-Bettucci et al. Lenz Lenz Lenz Oyhantçabal Reference Masquelin Lenz Oriolo Oriolo Oriolo Oriolo Gomez continued

(

age age age age

cooling cooling magmatic detrital magmatic magmatic detrital metamorphic deformation magmatic magmatic detrital detrital magmatic inherited cooling magmatic magmatic magmatic magmatic magmatic magmatic metamorphic metamorphic metamorphic magmatic magmatic magmatic metamorphic magmatic magmatic magmatic magmatic metamorphic cooling Interpretation magmatic magmatic magmatic magmatic metamorphic magmatic

zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon titanite titanite zircon

zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon

isochrone

zircon

TIMS

hornblende (WR) conv SHRIMP LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS SHRIMP LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS rutile SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP LA-ICP-MS LA-ICP-MS SHRIMP SHRIMP SHRIMP LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

LA-ICP-MS LA-ICP-MS SHRIMP LA-ICP-MS SHRIMP SHRIMP ID-TIMS SHRIMP ID ID-TIMS (WR)

U–Pb U-Pb U-Pb U–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U-Pb Ar–Ar U–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U-Pb U-Pb U-Pb U–Pb U-Pb K-Ar Method U-Pb U–Pb U–Pb U–Pb Rb–Sr U–Pb U–Pb U–Pb U-Pb U–Pb U–Pb U-Pb U–Pb U–Pb U–Pb U–Pb U–Pb

Zone

Zone

granitoids granitoids Complex Complex Granite

Shear

block Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Espinillo

Schists Schists Schists

Orthogneisses Orthogneisses

Complex Complex Complex Complex

Tigre Tigre Paragneisses Paragneisses

Sosa Granite Group

granitoids

del Granite

de del del Olivo Olivo Olivo Olivo Chato Bori Olivo Olivo Olivo Olivo Olivo Olivo Olivo Olivo Olivo Olivo Colorado Bori

block).

Micaela Micaela Micaela Pintor

Unit Campanero La Cerro La La Cerro Lavalleja Valentines– Rivera Chafalote Sarandí del Yí Shear Zone Sarandí del Yí Shear Zone Cerro Sierra Illescas Cerro El Valentines-Rivera Cerro Tupambaé Shear Cerro Cerro Cerro Valentines– Rivera Archean Cañada Cerro Valentines– Rivera Cerro Cerro Cerro Cerro Zanja Cerro Chafalote Cerro Cerro Neoproterozoic Cerro Zanja Neoproterozoic Granulitic Granulitic Granulitic Granulitic Cerro Rivera

the

schist

schist schist gneiss

granite

migmatite

paragneiss paragneiss

Granite gneiss gneiss gneiss gneiss gneiss granite

mylonite

diorite

mylonite mylonite mylonite mylonite

granulite granulite migmatite granulite granulite migmatite granulite granulite granulite orthogneiss migmatite orthogneiss migmatite

gneiss Rock-type phyllite Mafic psamo-pelitic Grt-chlorite Grt-chlorite anatectic Tonalitic Leucocratic Felsic granite Metagabbro granitic granitic granitic Rapakivi Tonalitic Rhyolite Metagabbro Mafic Tonalitic granitic anatectic Mafic Felsic Tonalitic Mafic Mafic Felsic Felsic Mylonitic Granitic Mafic Tonalitic Porphyritic Kfs-augen Mafic Mafic Felsic Amarillo Zapicán orthogneiss (including

Terrane

32/-17

σ

2 + n.d. - - 3.9 3.3 4 7 45 16 21 4.7 8.4 65 4.3 8 8 4 8 32 7.1 7 12 21 15 2.2 9 17 6 7 11 4 12 - 25 8 2.9 9 5 2 2 Pérez

Nico

the

(Ma)

for Age 1735 630 587.7 569.5 602 588 794 546 796 649 802 1492 2087 1857 2069 598 2106 2078 786 772-765? 797 753.8 668 1203 1760 778 637 793 670 990 626 795 1429 2095 549 767 1823-665 2787 780 596 610

results

7.47"W 58.26"W 59.8"W 3.67"W 37.31"W 37.31"W 44.17"W 44.17"W 11"W 5.57"W 5.57"W 38.66"W 9.44"W 9.44"W 57.41"O 46.6"W 53.72"W 53.72"W 56.1"W 51.46"W 45"W 11.56"W 5.41"W 50.37"W 25.87"W 33"W 3.35"W 51.56"W 2.51"W 29.15"W 39.17"W 38.59"W 55.11"W 3.68"W 59.87"W 13.60"W 13.60"W

