Light Emitting Diodes (Leds) for General Illumination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamentals of Microelectronics Chapter 3 Diode Circuits
9/17/2010 Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors CH7 CMOS Amplifiers CH8 Operational Amplifier As A Black Box 1 Chapter 3 Diode Circuits 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 2 1 9/17/2010 Diode Circuits After we have studied in detail the physics of a diode, it is time to study its behavior as a circuit element and its many applications. CH3 Diode Circuits 3 Diode’s Application: Cell Phone Charger An important application of diode is chargers. Diode acts as the black box (after transformer) that passes only the positive half of the stepped-down sinusoid. CH3 Diode Circuits 4 2 9/17/2010 Diode’s Action in The Black Box (Ideal Diode) The diode behaves as a short circuit during the positive half cycle (voltage across it tends to exceed zero), and an open circuit during the negative half cycle (voltage across it is less than zero). CH3 Diode Circuits 5 Ideal Diode In an ideal diode, if the voltage across it tends to exceed zero, current flows. It is analogous to a water pipe that allows water to flow in only one direction. CH3 Diode Circuits 6 3 9/17/2010 Diodes in Series Diodes cannot be connected in series randomly. For the circuits above, only a) can conduct current from A to C. CH3 Diode Circuits 7 IV Characteristics of an Ideal Diode V V R = 0⇒ I = = ∞ R = ∞⇒ I = = 0 R R If the voltage across anode and cathode is greater than zero, the resistance of an ideal diode is zero and current becomes infinite. -
How Glare Reduces Safety
How Glare Reduces Safety The human eye is pretty amazing...enabling us to see in a broad range of lighting conditions from bright sunlight to pale moonlight. But the eye cannot function well when confronted with widely varying light intensities at the same time, nor when it is disabled by glare. Glare is the criminal's friend. How often have you turned out the light at night and noticed that after your eyes had a few minutes to “get used to the dark,” you could see much more around your bedroom than you’d been able to when the light first went off? Formally termed “adaptation,” this is the key to understanding how glare impairs vision and puts us in unnecessary danger. Inside the eye are two different types of light receptors--“rods” and “cones.” After the bedroom light went out, the pupils enlarged so that the eyes could make better use of what light was available. The extra-sensitive rods, which allow us to see in very faint light, were activated; they are located toward the edges of the retina, making them important to peripheral vision, and are especially sensitive to motion. Cones were at work while the light was still on, facilitating color discrimination and sharpness of vision; they are concentrated at the center of the eye. Many people who have not had occasion to look into the matter tend to assume that safety and “security” can be improved by very bright lighting--which usually entails substan- tial glare. But research claiming to demonstrate such benefits has been shown to be flawed.* The actual result of overbright, glary outdoor lighting is to impair our ability to see at night! The pupil contracts, and the rods shut down. -
The Art of Electronics
VOLTAGE REGULATORS AND POWER CIRCUITS 312 Chapter 6 (unregulated) I 3A fuse 3 + heat Figure 6.5. Five volt regulator with outboard pass transistor and crowbar. and the 33 ohm resistor. Its func- fuse somewhere in the power supply, as tion is to short the output if some circuit shown. We will treat overvoltage crowbar fault causes the output voltage to exceed circuits in more detail in Section 6.06. about 6.2 volts (this could happen if one of the resistors in the divider were to open up, for instance, or if some component in the HEAT AND POWER DESIGN 723 were to fail). is an SCR controlled rectifier), a device that is nor- 6.04 Power transistors and heat sinking mally nonconducting but that goes into saturation when the gate-cathode junction As in the preceding circuit, it is often nec- is forward-biased. Once turned on, it will essary to use power transistors or other not turn off again until anode current is re- high-current devices like or power moved externally. In this case, gate current rectifiers that can dissipate many watts. flows when the output exceeds The an inexpensive power tran- voltage plus a diode drop. When that hap- sistor of great popularity, can dissipate as pens, the regulator will go into a much as 1 15 watts if properly mounted. limiting condition, with the output held All power devices are packaged in cases near ground by the SCR. If the failure that that permit contact between a metal sur- produces the abnormally high output also face and an external heat sink. -
