<<

Phase Transitions and Group

Jean Zinn-Justin Dapnia, CEA/Saclay, France

and

Institut de Mathinzatiques de Jussieu-Chevaleret, Universitg de Paris VII

OXFORD UNIVERSITY PRESS Contents

1 Quantum theory and the 1 1.1 : A 3 1.2 Quantum electrodynamics: The Problem of infinities 4 1.3 Renormalization 7 1.4 Quantum field theory and the renormalization group 9 1.5 A triumph of QFT: The 10 1.6 : Other infinities 12 1.7 Kadanoff and Wilson's renormalization group 14 1.8 Effective quantum field theories 16 2 Gaussian expectation values. Steepest descent method 19 2.1 Generating functions 19 2.2 Gaussian expectation values. Wick's theorem 20 2.3 Perturbed Gaussian measure. Connected contributions 24 2.4 Feynman diagrams. Connected contributions 25 2.5 Expectation values. Generating function. Cumulants 28 2.6 Steepest descent method 31 2.7 Steepest descent method: Several variables, generating functions 37 Exercises 40 3 Universality and the continuum limit 45 3.1 Central limit theorem of probabilities 45 3.2 Universality and fixed points of transformations 54 3.3 Random walk and Brownian motion 59 3.4 Random walk: Additional remarks 71 3.5 Brownian motion and path integrals 72 Exercises 75 4 Classical statistical : One dimension 79 4.1 Nearest-neighbour interactions. Transfer matrix 80 4.2 Correlation functions 83 4.3 Thermodynamic limit 85 4.4 Connected functions and cluster properties 88 4.5 Statistical models: Simple examples 90 4.6 The Gaussian model 92 x Contents

4.7 Gaussian model: The continuum limit 98 4.8 More general models: The continuum limit 102 Exercises 104 5 Continuum limit and path integrals 111 5.1 Gaussian path integrals 111 5.2 Gaussian correlations. Wick's theorem 118 5.3 Perturbed Gaussian measure 118 5.4 Perturbative calculations: Examples 120 Exercises 124 6 Ferromagnetic systems. Correlation functions 127 6.1 Ferromagnetic systems: Definition 127 6.2 Correlation functions. Fourier representation 133 6.3 and vertex functions 137 6.4 Legendre transformation and steepest descent method 142 6.5 Two- and four-point vertex functions 143 Exercises 145 7 Phase transitions: Generalities and examples 147 7.1 Infinite temperature or independent spins 150 7.2 Phase transitions in infinite dimension 153 7.3 Universality in infinite space dimension 158 7.4 Transformations, fixed points and universality 161 7.5 Finite-range interactions in finite dimension 163 7.6 : Transfer matrix 166 7.7 Continuous symmetries and transfer matrix 171 7.8 Continuous symmetries and Goldstone modes 173 Exercises 175 8 Quasi-Gaussian approximation: Universality, 179 8.1 Short-range two- interactions 181 8.2 The Gaussian model: Two-point function 183 8.3 Gaussian model and random walk 188 8.4 Gaussian model and field integral 190 8.5 Quasi-Gaussian approximation 194 8.6 The two-point function: Universality 196 8.7 Quasi-Gaussian approximation and Landau's theory 199 8.8 Continuous symmetries and Goldstone modes 200 8.9 Corrections to the quasi-Gaussian approximation 202 8.10 Mean-field approximation and corrections 207 8.11 Tricritical points 211 Exercises 212 9 Renormalization group: General formulation 217 9.1 . Landau's Hamiltonian 218 9.2 Connected correlation functions. Vertex functions 220 9.3 Renormalization group: General idea 222 9.4 Hamiltonian flow: Fixed points, stability 226 9.5 The Gaussian fixed point 231 Contents xi

9.6 Eigen-perturbations: General analysis 234 9.7 A non-Gaussian fixed point: The E-expansion 237 9.8 Eigenvalues and dimensions of local polynomials 241 10 Perturbative renormalization group: Explicit calculations 243 10.1 Critical Hamiltonian and perturbative expansion 243 10.2 Feynman diagrams at one-loop order 246 10.3 Fixed point and critical behaviour 248 10.4 Critical domain 254 10.5 Models with 0(N) orthogonal symmetry 258 10.6 Renormalization group near dimension 4 259 10.7 Universal quantities: Numerical results 262 11 Renormalization group: N-component fields 267 11.1 Renormalization group: General remarks 268 11.2 Gradient flow 269 11.3 Model with cubic anisotropy 272 11.4 Explicit general expressions: RG analysis 276 11.5 Exercise: General model with two parameters 281 Exercises 284 12 Statistical field theory: Perturbative expansion 285 12.1 Generating functionals 285 12.2 Gaussian field theory. Wick's theorem 287 12.3 Perturbative expansion 289 12.4 Loop expansion 296 12.5 Dimensional continuation and 299 Exercises 306 13 The cr4 field theory near dimension 4 307 13.1 Effective Hamiltonian. Renormalization 308 13.2 Renormalization group equations 313 13.3 Solution of RGE: The e-expansion 316 13.4 Effective and renormalized interactions 323 13.5 The critical domain above 324 14 The 0(N) symmetric (02)2 field theory in the large N limit 329 14.1 Algebraic preliminaries 330 14.2 Integration over the field 0: The determinant 331 14.3 The limit N -+ oo: The critical domain 335 14.4 The (02) 2 field theory for N 00 337 14.5 Singular part of the free energy and 340 14.6 The (ÄA) and (02 02) two-point functions 343 14.7 Renormalization group and corrections to scaling 345 14.8 The 1/N expansion 348 14.9 The exponent i at order 1/N 350 14.10 The non-linear cr-model 351 15 The non-linear a-model 353 15.1 The non-linear cf-model an the lattice 353 15.2 Low-temperature expansion 355 xii Contents

15.3 Formal continuum limit 360 15.4 Regularization 361 15.5 Zero-momentum or IR divergences 362 15.6 Renormalization group 363 15.7 Solution of the RGE. Fixed points 368 15.8 Correlation functions: Scaling form 370 15.9 The critical domain: Critical exponents 372 15.10 Dimension 2 373 15.11 The (02 )2 field theory at low temperature 377 16 Functional renormalization group 381 16.1 Partial field integration and effective Hamiltonian 381 16.2 High-momentum mode integration and RGE 390 16.3 Perturbative solution: 04 theory 396 16.4 RGE: Standard form 399 16.5 Dimension 4 402 16.6 Fixed point: e-expansion 409 16.7 Local stability of the fixed point 411 Appendix 417 Al Technical results 417 A2 Fourier transformation: Decay and regularity 421 A3 Phase transitions: General remarks 426 A4 1/N expansion: Calculations 431 A5 Functional renormalization group: Complements 433 Bibliography 441 Index 447