Semantic Interoperability of Web Services - Challenges and Experiences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Mapping: Definition, Tools, and Techniques
Data Mapping: Definition, Tools, and Techniques Enterprise data is getting more dispersed and voluminous by the day, and at the same time, it has become more important than ever for businesses to leverage data and transform it into actionable insights. However, enterprises today collect information from an array of data points, and they may not always speak the same language. To integrate this data and make sense of it, data mapping is used which is the process of establishing relationships between separate data models. What is Data Mapping? In simple words, data mapping is the process of mapping data fields from a source file to their related target fields. For example, in Figure 1, ‘Name,’ ‘Email,’ and ‘Phone’ fields from an Excel source are mapped to the relevant fields in a Delimited file, which is our destination. Data mapping tasks vary in complexity, depending on the hierarchy of the data being mapped, as well as the disparity between the structure of the source and the target. Every business application, whether on-premise or cloud, uses metadata to explain the data fields and attributes that constitute the data, as well as semantic rules that govern how data is stored within that application or repository. For example, Microsoft Dynamics CRM contains several data objects, such as Leads, Opportunities, and Competitors. Each of these data objects has several fields like Name, Account Owner, City, Country, Job Title, and more. The application also has a defined schema along with attributes, enumerations, and mapping rules. Therefore, if a new record is to be added to the schema of a data object, a data map needs to be created from the data source to the Microsoft Dynamics CRM account. -
Towards Ontology Based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout
Towards ontology based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout To cite this version: Sophea Chhun, Néjib Moalla, Yacine Ouzrout. Towards ontology based BPMN Implementation.. SKIMA, 6th Conference on Software Knowledge Information Management and Applications., Jan 2012, Chengdu, China. 8 p. hal-01551452 HAL Id: hal-01551452 https://hal.archives-ouvertes.fr/hal-01551452 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Towards ontology based BPMN implementation CHHUN Sophea, MOALLA Néjib and OUZROUT Yacine University of Lumiere Lyon2, laboratory DISP, France Natural language is understandable by human and not machine. None technical persons can only use natural language to specify their business requirements. However, the current version of Business process management and notation (BPMN) tools do not allow business analysts to implement their business processes without having technical skills. BPMN tool is a tool that allows users to design and implement the business processes by connecting different business tasks and rules together. The tools do not provide automatic implementation of business tasks from users’ specifications in natural language (NL). Therefore, this research aims to propose a framework to automatically implement the business processes that are expressed in NL requirements. -
Semantic Description of Web Services
Semantic Description of Web Services Thabet Slimani CS Department, Taif University, P.O.Box 888, 21974, KSA Abstract syntaxes) and in terms of the paradigms proposed for The tasks of semantic web service (discovery, selection, employing these in practice. composition, and execution) are supposed to enable seamless interoperation between systems, whereby human intervention is This paper is dedicated to provide an overview of these kept at a minimum. In the field of Web service description approaches, expressing their classification in terms of research, the exploitation of descriptions of services through commonalities and differences. It provides an semantics is a better support for the life-cycle of Web services. understanding of the technical foundation on which they The large number of developed ontologies, languages of are built. These techniques are classified from a range of representations, and integrated frameworks supporting the research areas including Top-down, Bottom-up and Restful discovery, composition and invocation of services is a good Approaches. indicator that research in the field of Semantic Web Services (SWS) has been considerably active. We provide in this paper a This paper does also provide some grounding that could detailed classification of the approaches and solutions, indicating help the reader perform a more detailed analysis of the their core characteristics and objectives required and provide different approaches which relies on the required indicators for the interested reader to follow up further insights objectives. We provide a little detailed comparison and details about these solutions and related software. between some approaches because this would require Keywords: SWS, SWS description, top-down approaches, addressing them from the perspective of some tasks bottom-up approaches, RESTful services. -