Compact Fluorescent Light Bulbs
Compact Fluorescent Light Bulbs What is a compact fluorescent lamp (CFL) bulb? A CFL bulb is a type of fluorescent bulb that screws into a standard light socket, such as a lamp or ceiling light fixture. CFLs use much less energy and last up to 10 times longer than standard light bulbs. What is in a compact fluorescent lamp (CFL) bulb? A CFL bulb is made of glass, a ceramic and metal base, a luminous powder called phosphor, and a small amount of mercury. How much mercury is contained in a CFL bulb? Manufacturers report that the amount of mercury contained in a CFL bulb is five milligrams, which is less than two ten-thousandths of an ounce. The mercury could be in the form of an invisible vapor or in a bead the size of the period at the end of this sentence. A mercury fever thermometer contains about 100 times more mercury than a CFL bulb. Is it harmful is it to be in the room where a CFL bulb has broken? The amount of mercury vapor that is released from one broken bulb is not enough to make anyone sick. However, it is best to avoid any exposure to mercury. We recommend that you ventilate the room air to the outdoors by opening a window or a door and leave the room for a few hours before cleaning up the broken bulb. How should I clean up a broken CFL bulb? It is not necessary to hire a professional to clean up the bulb. By following the directions below, you can safely clean up a broken CFL bulb. -
Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review
Czech J. Food Sci. Vol. 25, No. 4: 159–173 Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review Jana SÁDECKÁ and Jana TÓTHOVÁ Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic Abstract Sádecká J., Tóthová J. (2007): Fluorescence spectroscopy and chemometrics in the food classification − a review. Czech J. Food Sci., 25: 159–173. This review deals with the last few years’ articles on various fluorescence techniques (conventional, excitation-emis- sion matrix, and synchronous fluorescence spectroscopy) as a tool for the classification of food samples. Chemometric methods as principal component analysis, hierarchical cluster analysis, parallel factor analysis, and factorial discrimi- nate analysis are briefly reminded. The respective publications are then listed according to the food samples: dairy products, eggs, meat, fish, edible oils, and others. Keywords: chemometrics; fluorescence spectroscopy; food analysis Fluorescence spectroscopy is a rapid, sensitive, distinguish. The analytical information contained and non-destructive analytical technique pro- in fluorescence spectra can be extracted by using viding in a few seconds spectral signatures that various multivariate analysis techniques that relate can be used as fingerprints of the food products several analytical variables to the properties of (dairy products, fishes, edible oils, wines, etc.). the analyte(s). The multivariate techniques most The application of fluorescence in food analysis frequently used allow to group the samples with has increased during the last decade, probably similar characteristics, to establish classification due to the propagated use of chemometrics. The methods for unknown samples (qualitative analysis) study by Norgaard (1995) can serve as a general or to perform methods determining some proper- investigation of how to enhance the potential of ties of unknown samples (quantitative analysis). -
Light Sources and Photodetectors for OBS® Sensors Application Note
APPLICATION NOTE APPLICATION App. Note Code: 2Q-R Written by John Downing Light Sources and Photo- detectors for OBS® Sensors ® CAMPBELL SCIENTIFIC, INC. WHENW H E N MEASUREMENTSM E A S U R E M E N T S MMATTERA T T E R Copyright (C) April 2008 Campbell Scientifi c, Inc. Light Sources and Photodetectors for OBS® Sensors Sensors that use the OBS® method have narrow- or intermediate-band illumination systems, depending on whether a laser diode (LD) or infrared-emitting diode (IRED) is used in their construction. This application note describes infrared-emitting diodes and laser diodes, as well as photodiodes, daylight fi lters, and operating spectra. Laser Diodes Laser diodes have narrow, multimode emission spectra resembling the one shown in Figure 1. The LD bandwidth is about 2 nm at half power (FWHM). They have built-in photodiodes to monitor the light output of the laser chip so that photocur- rent can be used to control the illumination of the sample. In this way, fluctuations in light power caused by sensor temperature and laser aging are virtually elimi- nated. The drift of our OBS-4 LD-based sensor, for example, is less than 2% per year of continuous operation. The two disadvantages of lasers are that they emit coherent light, which because of interferences can fluctuate in intensity in a sample volume by as much as 50%, and they are less efficient in converting electrical current to light than IREDs. Figure 1. Graph shows the relative power, transmission and responsivity of a laser diode. Laser diodes have narrow, multimode emission spectra. -
LED Lighting Standards in ENERGY STAR Programs
LED Lig hting Standards in ENERGY STAR® Programs Jianzhong Jiao, Ph.D. OSRAM Opto Semiconductors Inc. Outline Introduction LED lighting standards referred to or referenced in ENERGY STAR® Specs –ANSI – IESNA – UL –NEMA Implementations of LED lighting standards in ENERGY STAR® Programs – Testing for qualifications – Considerations of new standards EPA Energy Star Products Partner Meeting | Nov. 9, 2011 | 2 Introduction LED Lighting Standardization Bodies in USA Professional associations – SAE (Society of Automotive Engineers) – IESNA (Illumination Engineering Society North America) – IEEE-SA (Institute of Electrical and Electronics Engineers Standards Association) Standard organizations – UL (Underwriter Laboratories) – ANSI (American National Standard Institute) Trade associations – NEMA (National Electrical Manufacturers Association) – JEDEC (Joint Electron Device Engineering Council) – SEMI (Semiconductor Equipment and Materials International) EPA Energy Star Products Partner Meeting | Nov. 9, 2011 | 3 Introduction U.S. Standard Organizations ISO General Lighting ANSI CIE IEC GTB SAE IEEE IESNA NEMA UL ITE JEDEC USA SEMI EPA Energy Star Products Partner Meeting | Nov. 9, 2011 | 4 Introduction Government Regulations or Specifications for LED Lighting Federal government: DOT, EPA, DOE, … – Rule making (establish rules by federal agencies) – Enforcement – “Endorsement”, approval, labeling Federal government: DOC – National Institute of Standards and Technology (NIST): US National Metrology Institute – Promote US innovation and -
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp Laurie Ramroth Rocky Mountain Institute February 2008 Image: Compact Fluorescent Lamp. From Mark Stozier on istockphoto. Abstract This paper addresses the debate over compact fluorescent lamps (CFLs) and incandescents through life-cycle analyses (LCA) conducted in the SimaPro1 life-cycle analysis program. It compares the environmental impacts of providing a given amount of light (approximately 1,600 lumens) from incandescents and CFLs for 10,000 hours. Special attention has been paid to recently raised concerns regarding CFLs—specifically that their complex manufacturing process uses so much energy that it outweighs the benefits of using CFLs, that turning CFLs on and off frequently eliminates their energy-efficiency benefits, and that they contain a large amount of mercury. The research shows that the efficiency benefits compensate for the added complexity in manufacturing, that while rapid on-off cycling of the lamp does reduce the environmental (and payback) benefits of CFLs they remain a net “win,” and that the mercury emitted over a CFL’s life—by power plants to power the CFL and by leakage on disposal—is still less than the mercury that can be attributed to powering the incandescent. RMI: Life Cycle of CFL and Incandescent 2 Heading Page Introduction................................................................................................................... 5 Background................................................................................................................... -
Article Soot Photometer Using Supervised Machine Learning