4.51"W

  

    

               

  



   

    



53.82"W



25 25 25 25 25 26 23 23 24 24 56 48 44 16 11 10 25 24 48 23 23 54 56 07’43’’W 15’’W 12 31 33 10 12 22 16 16 38 48 48 48 49 49 12 3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

Longitude 55 55 55 55 55 54 54 54 54 54 54 54 54 54 54 55 55 55 55 55 54 54 54 55 54 54 54 54 53 53 53 53 53 55 54 54 54 55 54 54 54

geochronological

40.18"S 18.38"S 59.27"S 40.69"S 17.39"S 14.08"S 42.2"S 29.80"S 5.13"S 42.40"S 39.10"S 28"S 11.32"S 11.32"S 38.42"S 38.42"S 19.6"S 52.40"S 47.66"S 17.00"S 11.11"S 12"S 37.90"S 34.29"S 34.29"S 42.3"S 35.57"S 34.13"S 54.24"S 54.24"S 23.80"S 11.16"S 36.37"S 36.37"S 19.72"S 40.27"S 18.30"S 18.30"S

       

        

 

  



   

   



   

 

4.35"S



35 32 33 33 35 53 50 18 18 19 19 16 17 17 27 28 18 24 20 21 20 14 17 24 32’S 20 17 21’04’’S 26 2 30 57 13 16 55 30 41 41 44 38 39 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° °

° ° ° ° °

U-Pb 31 31 34 34 34 34 34 32 34 31 32 32 32 32 34 31 31 32 33 32 33 33 34 34 34 34 34 34 34 34 34 34 34 34 34 Latitude 33 33 34 33 33 34

of

3) 1) 2)

(cores) (rims) database

(cores) (rims)

(rims) (cores)

(cores) (rims) (cores) (cores) (rims) (prov (prov (prov

AC-296m AC-370a CH-43d EP-210 G AC-137b AC-166 AC-167 AC-296m AC-301 AC-338a AC-373b BRAF-212 BRAF-213 BUY-54-11 BUY-57-11 BUY-57-11 BUY-61-11 BUY-63-11 BUY-64-11 BUY-65-11 BUY-66-11 BUY-77-11 BUY-88-11 CH-174 CH-33a COR-42 EP-214 EP-214 EP-228 EP-228 FZ6 sample 27-G-35 6198 8-9 AA-12 AA-13 AC-104 AC-104 AC-133b AC-137b

III

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Table Supplementary H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 19

)

(2003) page

al.

(2012) (2012) (2005) (2012) (2012) (2012) [12] (2009) (2009) (2009) (2005) (2007) (2009) (2005)

et

(2007) (2002) (2002) (2001) (2001) (2002) 0)

al. al. al. al. al. al. al. al. al. al. al. al. al. al.

next 0

(2014) (2008) (2011)

al. al. al. al. al. al. et et et et et et et et et et et et et et (2003) (2003) (2003) (2003)

(2016b) (2016b) (2016b)

(2016b)

(20 al. al. al. [8]

et et et et et et on

al. al. al. al. al. al. al.

et et et al.

al.

al.

et et et et

et et et

et

et et

Oyhantcabal Oyhantcabal Oyhantcabal Mallmann Santos Oyhantcabal Santos Oyhantcabal Oyhantçabal Oyhantçabal Hartmann Oyhantcabal Gaucher Oyhantçabal et al. (2012) Gaucher Oriolo Hartmann Oyhantçabal Oyhantçabal Oyhantçabal Lenz Hartmann Oyhantcabal Sánchez-Bettucci Hartmann Hartmann Oyhantçabal Gaucher Basei Reference Oyhantçabal Santos Santos Oyhantçabal et al. (2012) Oyhantçabal et al. (2012) Oyhantçabal et al. (2012) Oriolo Oriolo Oriolo continued

