Messengers of the Universe-Cosmic Rays Exploring Supermassive Black Holes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calibration of the Surface Array of the Pierre Auger Observatory
29th International Cosmic Ray Conference Pune (2005) 7, 279–282 Calibration of the surface array of the Pierre Auger Observatory M. Aglietta, P.S. Allison, F. Arneodo, D. Barnhill, P. Bauleo, J.J. Beatty, X. Bertou, C. Bonifazi, N. Busca, A. Creusot, D. Dornic, A. Etchegoyen, A. Filevitch, P.L. Ghia, C.M. Grunfeld, I. Lhenry-Yvon, M.C. Medina, E. Moreno, G. Navarra, D. Nitz, T. Ohnuki, S. Ranchon, H. Salazar, T. Suomijarvi,¨ D. Supanitsky, A. Tripathi, M. Urban and L. Villasenor for the Pierre Auger Collaboration Pierre Auger Observatory, Av. San Mart´ın Norte 304, (5613) Malargue¨ , Argentina Presenter: P.S. Allison ([email protected]), usa-allison-PS-abs1-he14-poster The ground array of the Pierre Auger Observatory will consist of 1600 water Cherenkov detectors, deployed over 3000 km . The remoteness and large number of detectors required a simple, automatic remote calibration procedure. The primary physics calibration is based on the average charge deposited by a vertical and central throughgoing muon, determined with good precision at the detector via a novel rate-based technique and later with higher precision via charge histograms. This value is named the vertical-equivalent muon (VEM). The VEM and the other parameters needed to maintain this calibration over the full energy range and to assess the quality of the detector are measured every minute. This allows an accurate determination of the energy deposited in each detector when an atmospheric cosmic ray shower occurs. 1. Introduction The Pierre Auger Observatory is a hybrid experiment consisting of an air fluorescence detector as well as a surface detector (SD) using water Cherenkov tanks. -
Neutrino Searches at the Pierre Auger Observatory
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura Nuclear Physics B Proceedings Supplement (2013) 1–6 Neutrino searches at the Pierre Auger Observatory S. Pastora, for the Pierre Auger Collaborationb aInstitut de F´ısicaCorpuscular (CSIC-Universitat de Val`encia),Apartado de Correos 22085, 46071 Valencia, Spain bObservatorio Pierre Auger, Av. San Mart´ınNorte 304, 5613 Malarg¨ue, Argentina (Full author list: http://www.auger.org/archive/authors 2012 07.html) Abstract The surface detector array of the Pierre Auger Observatory is sensitive to ultra-high energy neutrinos in the cosmic radiation. Neutrinos can interact in the atmosphere close to ground (down-going) and, for tau neutrinos, through the Earth-skimming mechanism (up-going) where a tau lepton is produced in the Earth crust that can emerge and decay in the atmosphere. Both types of neutrino-induced events produce an inclined particle air shower that can be identified by the presence of a broad time structure of signals in the water-Cherenkov detectors. We discuss the neutrino identification criteria used and present the corresponding limits on the diffuse and point-like source fluxes. Keywords: Pierre Auger Observatory, Ultra-high energy neutrinos 1. Introduction searches for radio waves from extra-terrestrial neutrino interactions. One of the detection techniques is based The existence of cosmic neutrinos with energies in on the observation of extensive air showers (EAS) in the the EeV range and above is required by the observa- atmosphere initiated by UHE neutrinos, which could be tion of ultra-high energy cosmic rays (UHECRs). -
Rachen, Jörg P. Cosmic Ray Bound for Models of Extragalactic Neutr