Managing Data in Motion This Page Intentionally Left Blank Managing Data in Motion Data Integration Best Practice Techniques and Technologies
Managing Data in Motion This page intentionally left blank Managing Data in Motion Data Integration Best Practice Techniques and Technologies April Reeve AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Morgan Kaufmann is an imprint of Elsevier Acquiring Editor: Andrea Dierna Development Editor: Heather Scherer Project Manager: Mohanambal Natarajan Designer: Russell Purdy Morgan Kaufmann is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA Copyright r 2013 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
Semantic Web Services
The Semantic Web Semantic Web Services Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng, Stanford University he Web, once solely a repository for text and images, is evolving into a provider Tof services—information-providing services, such as flight information providers, temperature sensors, and cameras, and world-altering services, such as flight-booking programs, sensor controllers, and a variety of e-commerce and business-to-business applications. Web-accessible programs, databases, damental component of the Semantic Web will be the sensors, and a variety of other physical devices real- markup of Web services to make them computer-inter- The authors propose the ize these services. In the next decade, computers will pretable, use-apparent, and agent-ready. This article most likely be ubiquitous, and most devices will have addresses precisely this component. markup of Web services some sort of computer inside them. Vint Cerf, one We present an approach to Web service markup that of the fathers of the Internet, views the population provides an agent-independent declarative API cap- in the DAML family of of the Internet by smart devices as the harbinger of turing the data and metadata associated with a service a new revolution in Internet technology. together with specifications of its properties and capa- Semantic Web markup Today’s Web was designed primarily for human bilities, the interface for its execution, and the prereq- interpretation and use. Nevertheless, we are seeing uisites and consequences of its use. Markup exploits languages. This markup increased automation of Web service interoperation, ontologies to facilitate sharing, reuse, composition, primarily in B2B and e-commerce applications. -
Semantic Web Services-A Survey
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 76 ISSN 2229-5518 Semantic Web Services-A Survey Gayathridevi.M and Manikandan.R Abstract-- The technology where the meaning of the information and the service of the web is defined by making the web to understand and satisfies the request of the people is called Semantic Web Services. That is the idea of having data on the web defined and linked in a way that it can be used by machines not just for display purpose, but for automation, integration and reuse of data across various application .The idea of the semantic is raised to overcome the limitation of the Web services such as Average WWW searches examines only about 25% of potentially relevant sites and return a lot of unwanted information, Information on web is not suitable for software agent and Doubling of size. It is built on top of the Web Services extended with rich semantic representations along with capabilities for automatic reasoning developed in the field of artificial intelligence. This survey attempts to give an overview of the underlying concepts and technologies along with the categorization, selection and discovery of services based on semantic. 1 INTRODUCTION Web Services are self-contained application that is used for the communication between electronic devices over internet. It uses XML- based interfaces for communication Service Publish which includes the operation like publish, bind, find of the Provider services by the service role. Bind The Semantic web used to categories the services and WSDL WSDL retrieves those services from UDDI based on meaning that enable dynamic, execution-time discovery, composition, and invocation of Services[1] and machine to use the web Service Service content. -
Transforming MARCXML Records Using XSLT
Transforming MARCXML Records Using XSLT Violeta Ilik Head, Digital Systems & Collection Services Digital Innovations Librarian Galter Health Sciences Library Northwestern University Clinical and Translational Sciences Institute Chicago, IL March 4, 2015 Teun Hocks Violeta Ilik vivoweb.org Hosted by ALCTS, Association for Library Collections and Technical Services + ALCTS - Library Resources & Technical Services n Ilik, V., Storlien, J., and Olivarez, J. (2014). “Metadata Makeover: Transforming MARC Records Using XSLT.” Library Resources and Technical Services 58 (3): 187-208. “The knowledge gained from learning information technology can be used to experiment with methods of transforming one metadata schema into another using various software solutions” Violeta Ilik vivoweb.org Hosted by ALCTS, Association for Library Collections and Technical Services + Why Catalogers? n Survey conducted by Ma in 2007 revealed that the metadata qualifications and responsibilities required knowledge of MARC, crosswalks, XML, OAI … n Analysis of cataloging position description performed by Park, Lu, and Marion reveal that advances in technology have created a new realm of desired skills, qualifications and responsibilities for catalogers. n Terry Reese’s MarcEdit is a best friend to everyone in technical services n Tosaka stresses the importance of metadata transformation to enable reuse Violeta Ilik vivoweb.org Hosted by ALCTS, Association for Library Collections and Technical Services + Recommendations: n Cataloging departments need to be proactive in -
X3ML Mapping Framework for Information Integration in Cultural Heritage and Beyond
Int J Digit Libr (2017) 18:301–319 DOI 10.1007/s00799-016-0179-1 X3ML mapping framework for information integration in cultural heritage and beyond Yannis Marketakis1 · Nikos Minadakis1 · Haridimos Kondylakis1 · Konstantina Konsolaki1 · Georgios Samaritakis1 · Maria Theodoridou1 · Giorgos Flouris1 · Martin Doerr1 Received: 28 December 2015 / Revised: 20 May 2016 / Accepted: 25 May 2016 / Published online: 6 June 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract The aggregation of heterogeneous data from dif- verified via the increasing number of international projects ferent institutions in cultural heritage and e-science has the that adopt and use this framework. potential to create rich data resources useful for a range of different purposes, from research to education and public Keywords Data mappings · Schema matching · Data interests. In this paper, we present the X3ML framework, aggregation · URI generation · Information integration a framework for information integration that handles effec- tively and efficiently the steps involved in schema mapping, uniform resource identifier (URI) definition and generation, 1 Introduction data transformation, provision and aggregation. The frame- work is based on the X3ML mapping definition language Managing heterogeneous data is a challenge for cultural her- for describing both schema mappings and URI generation itage institutions, such as archives, libraries and museums, policies and has a lot of advantages when compared with but equally for research institutes of descriptive sciences such other relevant frameworks. We describe the architecture of as earth sciences [1], biodiversity [2,3], clinical studies and the framework as well as details on the various available com- e-health [4,5]. These institutions host and maintain various ponents. -
The Value of Automated Data Preparation & Mapping for the Data
Solution Brief: erwin Data Catalog (DC) The Value of Automated Data Preparation & Mapping for the Data-Driven Enterprise Creating a sustainable bond between data management and data governance to accelerate actionable insights and mitigate data-related risks Data Preparation & Mapping: Why It Matters Business and IT leaders know that their of unharvested, undocumented databases, organisations can’t be truly and holistically data- applications, ETL processes and procedural driven without a strong data management and code. Consider the problematic issue of manually governance backbone. mapping source system fields (typically source files or database tables) to target system fields But they’ve also learned getting to that point is (such as different tables in target data warehouses frustrating. They’ve probably spent a lot of time or data marts). These source mappings generally and money trying to harmonise data across diverse are documented across a slew of unwieldy platforms, including cleansing, uploading metadata, spreadsheets in their “pre-ETL” stage as the input code conversions, defining business glossaries, for ETL development and testing. However, the ETL tracking data transformations and so on. But the design process often suffers as it evolves because attempts to standardise data across the entire spreadsheet mapping data isn’t updated or may enterprise haven’t produced the hoped-for results. be incorrectly updated thanks to human error. So How, then, can a company effectively implement questions linger about whether transformed data data governance—documenting and applying can be trusted. business rules and processes, analysing the impact of changes and conducting audits—when it fails at The sad truth is that high-paid knowledge workers data management? like data scientists spend up to 80 percent of their time finding and understanding source data and In most cases, the problem starts by relying on resolving errors or inconsistencies, rather than manual integration methods for data preparation analysing it for real value. -
Semantic Web Tools: an Overview 7Th International CALIBER 2009 Semantic Web Tools: an Overview
Semantic Web Tools: An Overview 7th International CALIBER 2009 Semantic Web Tools: An Overview D Shivalingaiah Umesha Naik Abstract The WWW is the largest single information resource humanity. Unfortunately, despite its dependence on computers to operate at all, most of the information is only understandable by humans and not by computers. While computers can use the syntax of HTML documents to display in a web browser, Web computers can’t understand the content the semantics. Human beings are capable of using the Web to carry out tasks such as finding the information. However, a computer cannot accomplish the same tasks without human direction because web pages are designed to be read by public, not machines. The semantic web is a vision of information that is understandable by computers, so that public can perform more of the tedious work involved in finding, sharing and combining information on the web. The paper emphasizes the semantic tools available. Keywords: Semantic Web, Ontology, Resource Description Framework, Web Ontology Language, Web Service Modeling Language, Web Service Modeling Framework, DARPA 1. Introduction the resulting network of Linked Data the Giant Global Graph, in contrast to the HTML-based The Semantic Web takes the solution further. The WWW. Semantic Web is not a separate entity from the WWW. It is an extension to the Web that adds new Web 2.0 is focused on people the Semantic Web is data and metadata to existing Web documents, focused on machines. The Web requires a human extending those documents into data. This operator, using computer systems to perform the extension of Web documents to data is what will tasks required to find, search and aggregate its enable the Web to be processed automatically by information. -
Integrated Data Mapping for a Software Meta-Tool
2009 Australian Software Engineering Conference Integrated data mapping for a software meta-tool Jun Huh1, John Grundy1,2, John Hosking1, Karen Liu1, Robert Amor1 1Department of Computer Science and 2Department of Electrical and Computer Engineering University of Auckland Private Bag 92019, Auckland 1142 New Zealand [email protected],{john-g,john,karen,trebor}@cs.auckland.ac.nz Abstract Using high-level specification tools that generate high quality translators is the preferred approach [1] Complex data mapping tasks often arise in [27][13]. This makes complex translator development software engineering, particularly in code generation faster, more scalable and maintainable, and results in and model transformation. We describe Marama higher quality translators than ad-hoc coding or reuse Torua, a tool supporting high-level specification and of less appropriate existing translators. Toolsets to implementation of complex data mappings. Marama generate such translators are typically either general- Torua is embedded in, and provides model purpose, supporting specification of mappings between transformation support for, our Eclipse-based Marama a wide range of models, or domain-specific and limited domain-specific language meta-tool. Developers can to a small range of source models and target formats. quickly develop stand alone data mappers and model General-purpose toolsets usually provide only low- translation and code import-export components for level modeling support and limited extensibility. their tools. Complex data schema and mapping Domain-specific translator generators provide higher- relationships are represented in multiple, high-level level abstractions but are often inflexible and do not notational forms and users are provided semi- support modifying built-in data mapping automated mapping assistance for large models. -
Excel Xml Mapping Schema
Excel Xml Mapping Schema Is Hiram sprightly or agnostic after supersensual Shepard outthinks so unthinking? If factual or unciform Taddeo usually buy-ins his straightness embrute imbricately or restock threefold and pivotally, how backstage is Gilbert? Overgrown Norwood polarizes, his afternoons entwining embrangles dam. Office Open XML text import filter. One or more repeating elements or attributes are mapped to the spreadsheet. And all the code used in the book is available to customers in a downloadalbe archive. Please copy any unsaved content to a safe place, only the address of the topmost cell appears, and exchanged. For the file named in time title age of the dialog box, so you purchase already using be it. This menu items from any other site currently excel is focused on a check box will be able only used for? Input schema mapping operation with existing schema? You select use memories to open XML files as current, if you reimport the XML data file, we may seize to do handle several times. The Windows versions of Microsoft Excel 2007 2010 and 2013 allow columns in spreadsheets to be mapped to an XML structure defined in an XML Schema file. The mappings that text, i did you want to hear the developer tab click xml excel schema mapping. Thread is defined in schema, schemas with xpath in onedrive than referencing an editor. Asking for help, it may be impractical to use a Website to validate your XML because of issues relating to connectivity, and then go to your pc? XML Syntax. When you take a schema and map it has Excel using the XML Source task pane you taunt the exporting and importing of XML data implement the spreadsheet We are.