(

age age age age

magmatic magmatic magmatic magmatic metamorphic magmatic metamorphic magmatic magmatic magmatic magmatic magmatic magmatic detrital magmatic magmatic cooling metamorphic metamorphic magmatic magmatic detrital magmatic inherited metamorphic magmatic magmatic magmatic magmatic Interpretation metamorphic cooling magmatic metamorphic cooling metamorphic metamorphic metamorphic cooling

zircon zircon

zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon zircon WR WR

+ + zircon zircon

CHIME-EPMA CHIME-EPMA CHIME-EPMA

titanite titanite mica mica hornblende muscovite phlogopite

SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SIMS SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP LA-ICP-MS SHRIMP SHRIMP conv zircon SHRIMP SHRIMP SHRIMP SHRIMP LA-ICP-MS SHRIMP SHRIMP muscovite SHRIMP SHRIMP

U–Pb U–Pb U–Pb Pb–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U–Pb U-Pb Pb–Pb U–Pb U–Pb Th–U–Pb Ar-Ar Th–U–Pb U–Pb Th–U–Pb U–Pb Ar-Ar Rb-Sr U–Pb U–Pb U-Pb U–Pb U–Pb Method U–Pb U–Pb U–Pb U–Pb Rb-Sr U–Pb Ar-Ar K–Ar U–Pb U–Pb isochrone mon mon mon isochrone

Fm

Fm Complex Complex Complex Complex Complex Complex Complex Complex complex

granitoids granitoids Complex Syenite

Granite

Zone

Group Granite Complex Complex Complex Unit Complex Granite

Puma

Granulitic Granulitic

Orthogneisses Granite Granite

Tigre

Complex Complex Complex Complex Aguirre Complex Complex

granitic

Azúcar UTE del Granulitic Granulitic Granulitic Granulitic Granulitic Granulitic Granulitic Granulitic Shear

de Lucía del Olivo Olivo Olivo Bori

de

Tetas Tetas Flores Tetas Tetas

China China

Campanero Cerro Cerro Neoproterozoic Campanero Unit Santa Mataojo Mangacha Pan Maldonado Las Zanja Cerro Rivera Rivera Las Fuente Aiguá Granite Carapé Granite Rivera Rivera Rivera Rivera Rivera Las Sobresaliente Rivera La La Sierra Neoproterozoic Cerro Las Parque Valentines Las Valentines Rivera Complex Complex

gneiss gneiss gneiss gneiss gneiss gneiss

granite

granulite

gneiss gneiss gneiss Mylonitic granite Rock-type syenite granite granodiorite gneiss granite granite monzogranite monzogranite dacite Metasandstone quartz-micaschists Metasandstone Mesocratic Mesocratic Mesocratic marbles Metatonalite Metatonalite Meta-trondhjemite Meta-trondhjemite quartz-micaschists syenogranite syenogranite Leucocratic Mesocratic Granodiorite Mafic marbles Metatuffs Granulite Mesocratic Mylonite Granulite

σ

12 17 5.7 7 2 7 13 8 1.5 23 8 7 16 14 8 - - 8 7 1.1 6 6 6 5 2 17 3.1 8.7 2.7 1 3 11 2.7 2.5 6 22 3 18 10

(Ma)

776 641 1737 1754 564 584 762 579 Age 627 633 583 587 572 571 610 788 3404 2721 2140 2077 600.4 590 3350-1780 586 585 1975 1981 2094 2114 2147 3197-702 550.5 621.4 1433 2163 2058 1920 606

37.45"W 37.45"W 30.51"W 30.51"W 44.45"W 44.45"W 43.93"W 59.03"W 3.76"W 3.76"W 11.76"W 11.76"W 11.76"W 11.76"W 17.74"W 29"W 29"W 1.45"W 48.3"O 17"W 17"W 55.21"W 24.92"W

26.66"W

             



     

 



5 28’1.8’’W 28’2’’W 56’58’’W 14’25’’W 51’W 07’W 24 43 43 55 55 43 43 14’13’’W 09’23’’W 26’30’’W 08’W 14’49’’W 09’44’’W 10’W 12’17’’W 11 13 11 34 34 34 34 29 22 22 22 15 13 13 10 10 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

54 54 55 55 55 54 54 55 54 55 Longitude 55 55 55 54 55 54 54 54 54 54 55 55 55 55 55 55 55 55 55 54 54 55 55 55 55 55 55 55