PUBLISHED VERSION Mannheim, Karl; Protheroe, Raymond John; Rachen, Jörg P. Cosmic ray bound for models of extragalactic neutrino production Physical Review D, 2000; 63(2):023003 © 2000 American Physical Society http://link.aps.org/doi/10.1103/PhysRevD.63.023003 PERMISSIONS PERMISSIONS http://publish.aps.org/authors/transfer-of-copyright-agreement http://link.aps.org/doi/10.1103/PhysRevD.62.093023http://publish.aps.org/authors/transfer-of-copyright-agreement “The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright“The author(s), Act, 17 and U.S.C. in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C. §101, the employer named [below], shall have the following rights (the “Author Rights”): §101, the employer named [below], shall have the following rights (the “Author Rights”): [...] [...] 3. The right to use all or part of the Article, including the APS-prepared version without revision3. The right or modification, to use all or parton the of author(s)’the Article, web including home thepage APS or -employer’sprepared version website without and to makerevision copies or modification, of all or part on of the the author(s)’ Article, including web home the pageAPS- orprepared employer’s version website without and to revisionmake copies or modification, of all or part for of the the author(s)’ Article, including and/or thethe employer’s APS-prepared use versionfor educational without or researchrevision or purposes.” modification, for the author(s)’ and/or the employer’s use for educational or research purposes.” rd 3 April 2013 http://hdl.handle.net/2440/12754 PHYSICAL REVIEW D, VOLUME 63, 023003 Cosmic ray bound for models of extragalactic neutrino production Karl Mannheim* Universita¨ts-Sternwarte, Geismarlandstr. -
Cosmogenic Photon and Neutrino Fluxes in the Auger
Prepared for submission to JCAP Cosmogenic photon and neutrino fluxes in the Auger era Rafael Alves Batistaa Rogerio M. de Almeidab Bruno Lagoc Kumiko Koterad;e aUniversidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Rua do Matão, 1226, 05508-090, São Paulo-SP, Brazil bUniversidade Federal Fluminense, EEIMVR; Volta Redonda-RJ, Brazil cCentro Federal de Educação Tecnológica Celso Suckow da Fonseca – Campus Nova Friburgo (CEFET/RJ – Campus Nova Friburgo), Nova Friburgo-RJ, Brazil dSorbonne Universités, UPMC Univ. Paris 6 et CNRS; UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France eLaboratoire AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Université Paris Diderot; F-91191 Gif-sur-Yvette, France E-mail: [email protected] Abstract. The interaction of ultra-high-energy cosmic rays (UHECRs) with pervasive pho- ton fields generates associated cosmogenic fluxes of neutrinos and photons due to photo- hadronic and photonuclear processes taking place in the intergalactic medium. We perform a fit of the UHECR spectrum and composition measured by the Pierre Auger Observatory for four source emissivity scenarios: power-law redshift dependence with one free parameter, active galactic nuclei, gamma-ray bursts, and star formation history. We show that negative source emissivity evolution is favoured if we treat the source evolution as a free parameter. In all cases, the best fit is obtained for relatively hard spectral indices and low maximal rigidities, for compositions at injection dominated by intermediate nuclei (nitrogen and silicon groups). In light of these results, we calculate the associated fluxes of neutrinos and photons. Finally, we discuss the prospects for the future generation of high-energy neutrino and gamma-ray arXiv:1806.10879v3 [astro-ph.HE] 3 Jan 2019 observatories to constrain the sources of UHECRs. -
Photon Search @ the Pierre Auger Observatory
1 Photon energy goes to an extreme Hybrid 2 Figure from J.Knapp Why do we study ultra high energy photons? • Pointing back to the UHECR source p + p → p +p + π0 • Indirect test of mass composition and without relying on the hadronic models γ + 56Fe 55Fe+n photo-disintegration 2.7 K ϒ ν + 0 + photo-pion interaction, GZK γ 2.7 K + p Δ p +π or n+ π • Possible new physics? (Lorentz invariance violation) Galaverni, Sigl PRL 2008 3 Why do we study ultra high •Verify cosmological energy photons? models (decay of Super Heavy Dark Matter / relic ν interact with UHE ν and create Z - Burst) •Constrain astrophysical scenarios such as source energy spectrum, extragalactic magnetic field 4 p + p → p +p + N(π+ +π-+ π0) The Pierre Auger Observatory -A hybrid detection • 3000 km2 located in Argentina • 875 g cm-2 (vertical above sea level) • 1660 water-Cherenkov detectors (~100% duty cycle) • 4 fluorescence telescope sites (moonless clear nights ~ 13%) • Calorimetric measurement of the energy FD Fluorescence Ecal = ∫ dE/dX dX detector SD Surface detector 5 Photon induced air shower signature: * larger Xmax * smaller Nμ P. Homola 6 Photon signature: FADC time trace in the water-Cherenkov detector proton and photon simulations Vertical shower Inclined shower 30 < S < 40 VEM, 650 < r < 700 m 7 ‘Traditional’ methods for SD photon searches (30 – 60 degree) Sb Signal risetime t1/2 Δ Challenges: -Photons may have Xmax below ground 8 -Problems of thinning etc to get reliable Radius of curvature Rc simulations ... 