Atmos. Meas. Tech., 12, 3885–3906, 2019 https://doi.org/10.5194/amt-12-3885-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning Kara D. Lamb1,2 1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 2NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USA Correspondence: Kara D. Lamb ([email protected]) Received: 15 March 2019 – Discussion started: 22 March 2019 Revised: 20 June 2019 – Accepted: 21 June 2019 – Published: 15 July 2019 Abstract. Single particle soot photometers (SP2) use laser- each class are compared with the true class for those particles induced incandescence to detect aerosols on a single particle to estimate generalization performance. While the specific basis. SP2s that have been modified to provide greater spec- class approach performed well for rBC and Fe3O4 (≥ 99 % tral contrast between their narrow and broad-band incandes- of these aerosols are correctly identified), its classification of cent detectors have previously been used to characterize both other aerosol types is significantly worse (only 47 %–66 % refractory black carbon (rBC) and light-absorbing metallic of other particles are correctly identified). Using the broader aerosols, including iron oxides (FeOx). However, single par- class approach, we find a classification accuracy of 99 % for ticles cannot be unambiguously identified from their incan- FeOx samples measured in the laboratory. The method al- descent peak height (a function of particle mass) and color lows for classification of FeOx as anthropogenic or dust-like ratio (a measure of blackbody temperature) alone. -
Semiconductor Light Sources
Laser Systems and Applications Couse 2020-2021 Semiconductor light sources Prof. Cristina Masoller Universitat Politècnica de Catalunya [email protected] www.fisica.edu.uy/~cris SCHEDULE OF THE COURSE Small lasers, biomedical Semiconductor light sources lasers and applications . 1 (11/12/2020) Introduction. 7 (19/1/2021) Small lasers. Light-matter interactions. 8 (22/1/2021) Biomedical lasers. 2 (15/12/2020) LEDs and semiconductor optical amplifiers. Laser models . 3 (18/12/2020) Diode lasers. 9 (26/1/2021) Laser turn-on and modulation response. Laser Material Processing . 10 (29/1/2021) Optical injection, . 4 (22/12/2020) High power laser optical feedback, polarization. sources and performance improving novel trends . 11 (2/2/2021) Students’ . 5 (12/1/2021) Laser-based presentations. material macro processing. 12 (5/2/2021) Students’ . 6 (15/1/2020) Laser-based presentations. material micro processing. 9/2/2021: Exam Lecturers: C. Masoller, M. Botey 2 Learning objectives . Understand the physics of semiconductor materials and the electron-hole recombination mechanisms that lead to the emission of light. Learn about the operation principles of light emitting diodes (LEDs) and semiconductor optical amplifiers (SOAs). Become familiar with the operation principles and characteristics of laser diodes (LDs). 3 Outline: Semiconductor light sources . Introduction . Light-matter interactions in semiconductor materials . Light Emitting Diodes (LEDs) . Semiconductor optical amplifiers (SOAs) . Laser diodes (LDs) The start of the laser diode story: the invention of the transistor Nobel Prize in Physics 1956 “For their research on semiconductors and their discovery of the transistor effect”. The invention of the transistor in 1947 lead to the development of the semiconductor industry (microchips, computers and LEDs –initially only green, yellow and red). -
Introduction 1
1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl. -
Application Note AN-1057
Application Note AN-1057 Heatsink Characteristics Table of Contents Page Introduction.........................................................................................................1 Maximization of Thermal Management .............................................................1 Heat Transfer Basics ..........................................................................................1 Terms and Definitions ........................................................................................2 Modes of Heat Transfer ......................................................................................2 Conduction..........................................................................................................2 Convection ..........................................................................................................5 Radiation .............................................................................................................9 Removing Heat from a Semiconductor...........................................................11 Selecting the Correct Heatsink........................................................................11 In many electronic applications, temperature becomes an important factor when designing a system. Switching and conduction losses can heat up the silicon of the device above its maximum Junction Temperature (Tjmax) and cause performance failure, breakdown and worst case, fire. Therefore the temperature of the device must be calculated not to exceed the Tjmax. To design a good