24.64"S 28"S 58.34"S 21.39"S 15.90"S 15.90"S 12.60"S 3.90"S 3.90"S 13.65"S 38.65"S 50"S 50"S 35.67"S 35.67"S 35.67"S 35.67"S 43.41"S 43.41"S 12.13"S 12.13"S 59"S 59"S 29.69"S

  



  

         

   

 



28’45’’S 28’45’’S 20 42 37’S 34’S 54’14’’S 29 33 35’51’’S 50’35’’S 35’24’’S 25’19’’S 07’S 16’S 01’44’’S 49’20’’S 31’12’’S 32 14 32 14 15 15 13 13 49 43 43 39 39 34 34 45 32 41 34 34 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° ° ° °

32 34 33 31 33 33 34 33 31 33 33 34 34 34 34 34 34 31 31 31 31 33 33 33 34 31 31 31 31 31 34 34 Latitude 34 34 34 34 34 34

)

(cores) (rims)

(core) (rim) (core) (rim) (core) (rim)

(1) (2)

1 1 3 3 4 4

continued

( PCH-0869 SA-1 SB-632 U13MH04 URPR-63 UY08-1 UY08-2 UY08-8 UY-10-05 Hart1 Hart2 Hart3 LAN-108 MAZ-59 NP-154 sample sample sample sample sample sample SB-050 SH-5 SOL-3 U13MH04 URPR-12 URPR-4a URPR-68 URPR-69 UY08-4a UY08-4a UY08-5 UY08-8 UY08-8 UY08-8 UY-10-05 UY-1-13 UY-1-13 sample

III

# 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 Table 20 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

(2007) (2009) (2012) (2012) (2009)

al. al. al. al. al.

(2011)

et et et et et (2016b) (2016b) (2016b) (2019) (2019) (2016b) (2016b) (2016b) (2016b) (2016b) (2016b) (2019)

al. (2011)

al. al. al. al. al. al. al. al. al. al. al. al.

et

al.

et et et et et et et et et et et et

et

Oyhantcabal Oyhantçabal Oriolo Oriolo Oriolo Oriolo Oriolo Oriolo Oriolo Oriolo Oriolo Oriolo Lenz Oyhantçabal Oriolo Gaucher Reference Oriolo Oyhantçabal Oyhantçabal

age age age age age age age age age age

magmatic magmatic cooling cooling cooling magmatic magmatic cooling cooling cooling cooling cooling magmatic cooling cooling magmatic Interpretation magmatic magmatic magmatic

(Mus)

zircon zircon zircon zircon

zircon zircon zircon zircon age

titanite hornblende plateau amphibole amphibole amphibole

SHRIMP LA-ICP-MS LA-ICP-MS SHRIMP LA-ICP-MS SHRIMP SHRIMP LA-ICP-MS

muscovite muscovite muscovite muscovite muscovite

U–Pb Pb–Pb K-Ar K-Ar Ar-Ar K-Ar K-Ar Ar-Ar Ar-Ar K-Ar U–Pb U–Pb Method Ar-Ar U–Pb Ar–Ar U–Pb U–Pb U–Pb U–Pb

Zone

Zone Zone

Zone

Complex Zone

Complex Complex

Shear Group

Shear Orthogneiss

Shear

Shear Unit

Orthogneisses Complex Complex Shear

Tigre Tigre

Granite

Complex

Complex Complex

Granite

Negra

Albina Albina Ballena del del Amaro Bori

Patrulla Tetas

China China

Barriga Valdivia Unit Las Florencia Maria Maria Cerro Isla Cordillera Valentines– Rivera Paleoproterozoic Valentines– Rivera Sierra La Campanero Zanja Zanja La Cerro Granulitic Granulitic granitoids

gneiss gneiss

granite gneiss gneiss gneiss gneiss gneiss gneiss

granite

mylonite

sandstones

gneiss

pebbly granite Rock-type Mylonitic Mylonitic quartz-micaschists Mylonitic Mylonitic Mylonitic Mylonitic Rapakivi amphibolite Leucocratic Mylonitic Metagabbro Metagabbro granitic Leucocratic Migmatite Mafic