8 A new SD method – the entity method •A parameter based on information from the beginning of the time trace • Muons arrive earlier than the EM component Vertical, mean component traces, proton simulations Erec μ γ e± 9 Procedure for calculating the entity parameter 1. -
Dissertation Calibration of the Pierre Auger Observatory Fluorescence
Dissertation Calibration of the Pierre Auger Observatory Fluorescence Detectors and the Effect on Measurements Submitted by Ben Gookin Department of Physics In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2015 Doctoral Committee: Advisor: John Harton Walter Toki Kristen Buchanan Carmen Menoni Copyright by Ben Gookin 2015 All Rights Reserved Abstract Calibration of the Pierre Auger Observatory Fluorescence Detectors and the Effect on Measurements The Pierre Auger Observatory is a high-energy cosmic ray observatory located in Malarg¨ue, Mendoza, Argentina. It is used to probe the highest energy particles in the Universe, with energies greater than 1018 eV, which strike the Earth constantly. The observatory uses two techniques to observe the air shower initiated by a cosmic ray: a surface detector composed of an array of more than 1600 water Cherenkov tanks covering 3000 km2, and 27 nitrogen fluorescence telescopes overlooking this array. The Cherenkov detectors run all the time and therefore have high statistics on the air showers. The fluorescence detectors run only on clear moonless nights, but observe the longitudinal development of the air shower and make a calorimetric measure of its energy. The energy measurement from the the fluorescence detectors is used to cross calibrate the surface detectors, and makes the measurements made by the Auger Observatory surface detector highly model-independent. The calibration of the fluorescence detectors is then of the utmost importance to the measurements of the Ob- servatory. Described here are the methods of the absolute and multi-wavelength calibration of the fluorescence detectors, and improvements in each leading to a reduction in calibration uncertainties to 4% and 3.5%, respectively. -
Pierre Auger Observatory
Pierre Auger Observatory FCPA Retreat 2010 PAO @ FNAL Eun-Joo Ahn, Aaron Chou, Henry Glass, Carlos Hojvat, Peter Kasper, Frederick Kuehn, Paul Lebrun, Paul Mantsch, Peter Mazur 450 scientists from 18 countries 17 peer-reviewed full collaboration publications Pierre Auger Observatory — Science Mission ✦ Fermilab’s mission is to study the fundamental properties of matter and energy ✦ The PAO studies the nature of the highest energy matter particles in the universe ★ The only experiment able to probe matter in this regime ★ Determining the properties of particle interactions at greater than a hundred TeV center of mass energy (~10-30 times the LHC energy) ★ Produced the only evidence related to the nature of potential sources via anisotropy — correlation with local large scale matter distribution ★ First sky map at energies ≥10 Joules The mission of OHEP is to understand how our universe works at its most fundamental level http://www.er.doe.gov/hep/mission/index.shtml 2 Pierre Auger Observatory — Leading the Field ✦ The PAO is the largest cosmic ray experiment (> 1018 eV) ✦ Size matters — low rate of events at the highest energies ✦ Combines two established detection techniques ๏ Fluorescence telescopes provide energy calibration and shower properties ๏ Surface array provides statistics Surface Array (3000 km2) •1642 surface detector tank assemblies deployed ๏ Detector upgrades/enhancements •1619 surface detector stations with water proceeding •1587 surface detector stations have electronics Fluorescence Detectors •24 telescopes (6 at each site) 3 •+3 telescopes for HEAT Pierre Auger Observatory — Leading the Field ✦ Northern site science case has strong international support ๏ See “Important Notes: Auger North” ― slide 21 PASAG report, S. -
Ultra-High-Energy Cosmic Rays
Ultra-High-Energy Cosmic Rays Luis A. Anchordoqui Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA Department of Physics, Graduate Center, City University of New York, NY 10016, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA Abstract In this report we review the important progress made in recent years towards understanding the experimen- tal data on ultra-high-energy (E & 109 GeV) cosmic rays. We begin with a general survey of the available data, including a description of the energy spectrum, the nuclear composition, and the distribution of arrival directions. At this point we also give a synopsis of experimental techniques. After that, we introduce the fundamentals of cosmic ray acceleration and energy loss during propagation, with a view of discussing the conjectured nearby sources. Next, we survey the state of the art regarding the high- and ultra-high-energy cosmic neutrinos which may be produced in association with the observed cosmic rays. These neutrinos could constitute key messengers identifying currently unknown cosmic accelerators, possibly in the distant universe, because their propagation is not influenced by background photon or magnetic fields. Subse- quently, we summarize the phenomenology of cosmic ray air showers. We describe the hadronic interaction models used to extrapolate results from collider data to ultra-high energies and the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish the primary particle species. In the end, we explore how ultra-high-energy cosmic rays can be used as probes of beyond standard model physics models. -
Ultra-High Energy Neutrinos Searches with the Pierre Auger Observatory
SciPost Physics Submission Ultra-high energy neutrinos searches with the Pierre Auger Observatory M. Trini1, for the Pierre Auger Collaboration2* 1 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia 2 Observatorio Pierre Auger, Av. San Mart´ın Norte 304, 5613 Malargue,¨ Argentina * auger [email protected] Proceedings for the 15th International Workshop on Tau Lepton Physics, Amsterdam, The Netherlands, 24-28 September 2018 scipost.org/SciPostPhysProc.Tau2018 Abstract In the EeV range, neutrinos are expected to be produced by ultra-high energy cosmic rays interactions with the Cosmic Microwave Background during propagation in the Universe. We report on the search for ultra-high energy neutrinos in data collected with the Surface Detector of the Pierre Auger Observatory. The searches are most efficient in the zenith angle range from 60 degrees to 95 degrees with tau neutrinos skimming in the Earth playing a dominant role. The present non-detection of UHE neutrinos in the Pierre Auger Observatory excludes the most optimistic scenarios of neutrino production in terms of UHE cosmic rays chemical composition and cosmological evolution of the acceleration sites. We also report on the searches for neutrinos in coincidence with the recent Gravitational Wave events detected by LIGO/Virgo. 1 Introduction The observation of ultra-high energy cosmic rays (UHECRs) of energies above 1017 eV, implies the production of ultra-high energy neutrinos (UHEns). Above ∼5x1019eV cosmic rays, com- posed of protons and heavier nuclei, interact with Cosmic Microwave Background photons and produce cosmogenic UHEns. UHEns are also expected to be produced from the decay of charged pions created in the interactions of > 1017 eV accelerated hadrons with surrounding matter and radiation at the source. -
Extragalactic Cosmic Rays and the Galactic/Extragalactic Transition