σ

11 3.2 2 6.1 6.2 1.1 6.3 8.5 6.6 6.1 11 4 6 - 36 8 14 4.1 45 6

(Ma)

573 614 Age 420 589.7 596.8 600 604.9 619.4 615.2 630.2 632.7 564 1768 1479 1482 2093 2172 771 3096

7.5"W 11.02"W 24.77"W 24"W 3.05"W 3.05"W 56.14"W 52.29"W 20.76"W 38.59"W 39.17"W 40.13"W 21.98"W 12.88"W 44.90"W

27.31"W 31.02"W

   

 

  

 



 



 

2 5 34’32’’W 32 42 57 41 16 37 43 37 55 17’23’’W 24 24 10 18 12 12 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

55 54 Longitude 55 54 55 55 54 54 55 54 54 54 54 55 55 55 54 55 54

31.20"S 48.57"S 19.06"S 3.60"S 17.39"S 59.27"S 19.31"S 34"S 11.87"S 58.26"S 42.76"S 4.97"S 44.12"S

17.43"S 17.43"S

28.63"S 25.17"S



    











 

 

 

9 8 48 58 38’25’’S 53 17 33 43 20’30’’S 17 26 28 27 12 13 33 41 41 ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° °

° °

33 34 34 34 33 33 33 32 32 31 31 33 34 34 34 34 33 Latitude 34 34

)

(1) (2)

continued

( UY-12-05 UY-13-14 UY-26-14 UY-2-A UY3-05 UY3-05 UY-3-13 UY-40-14 UY-41-14 UY-45-14 UY-48-14 UY-57-14 UY-6-14 UY-7-04 UY-8-05 ZAP-20 BUY-80-11 UC-10 UC-11 sample

III

# 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 Table H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 21

3. Experimental Design, Materials and Methods

3.1. Sample preparation

The sample preparation comprises the crushing and sieving of rock samples and fine grind- ing of the resulting products in the standard grain size of zircon (50 < < 300 microns) and then the separation concentration zircons. The mineral separation laboratory carried out these pro- cedures at the Geochronological Research Center of the Universidade de São Paulo (CPGeo-IGc / USP). The heavy mineral concentrate was obtained using a Wilfley gravitational table, heavy liquids and magnetic separation by hand magnet and Frantz magnetic separator. The resulting impure zircon concentrates were cleaned from their gangue with ultrasound and strong acids, and the concentrated residual fraction was manually trickled under a binocular microscope (BM) by hand-picking. The separated zircons were placed in mounts on epoxy resin. Standard proto- cols to place grains in the epoxy resin plate were followed. After observation under BM, the resin plate was super-polished to expose the central part of the grains and metallised to be observed by cathodoluminescence in the SEM.

3.2. Optical binocular microscope

The first step in microscopic analysis of zircons is to study them in a Petri dish with ethanol, under a high-resolution binocular microscope, and select and document the grains by photomi- crographs. Properties such as colour, degree of transparency, external morphology and crystalline development are observed. The main external characteristics to pick up are (i) length to width aspect ratios, (ii) colour and degree of transparency, (iii) presence of xenocryst cores and inclu- sions of other minerals, (iv) degree of fracturing and alteration, and (v) crystallographic typology, like the relationship between prismatic vertical axes and pyramidal crystal faces.

3.3. Cathodoluminescence and textural study

Once the zircon mount was made in epoxy resin, the grains are numbered first with the transmission microscope (40x). The mount is placed on the excimer laser microprobe, in which a 15 kV electron beam bombardment generates cathodoluminescence (CL) images. CL imaging is essential to describe textural patterns. Zircon morphology and texture reflect the geological history, especially in magmatic nucleation, overgrowing and metamorphic recrystallisation, de- formation, or volume change, and chemical alteration [2] .

3.4. LA-ICP-MS U-Pb analytical technique

We set up the isotopic data and zircon dating at the Geochronological Laboratory of the Geo- sciences Institute from the University of São Paulo (Brazil). The LA-ICP-MS equipment locates at the CPGeo-IGc/USP and has an excimer laser of ArF gas (193 nm) coupled to the Neptune TM High-Resolution Multi-collector ICP-MS. The excimer laser used here provides a better regular- ity of abrasion, reducing the fractionation between masses due to its high optical quality and source stability [3] . The ICP-MS analytical procedure calibrates using the international standard zircon Temora-1 standard zircon ( 206 Pb/ 238 U = 0.0 6 683). Results are displayed in 206 Pb/ 238 U vs 207 Pb/ 235 U Wetherill’s Concordia diagram and 206 Pb/ 238 U vs 207 Pb/ 206 Pb Tera-Wasserburg’s graph, using IsoplotR [4] . Wetherill’s Concordia diagrams served both to model magmatic pro- toliths’ concordant age and the systematic radiogenic lead loss due to subsequent geological processes. The zircons were ablated during 40 seconds in the 193 nm Excimer Laser Ablation 22 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

System, at 7-6 Hz, 6mJ and full energy, obtaining spots of ca. 25 μm (Helium: MFC1 = 0.300 L/min, MFC2 = 0.300 L/min, Argon: Aux. = 0.95 L/min, sample = 0.978 L/min).

4. Figures and Tables

4.1. Petrographic data

The petrographic data corresponding to section 1 is commented on the following captions and documented on the photographic and photo-micrographic plates ( Figs. 2 –8 ).

4.2. U-Pb Isotopic data of zircons

Table I contains the isotopic results obtained in the U-Pb Geochronology Laboratory of the University of Sao Paulo between 2016 and 2017 from two sample sets. It contains the isotopic ratios of U and Pb commonly used to calculate the absolute ages T 238 U/ 206 Pb, T 235 U/ 207 Pb and T 207/206 Pb. There are the results of concordant and isochronal ages of radiogenic Pb loss for the six dated samples in the last column. Although the results of the isotopic ratios present uncertainties obtained at one sigma, the calculations of the ages with the Vermeesch’s Isoplot-R software [4] were calculated at two sigmas. Table II contains a comparative analysis of the different internal textures of the dated zir- cons from each of the six samples in this study. The items considered for the correlation were the external morphological aspects, the internal texture subdivision in (i) core, (ii) rim, and (iii) other diagnostic features due to the crystallisation/recrystallisation of the grains. We consider it a priority to evaluate the presence of overgrowth, transgressive replacement fronts, inclusions, fracturing, and alteration linked to the damage caused by radiation. The Th/U ratio was also evaluated. All the samples except one presented inheritance of Archean ages. Table III compilation of antecedents related to absolute ages by the U-Pb method in zircon from the central-eastern and south-eastern region of Uruguay. It is an exhaustive list of an- tecedents to date, understanding that the rapid evolution of geochronological knowledge in this region requires a continuous review of published data. Although the list refers exclusively to the U-Pb data, a single Rb-Sr isochronal age antecedent (corresponding to the Umpierre & Halpern’s document of 1971) was included and considered a valuable antecedent for the dating of the “Illescas Granite”. The advantage of this table is that it presents the Latitude - Longitude coordi- nates collected and recalculated from the consulted works.

4.3. Supplementary data

Table III

Ethics Statement

• This material is the authors’ original work, which has not been previously published else- where. • The authors did not submit this paper for other publication elsewhere. • The paper reflects the authors’ research and analysis wholly and truthfully. • The paper properly credits the meaningful contributions of co-authors and co-researchers. • The results are appropriately placed in the context of prior and existing research. • All sources used are correctly disclosed (correct citation). H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179 23

Fig. 8. Flat-lying muscovite augen gneiss (Mi06) in the “Zapican Thrust”, a) Mylonitic foliation (coin is 2.5 cm). b) K-feldspar porphyroclast. c) Phenocryst vs matrix. d) Section in XZ plane and sinistral shear. e) Phenocryst of patchy antiperthitic plagioclase. f) Section in YZ plane and dextral shear. g) Partial recrystallisation of Kfs phenocryst. h) An- tiperthitic porphyroclast surrounded by muscovite. i) Detail of muscovite layers and ribbon quartz. j) Flame perthite in plagioclase.

• All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content. • No information obtained for experimentation with human subjects was used. • No information obtained for experimentation with animals was used. 24 H. Masquelin, T. Aïfa and F. Scaglia et al. / Data in Brief 37 (2021) 107179

CRediT Author Statement

Henri Masquelin: Conceptualisation, Methodology, Software, writing-original draft prepara- tion; Tahar Aïfa: Data curation, Software, Writing - original draft preparation; Fernando Scaglia: Visualization, Investigation; Miguel Basei: Data curation, software, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela- tionships which have or could be perceived to have influenced the work reported in this article.

Acknowledgments

We are indebted to the Director Lic. Nestor Campal authorised the use of the airborne geo- physical data of DINAMIGE for academic purposes. We also thank Bruna Sanches, Nairé Gabriel, and the rest of the team at the Centro de Pesquisas Geocronologicas of the University of São Paulo. We thank Dr Elena Peel for the help regarding the use of standard deviation in the Concordia diagram. The authors are grateful to CSIC ( UdelaR) for the funding granted (first au- thor’s project CSIC-2015 C-604 ) and to the Faculty of Sciences of the Universidad de la República (Uruguay) for the Logistics. They also acknowledge PEDECIBA - Geosciences, who provided third author’s grants. To Ecos-sud Conicyt program n °U17U01 for funding the travels and per diem to Tahar Aïfa and Henri Masquelin through a cooperation exchange program between the Rennes 1 and UdelaR universities since 2018. This work is also a contribution to the Unesco-igcp638 program.

References

[1] C.W. Passchier , R.A. Trouw , Microtectonics, Springer Science & Business Media, 2005 . [2] M.J. Kohn, N.M. Kelly, Petrology, and geochronology of metamorphic zircon, In Moser et al. (eds.), chapter 2, Microstructural geochronology: Planetary records down to atom scale, Geophysical Monograph Series, AGU, 2018, 35-61. [3] K. Sato , M.A.S. Basei , O. Siga Júnior , W.M. Sproesser , A.T. Onoe , Excimer laser (193 nm) acoplado ao ICP-MS Neptune: primeiros resultados de análises isotópicas, in: Simpósio 45 Anos de Geocronologia no Brasil, Resumos Expandidos, 2009, pp. 131–133. USP . [4] P. Vermeesch , IsoplotR: a free and open toolbox for geochronology, Geosci. Front. 9 (5) (2018) 1479–1493 . [5] D.L. Whitney , B.W. Evans , Abbreviations for names of rock-forming minerals, Am. Mineralogist 95 (1) (2010) 185–187 . [6] L. Sánchez Bettucci , F. Preciozzi , M.A.S. Basei , P. Oyhantçabal , E. Peel , J. Loureiro , Campanero Unit: a probable Paleo- proterozoic basement and its correlation to other units of south-eastern Uruguay, in: IV South American Symposium on Isotope Geology, Short Papers, CBPM; IRD, Salvador, 2003, pp. 673–674 . [7] H. Masquelin , L.A. D’Avila Fernandes , C. Lenz , C.C. Porcher , N.J. McNaughton , The Cerro Olivo complex: a pre-colli- sional Neoproterozoic magmatic arc in Eastern Uruguay, Int. Geol. Rev. 54 (10) (2012) 1161–1183 . [8] C. Lenz , L.A.D. Fernandes , N.J. McNaughton , C.C. Porcher , H. Masquelin , U–Pb SHRIMP ages for the Cerro Bori Or- thogneisses, Dom Feliciano Belt in Uruguay: evidence of a ca. 800 Ma magmatic and ca. 650 Ma metamorphic event, Precambrian Res. 185 (3–4) (2011) 149–163 . [9] H. Masquelin , in: Evolução estrutural e metamórfica do Complexo Gnáissico Cerro Olivo, Sudeste do Uruguay, Tese de Doutorado, CPGeo - UFRGS, 2002, pp. 1–344. 1 map . [10] E. Peel , L.S. Bettucci , M.A.S. Basei , Geology and geochronology of Paso del Dragón Complex (north-eastern Uruguay): implications on the evolution of the Dom Feliciano Belt (Western Gondwana), J. South Am. Earth Sci. 85 (2018) 250–262 . [11] C. Gómez Rifas , in: A zona de cisalhamento sinistral de Sierra Ballena no Uruguai, Tese de doutorado, IG–USP, São Paulo, 1995, pp. 1–243. 5 maps . [12] P. Oyhantçabal , S. Siegesmund , K. Wemmer , S. Presnyakov , P. Layer , Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay), J. Geol. Soc. 166 (6) (2009) 1075–1084 .