ISAPP School 2018 : “LHC meets Cosmic Rays” CERN, Geneva, Switzerland (Oct. 29th – Nov. 2nd) Extragalactic cosmic rays and the Galactic/extragalactic transition Étienne Parizot (APC, Université Paris Diderot) E.T. d’Orion @parizot etienne.parizot Mixity & gender equity Extreme Universe Space Observatory [2] Overview ✧ UHECRs: very brief phenomenology UHECR = Ultra-high-energy cosmic rays ✧ Acceleration ✧ Propagation ✧ Energy spectrum ✧ Composition ✧ Arrival directions (anisotropies) ✧ The GCR/EGCR transition GCR = Galactic cosmic rays ✧ What is the issue, why is it important? EGCR = extragalactic cosmic rays ✧ How can we learn something about it? ✧ What can we learn from it? ✧ Lessons from the GCR/GCR transition ✧ General phenomenology of a transition ✧ Lessons for the GCRs ✧ Lessons for the EGCRs ✧ An example of a “working”, two-component model CERN — ISAPP School 2018 — E. Parizot 1/11/2018 “Extragalactic cosmic rays and the Galactic/extragalactic transition” (APC, Paris 7) [3] Preliminary comment ✧ Cosmic rays gave birth to Particle Physics ✧ First window opened onto the subatomic world ✧ Discovery of antimatter (1932) ✧ Discovery of the muon (1936) ✧ Discovery of pions (1947) ✧ Discovery of “strange particles”, K, L, X, S… (1949–1953) ✧ Particle Physics repudiated cosmic rays ✧ CERN created in 1954 ✧ Particle physics doesn’t need cosmic rays anymore (so she believes!) ✧ Cosmic rays are back and welcome! ✧ LHC: 1013 eV ; UHECRs: 1020 eV ✧ Particle physics needs cosmic rays => “LHC meets cosmic rays”… again! ✧ Cosmic rays need particle -
The Pierre Auger Observatory Upgrade
EPJ Web of Conferences 210, 06002 (2019) https://doi.org/10.1051/epjconf/201921006002 UHECR 2018 AugerPrime: the Pierre Auger Observatory Upgrade Antonella Castellina1;∗ for the Pierre Auger Collaboration2;∗∗;∗∗∗ 1INFN, Sezione di Torino and Osservatorio Astrofisico di Torino (INAF), Torino, Italy 2Av. San Martín Norte 304, 5613 Malargüe, Argentina Abstract. The world largest exposure to ultra-high energy cosmic rays accumulated by the Pierre Auger Observatory led to major advances in our understanding of their properties, but the many unknowns about the nature and distribution of the sources, the primary composition and the underlying hadronic interactions prevent the emergence of a uniquely consistent picture. The new perspectives opened by the current results call for an upgrade of the Observatory, whose main aim is the collection of new information about the primary mass of the highest energy cosmic rays on a shower-by-shower basis. The evaluation of the fraction of light primaries in the region of suppression of the flux will open the window to charged particle astronomy, allowing for composition- selected anisotropy searches. In addition, the properties of multiparticle production will be studied at energies not covered by man-made accelerators and new or unexpected changes of hadronic interactions will be searched for. After a discussion of the motivations for upgrading the Pierre Auger Observatory, a description of the detector upgrade is provided. We then discuss the expected performances and the improved physics sensitivity of the upgraded detectors and present the first data collected with the already running Engineering Array. 1 Introduction the integral flux measured at Auger drops by a factor of two below what would be expected without suppression, Although we still lack a comprehensive theory capable of E = (23±1(stat.)±4(syst.)) EeV, is quite different from explaining where the ultra-high energy cosmic rays (UHE- 1=2 the E = 53 EeV predicted for this scenario. -
Calibration of the Underground Muon Detector of the Pierre Auger Observatory
Journal of Instrumentation PAPER • OPEN ACCESS Calibration of the underground muon detector of the Pierre Auger Observatory To cite this article: The Pierre Auger collaboration et al 2021 JINST 16 P04003 View the article online for updates and enhancements. This content was downloaded from IP address 129.13.72.195 on 01/06/2021 at 16:50 Published by IOP Publishing for Sissa Medialab Received: December 16, 2020 Accepted: January 25, 2021 Published: April 6, 2021 Calibration of the underground muon detector of the Pierre Auger Observatory 2021 JINST 16 P04003 The Pierre Auger collaboration E-mail: [email protected] Abstract: To obtain direct measurements of the muon content of extensive air showers with energy above 1016.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m2 close to the intersection of the shower axis with the ground to much less than one per m2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition.