What Is the Nature and Origin of the Highest-Energy Particles in the Universe? ASTRO 2020 SCIENCE WHITE PAPER

Total Page:16

File Type:pdf, Size:1020Kb

What Is the Nature and Origin of the Highest-Energy Particles in the Universe? ASTRO 2020 SCIENCE WHITE PAPER What is the Nature and Origin of the Highest-Energy Particles in the Universe? ASTRO 2020 SCIENCE WHITE PAPER w FRED SARAZIN*, Colorado School of Mines; LUIS ANCHORDOQUI†, City University of New York; JAMES BEATTY, Ohio State University; DOUGLAS BERGMAN, University of Utah; CORBIN COVAULT, Case Western Reserve University; GLENNYS FARRAR, New York University; JOHN KRIZMANIC, University of Maryland–Baltimore County; DAVID NITZ, Michigan Technological University; ANGELA OLINTO, University of Chicago; PETER TINYAKOV, Université libre de Bruxelles; MICHAEL UNGER, Karlsruhe Institute of Technology; LAWRENCE WIENCKE, Colorado School of Mines *[email protected][email protected] COSMOLOGY AND FUNDAMENTAL PHYSICS · MULTI-MESSENGER ASTRONOMY AND ASTROPHYSICS 23 1 The big questions and goals for the next decade 24 Ultra-High-Energy Cosmic-Ray (UHECR) astronomy in the next decade aims to answer the ques- 25 tions: What is the nature and origin of UHECRs? How are UHECRs accelerated to such extreme 26 energies? Are there multiple types of sources and acceleration mechanisms? Do UHECRs consist 27 of both protons and heavier nuclei, and how does the composition evolve as a function of energy? 28 In order to address these questions, the goals for the next decade will be to: identify one or more 29 nearby UHECR sources, refine the spectrum and composition of the highest-energy Galactic and 30 extragalactic cosmic-rays, exploit extensive air showers (EAS) to probe particle physics inaccessi- 31 ble at accelerators, and develop the techniques to make charged-particle astronomy a reality. 32 This agenda is largely achievable in the next decade, thanks to major experimental upgrades un- 33 derway and new ground observatories and space missions in development. In combination with 34 improved astrophysical neutrino statistics and resolution, the future UHECR observatories will 35 enable a powerful multi-messenger approach to uncover and disentangle the common sources of 36 UHECRs and neutrinos. 37 2 The UHECR paradigm shift 38 Synopsis: Results from the current large hybrid detectors have dispelled the pre-existing simple 39 UHECR picture. A new paradigm is emerging and needs to be clarified and understood. 40 The discoveries made over the past decade have transformed our understanding of UHECRs and 41 their sources. Prior to the development of very large, hybrid detectors, it was commonly believed 42 that UHECRs were protons, that a spectral cutoff (if indeed there was one!) should be due to 43 “GZK” energy losses on the cosmic microwave background [1,2], that the Galactic-extragalactic 44 transition would be marked by a shift from Galactic iron to extragalactic protons, and that the ankle 45 feature at a few EeV marked the Galactic-extragalactic transition. We know now that this simple 46 picture is mostly, if not entirely, wrong. spp (TeV) 50 100 500 47 This revolution in our understanding was achieved 103 48 thanks to (i) hybrid detectors with air-fluorescence 49 telescopes and surface detectors, plus improved ] -1 50 measurement of fluorescence yields, giving much sr 2 -1 10 s 51 -2 better energy calibration and providing greater sen- m 1.6 F(E) 52 sitivity to composition; (ii) large aperture and high 53 statistics, essential to reducing the systematics and [GeV 10 54 particle-physics uncertainties in composition stud- 2.6 E Telescope Array 55 ies and providing sensitivity to tiny anisotropies in Auger 56 the UHECRs arrival directions; and (iii) all-sky sen- 1 57 sitivity thanks to detectors in both hemispheres, with 1018 1019 1020 [eV]E 58 overlapping regions of the sky. Together, these Figure 1: UHECR spectra measured by TA and 59 advances enabled the spectrum, composition and Auger, located in the northern and southern hemi- 60 anisotropies to be measured with higher resolution 17 20 spheres, respectively (adapted from [3]). 61 and smaller systematics from 10 to above 10 eV. 62 UHECR spectrum – ankle and flux suppression: well established but not well explained 63 As shown in Fig.1, the UHECR energy spectrum can be roughly described by a twice-broken 64 power law [4–8]. The first break is a hardening of the spectrum, known as “the ankle.” The sec- 2 65 ond, an abrupt softening of the spectrum, may be interpreted as the long-sought GZK cutoff [1,2], 66 or else may correspond to the “end-of-steam” for cosmic accelerators [9]. The differential en- 67 ergy spectra measured by the Telescope Array (TA) experiment and the Pierre Auger Observatory 19 68 (Auger) agree within systematic errors below 10 eV. However, even after energy re-scaling, a 69 large difference remains at and beyond the flux suppression [10] and could be hinting at fundamen- 70 tal differences between the northern and southern UHECR skies, since the spectra seem to agree 71 at all energies in the common region of the sky [11, 12]; see however [13]. 72 UHECR primary composition – a more complex picture emerges 73 The atmospheric column depth at which the longitudinal development of a cosmic-ray shower 74 reaches maximum (Xmax) is a powerful observable to determine the UHECR nuclear composition. 75 The Xmax measurements of both TA [14, 15] and Auger [16–19] indicate a predominantly light 76 composition at around the ankle. At the highest energies (above 10 EeV), the Auger Collaboration 77 reported a significant slowdown of the growth of average shower maximum with energy as well as 78 a decrease of the shower-to-shower fluctuations of Xmax with energy. Both observations suggest 79 a gradual increase of the average mass of cosmic rays with energy and the interpretation of the 80 data with LHC-tuned hadronic interaction models gives a mean baryon number A ≈ 14 − 20 at 19:5 81 E ≈ 10 eV. The joint working group on composition concluded that the measurements of the 82 average shower maximum by TA and Auger are compatible within experimental uncertainties at 83 all energies [20, 21]. The observed decrease of the standard deviation of the Xmax distributions 84 reported by Auger can currently neither be confirmed nor ruled out by TA because of statistical 85 limitations. Thus, the most recent data of UHE observatories revealed a complex evolution of the 86 cosmic-ray composition with energy that challenges previous simple models of CR sources. 87 UHECR Anisotropy – where are the sources? 8988 Composition measurements have led to a 90 paradigm shift, with cosmic rays now un- 91 derstood to be light (proton dominated) near 18 92 10 eV and evolving towards heavier com- 93 position with increasing energy, spanning a 94 narrow range of atomic masses at each en- 95 ergy. Below the ankle, the arrival direc- Figure 2: Sky map, in equatorial coordinates, of local over- 96 tions are highly isotropic [23], arguing that and under-densities in units of standard deviations of UHECRs 97 these protons must be of extra-galactic ori- above 47 ± 7 EeV. Taken from [28]. 98 gin. They are consistent with being secondary products of the photo-disintegration of UHECR 99 nuclei in the environment of their sources [24]. At higher energies, Galactic and extragalactic de- 100 flections of UHECR nuclei are expected to smear point sources into warm/hot spots, for which 101 evidence is accumulating. TA has recorded an excess above the isotropic background-only ex- 19:75 102 pectation in cosmic rays with energies above 10 eV [25, 26], while Auger has reported a 103 possible correlation with nearby starburst galaxies, with a (post-trial) 4σ significance, for events 19:6 104 above 10 eV [27]. A slightly weaker association (2:7σ) with active galactic nuclei emitting 19:78 105 γ-rays is also found in Auger events above 10 eV [27]. A blind search for anisotropies com- 106 bining Auger and TA data has been recently carried out, with the energy scales equalized by the ◦ 107 flux in the common declination band [28]. The most-significant excess is obtained for a 20 search 108 radius, with a global (post-trial) significance of 2:2σ. The local (Li-Ma [29]) significance map of 109 this study is shown in Fig.2. The tantalizing visual correlation of high-significance regions with 110 the supergalactic plane is currently under study within the Auger/TA anisotropy working group. 3 111 UHECR neutrino – the missing GZK neutrinos and targets of opportunity 16 112 The non-observation of neutrino candidate events beyond background expectations above 10 eV 113 by IceCube [30], Auger [31], and ANITA [32] severely constrains the magnitude of the very high- 114 energy neutrino flux. This flux has a nearly guaranteed component from the decays of pions pro- 115 duced by UHECR protons interacting en route to Earth [33]. The accumulation of these neutrinos 116 over cosmological time, known as the cosmogenic neutrino flux, constitutes a powerful tool of the 117 multi-messenger program. IceCube, Auger, and ANITA limits already challenge models in which 118 the highest energy UHECRs are proton-dominated [34, 35]. Additionally, UHECR experiments 119 add the capability of searching for neutrinos from target-of-opportunity events [36–38]. 120 Closing the loop – Particle physics with UHECRs 121 Essential to accurate composition determination is the correct understanding of the physics of 122 UHE air showers, which requires accurate modeling of particle physics at center-of-mass ener- 123 gies up to hundreds of TeV – far beyond the 14 TeV reach of the Large Hadron Collider (LHC). 124 Internal-consistency studies of UHE showers show that state-of-the-art LHC-tuned hadronic event 125 generators do not correctly reproduce in detail the multitude of observables that can be probed 126 by UHECR detectors [39, 40]. However with the even more powerful observables which will be 127 provided by the upgraded and next-generation detectors, and the continuing intensive efforts of the 128 particle physics community to improve the models, there is every reason to believe that UHECR 129 air showers will become a potent tool to extend our understanding of hadronic interactions well 130 into the hundreds of TeV regime.
Recommended publications
  • Electronic Newsletter 2011-2012, Part 2 April 2012 APS Meeting
    Electronic Newsletter 2011-2012, Part 2 March 10, 2012 In this issue April 2012 APS Meeting • April 2012 Meeting, Atlanta, Georgia • Exec Comm Elections • Annual Business Meeting • Plenary Sessions • Lunch with the Experts • DAP Session Schedule • Invited Session Highlights APS DAP Officers 2011-2012: Chair: Rocky Kolb Chair-Elect: Clifford Will Past Chair: Dan McCammon Vice Chair: Angela Olinto Secretary/Treasurer: Corbin Covault Deputy Sec./Treasurer: Grzegorz Madejski Member-at-Large: Alicia Soderberg Member-at-Large: Lynn Cominsky Member-at-Large: Rachel Bean Member-at-Large: Finalize your plans now to attend the April 2012 meeting held Amber Miller this year in Atlanta, Georgia. This year’s theme is 100 Years of Cosmic Ray Physics, a theme that resonates in several exciting Councilor: areas of particular interest to the membership of the Division Neil Cornish of Astrophysics. A number of plenary and invited sessions will feature presentations by DAP members. Here are the key details: Questions? Comments? What: April 2012 APS Meeting Newsletter Editor: Corbin Covault When: March 31 through April 3, 2012 [email protected] Where: Hyatt Regency Hotel, Atlanta, Georgia More: Information on Registration, Lodging, Program, etc: go to http://www.aps.org/meetings/april Division of Astrophysics Executive Committee Elections: Each year the Division of Astrophysics (DAP) of the APS elects new members for the open positions on the DAP executive committee. A nominating committee has been appointed by the current executive committee.The Division of Astrophysics (DAP) will be holding elections to fill vacancies for three open positions in DAP that will be selected this year.
    [Show full text]
  • POEMMA-IPA2017-Krizmanic.Pdf
    POEMMA OWL Orbing Wide-field Light-collectors CHANT CHerenkov from Astrophysical Neutrinos Telescope John Krizmanic (NASA/GSFC/CRESSTII/UMBC) for the POEMMA study team IPA2017 09-May-17 NASA Astrophysics Probe Mission Concept Studies POEMMA NASA Solicitaon NNH16ZDA001N-APROBES (Scope of Program): Announced: 19-Feb-16 Due Date: 15-Nov-16 Selecon: 17-Mar-17 NASA has started preparaons for the 2020 Astronomy and Astrophysics Decadal Survey (hp:// science.nasa.gov/astrophysics/2020-decadal-survey-planning/). One of the tasks of the 2020 Decadal Survey Commiee will be to recommend a porolio of astrophysics missions. The Decadal Survey Commiee may choose to recommend a porolio of missions containing a mix of priorized large- and medium-size mission concepts, or even a program of competed medium-size missions. NASA and the community are interested in providing appropriate input to the 2020 Decadal Survey regarding medium-size mission concepts, also referred to as Astrophysics Probe concepts. To this end, NASA is solicing proposals to conduct mission concept studies for Astrophysics Probe missions. Following peer review of the proposed mission concept studies, NASA will select a small number of proposals for 1.5 year (18 month) funded studies. Results of the selected studies will be provided by NASA as input to the 2020 Decadal Survey. Astrophysics Probes are envisioned to have a total lifecycle (NASA Phases A through E) cost between that of a MIDEX mission (~$400M) and ~$1B. Proposals for concept studies may envision missions that include contribuons from other agencies (naonal or internaonal), industry, and universies. Should NASA choose to develop a mission that flows from any selected mission concept study, the responsibility for that mission will be assigned by NASA; there is no expectaon that the mission concept study team or par+cipa+ng organiza+on FINAL REPORTS DUE SEPTEMBER 2018 IPA2017 09-May-17 2 POEMMA Study Collaboraon POEMMA University of Chicago: Angela V.
    [Show full text]
  • Astronomy, Astrophysics, and Astrobiology
    ASTRONOMY, ASTROPHYSICS, AND ASTROBIOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON SPACE & SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FOURTEENTH CONGRESS SECOND SESSION July 12, 2016 Serial No. 114–87 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 20–916PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER, JR., ZOE LOFGREN, California Wisconsin DANIEL LIPINSKI, Illinois DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas SUZANNE BONAMICI, Oregon MICHAEL T. MCCAUL, Texas ERIC SWALWELL, California MO BROOKS, Alabama ALAN GRAYSON, Florida RANDY HULTGREN, Illinois AMI BERA, California BILL POSEY, Florida ELIZABETH H. ESTY, Connecticut THOMAS MASSIE, Kentucky MARC A. VEASEY, Texas JIM BRIDENSTINE, Oklahoma KATHERINE M. CLARK, Massachusetts RANDY K. WEBER, Texas DONALD S. BEYER, JR., Virginia JOHN R. MOOLENAAR, Michigan ED PERLMUTTER, Colorado STEPHEN KNIGHT, California PAUL TONKO, New York BRIAN BABIN, Texas MARK TAKANO, California BRUCE WESTERMAN, Arkansas BILL FOSTER, Illinois BARBARA COMSTOCK, Virginia GARY PALMER, Alabama BARRY LOUDERMILK, Georgia RALPH LEE ABRAHAM, Louisiana DRAIN LAHOOD, Illinois WARREN DAVIDSON, Ohio SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland FRANK D.
    [Show full text]
  • CHICAGO PHYSICS 3 Quantum Worlds
    CHICAGO PHYSICS 3 Quantum Worlds Welcome to the third issue of Chicago Physics! This past year has been an eventful one for our Department and we hope that you will join in our excitement. In our last issue, we highlighted our Strickland from University of Waterloo, the Department’s research on topological physics, third Maria Goeppert-Mayer Lecturer and the covering the breadth of what we do in this third female Physics Nobel Prize winner. research area from the nano to the cosmic The University has renamed the Physics scale and the unity in the concepts that drive Research Center that opened in 2018 as the us all. In the current issue, we will take you on Michelson Center for Physics in honor of a journey to the quantum world. former faculty member Albert A. Michelson, The year had several notable events. The a pioneering scientist who was the first physics faculty had a first-ever two-day retreat American to win a Nobel Prize in the sciences, in New Buffalo, MI. We discussed various and the first Physics Department chair at challenges in our department in a leisurely, the University of Chicago. The pioneering low-pressure atmosphere that allowed us work of Michelson is fundamental to the field to make progress on these challenges. This of physics and continues to support new retreat also helped us to bond!! We were discoveries more than a century later. pleased that many family members joined This year we also welcomed back our own lunch and dinner. This was immediately David Saltzberg (Ph.D., 1994) as the followed by a two-day retreat of our women annual Zachariasen lecturer who told of his and gender minority students.
    [Show full text]
  • Calibration of the Surface Array of the Pierre Auger Observatory
    29th International Cosmic Ray Conference Pune (2005) 7, 279–282 Calibration of the surface array of the Pierre Auger Observatory M. Aglietta, P.S. Allison, F. Arneodo, D. Barnhill, P. Bauleo, J.J. Beatty, X. Bertou, C. Bonifazi, N. Busca, A. Creusot, D. Dornic, A. Etchegoyen, A. Filevitch, P.L. Ghia, C.M. Grunfeld, I. Lhenry-Yvon, M.C. Medina, E. Moreno, G. Navarra, D. Nitz, T. Ohnuki, S. Ranchon, H. Salazar, T. Suomijarvi,¨ D. Supanitsky, A. Tripathi, M. Urban and L. Villasenor for the Pierre Auger Collaboration Pierre Auger Observatory, Av. San Mart´ın Norte 304, (5613) Malargue¨ , Argentina Presenter: P.S. Allison ([email protected]), usa-allison-PS-abs1-he14-poster The ground array of the Pierre Auger Observatory will consist of 1600 water Cherenkov detectors, deployed over 3000 km . The remoteness and large number of detectors required a simple, automatic remote calibration procedure. The primary physics calibration is based on the average charge deposited by a vertical and central throughgoing muon, determined with good precision at the detector via a novel rate-based technique and later with higher precision via charge histograms. This value is named the vertical-equivalent muon (VEM). The VEM and the other parameters needed to maintain this calibration over the full energy range and to assess the quality of the detector are measured every minute. This allows an accurate determination of the energy deposited in each detector when an atmospheric cosmic ray shower occurs. 1. Introduction The Pierre Auger Observatory is a hybrid experiment consisting of an air fluorescence detector as well as a surface detector (SD) using water Cherenkov tanks.
    [Show full text]
  • Neutrino Searches at the Pierre Auger Observatory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura Nuclear Physics B Proceedings Supplement (2013) 1–6 Neutrino searches at the Pierre Auger Observatory S. Pastora, for the Pierre Auger Collaborationb aInstitut de F´ısicaCorpuscular (CSIC-Universitat de Val`encia),Apartado de Correos 22085, 46071 Valencia, Spain bObservatorio Pierre Auger, Av. San Mart´ınNorte 304, 5613 Malarg¨ue, Argentina (Full author list: http://www.auger.org/archive/authors 2012 07.html) Abstract The surface detector array of the Pierre Auger Observatory is sensitive to ultra-high energy neutrinos in the cosmic radiation. Neutrinos can interact in the atmosphere close to ground (down-going) and, for tau neutrinos, through the Earth-skimming mechanism (up-going) where a tau lepton is produced in the Earth crust that can emerge and decay in the atmosphere. Both types of neutrino-induced events produce an inclined particle air shower that can be identified by the presence of a broad time structure of signals in the water-Cherenkov detectors. We discuss the neutrino identification criteria used and present the corresponding limits on the diffuse and point-like source fluxes. Keywords: Pierre Auger Observatory, Ultra-high energy neutrinos 1. Introduction searches for radio waves from extra-terrestrial neutrino interactions. One of the detection techniques is based The existence of cosmic neutrinos with energies in on the observation of extensive air showers (EAS) in the the EeV range and above is required by the observa- atmosphere initiated by UHE neutrinos, which could be tion of ultra-high energy cosmic rays (UHECRs).
    [Show full text]
  • Report of the Astronomy and Astrophysics Advisory Committee March 15, 2014
    Report of the Astronomy and Astrophysics Advisory Committee March 15, 2014 Andreas Albrecht Professor of Physics Voice: (530)-752-5989 Fax: (530)-752-4717 [email protected] March 15, 2014 Dr. Cora Marrett, Acting Director National Science Foundation 4201 Wilson Blvd., Suite 1205 Arlington, VA 22230 Mr. Charles F. Bolden, Jr., Administrator Office of the Administrator NASA Headquarters Washington, DC 20546-0001 Dr. Ernest Moniz, Secretary of Energy U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 The Honorable John D. Rockefeller, IV, Chairman Committee on Commerce, Science and Transportation United States Senate Washington, DC 20510 The Honorable Ron Wyden, Chairman Committee on Energy & Natural Resources United States Senate Washington, DC 20510 The Honorable Lamar Smith, Chairman Committee on Science, Space and Technology United States House of Representatives Washington, DC 20515 Dear Dr. Marrett, Mr. Bolden, Secretary Moniz, Chairman Rockefeller, Chairman Wyden, and Chairman Smith: I am pleased to transmit to you the annual report of the Astronomy and Astrophysics Advisory Committee for 2013–2014. The Astronomy and Astrophysics Advisory Committee was established under the National Science Foundation Authorization Act of 2002 Public Law 107-368 to: (1) assess, and make recommendations regarding, the coordination of astronomy and astrophysics programs of the Foundation and the National Aeronautics and Space Administration, and the Department of Energy; (2) assess, and make recommendations regarding, the
    [Show full text]
  • MEETING CONVENED 9:00 AM, 28 January 2016
    Minutes of the Meeting of the Astronomy and Astrophysics Advisory Committee 28-29 January 2016 National Science Foundation, Arlington, VA Members attending: James Buckley Angela Olinto (Chair) Craig Hogan William Smith (Vice Chair) David Hogg (Telecon) Angela Speck Klaus Honscheid Suzanne Staggs (Telecon) Buell Jannuzi Jean Turner (Telecon) Rachel Mandelbaum Martin White Lisa Kaltenegger (Telecon) Agency personnel: James Ulvestad, NSF-AST Jean Cottam, NSF-PHY Chris Davis, NSF-AST Vyacheslav Lukin, NSF-PHY Elizabeth Pentecost, NSF-AST Paul Hertz, NASA Philip Puxley, NSF-AST Hashima Hasan, NASA Richard Barvainis, NSF-AST Wilton Sanders, NASA Patricia Knezek, NSF-AST Ann Hornschemeier Cardiff, NASA Diana Phan, NSF-AST Rita Sambruna, NASA Thomas Wilson, NSF-AST Michael Garcia, NASA David Boboltz, NSF-AST Dominic Benford, NASA Ralph Gaume, NSF-AST Linda Sparke, NASA Nigel Sharp, NSF-AST Thomas Griffin, NASA-GSFC Ed Ajhar, NSF-AST Kathleen Turner, DOE Mangala Sharma, NSF-AST Eric Linder, DOE Randy Phelps, NSF-OIA Michael Salamon, DOE Ivy Kupec, NSF-OLPA Glen Crawford, DOE Vladimir Papitashvili, NSF-PLR` Anwar Bhatti, DOE James Whitmore, NSF-PHY Others: Amaya Moro Martin, STSci Dana Lehr, AURA Paola Castano, Smithsonian NASM Karin Hilser, USRA Priscilla Cushman, U. of Minnesota Jacqueline Hewitt, MIT Makenzie Lystrop, Ball Aerospace John O’Meara, St. Michael’s College Heidi Hammel, AURA Jason Rhodes, JPL Scott Dodelson, Fermilab Martin Still John Carlstrom, Univ. of Chicago Mitch Ambrose Pete Roming, SWRI David Trilling Heather Bloemhard, AAS Marcia Smith David Lang, NRC Jeff Foust Alberto Conti, Northrup Grumman Ted Oded Avraham Joseph Pesce, GMU/CU Roeland Van Der Marel, STScI Monty Di Biasi, SWRI MEETING CONVENED 9:00 AM, 28 January 2016 The Chair called the meeting to order.
    [Show full text]
  • David Norman Schramm October 25, 1945–December 19, 1997
    NATIONAL ACADEMY OF SCIENCES D AVID NORMAN SCHRAMM 1 9 4 5 — 1 9 9 7 A Biographical Memoir by M I C H A E L S . T URNER Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2009 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. DAVID NORMAN SCHRAMM October 25, 1945–December 19, 1997 B Y MICHAEL S . TURNER “ E LIVED LARGE IN ALL DIMENSIONS.” That is how Leon HLederman began his eulogy of David N. Schramm at a memorial service held in Aspen, Colorado, in December 1997. His large presence in space went beyond his 6-foot, 4-inch, 240-pound frame and bright red hair. In spite of his tragic death in a plane crash at age 52, Schramm lived large in the time dimension, too. At 18, he was married, a father, and a freshman physics major at MIT. After receiving his Ph.D. in physics from Caltech at 25, Schramm joined the faculty at the University of Texas at Austin. He left for Chicago two years later, and became the chair of the Astronomy and Astrophysics Department at the University of Chicago at age 2. He was elected to the National Academy of Sciences in 1986 at 40, became chair of the National Research Council’s Board on Physics and Astronomy at 47, and two years later became vice president for research at Chicago. He also had time for mountain climbing, summiting the highest peaks in five of the seven continents (missing Asia and Antarctica), driving a red Porsche with license plates that read “Big Bang,” and flying—owning four airplanes over his 12-year flying career and logging hundreds of hours annually.
    [Show full text]
  • Photon Search @ the Pierre Auger Observatory
    1 Photon energy goes to an extreme Hybrid 2 Figure from J.Knapp Why do we study ultra high energy photons? • Pointing back to the UHECR source p + p → p +p + π0 • Indirect test of mass composition and without relying on the hadronic models γ + 56Fe 55Fe+n photo-disintegration 2.7 K ϒ ν + 0 + photo-pion interaction, GZK γ 2.7 K + p Δ p +π or n+ π • Possible new physics? (Lorentz invariance violation) Galaverni, Sigl PRL 2008 3 Why do we study ultra high •Verify cosmological energy photons? models (decay of Super Heavy Dark Matter / relic ν interact with UHE ν and create Z - Burst) •Constrain astrophysical scenarios such as source energy spectrum, extragalactic magnetic field 4 p + p → p +p + N(π+ +π-+ π0) The Pierre Auger Observatory -A hybrid detection • 3000 km2 located in Argentina • 875 g cm-2 (vertical above sea level) • 1660 water-Cherenkov detectors (~100% duty cycle) • 4 fluorescence telescope sites (moonless clear nights ~ 13%) • Calorimetric measurement of the energy FD Fluorescence Ecal = ∫ dE/dX dX detector SD Surface detector 5 Photon induced air shower signature: * larger Xmax * smaller Nμ P. Homola 6 Photon signature: FADC time trace in the water-Cherenkov detector proton and photon simulations Vertical shower Inclined shower 30 < S < 40 VEM, 650 < r < 700 m 7 ‘Traditional’ methods for SD photon searches (30 – 60 degree) Sb Signal risetime t1/2 Δ Challenges: -Photons may have Xmax below ground 8 -Problems of thinning etc to get reliable Radius of curvature Rc simulations ... 8 A new SD method – the entity method •A parameter based on information from the beginning of the time trace • Muons arrive earlier than the EM component Vertical, mean component traces, proton simulations Erec μ γ e± 9 Procedure for calculating the entity parameter 1.
    [Show full text]
  • Dissertation Calibration of the Pierre Auger Observatory Fluorescence
    Dissertation Calibration of the Pierre Auger Observatory Fluorescence Detectors and the Effect on Measurements Submitted by Ben Gookin Department of Physics In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2015 Doctoral Committee: Advisor: John Harton Walter Toki Kristen Buchanan Carmen Menoni Copyright by Ben Gookin 2015 All Rights Reserved Abstract Calibration of the Pierre Auger Observatory Fluorescence Detectors and the Effect on Measurements The Pierre Auger Observatory is a high-energy cosmic ray observatory located in Malarg¨ue, Mendoza, Argentina. It is used to probe the highest energy particles in the Universe, with energies greater than 1018 eV, which strike the Earth constantly. The observatory uses two techniques to observe the air shower initiated by a cosmic ray: a surface detector composed of an array of more than 1600 water Cherenkov tanks covering 3000 km2, and 27 nitrogen fluorescence telescopes overlooking this array. The Cherenkov detectors run all the time and therefore have high statistics on the air showers. The fluorescence detectors run only on clear moonless nights, but observe the longitudinal development of the air shower and make a calorimetric measure of its energy. The energy measurement from the the fluorescence detectors is used to cross calibrate the surface detectors, and makes the measurements made by the Auger Observatory surface detector highly model-independent. The calibration of the fluorescence detectors is then of the utmost importance to the measurements of the Ob- servatory. Described here are the methods of the absolute and multi-wavelength calibration of the fluorescence detectors, and improvements in each leading to a reduction in calibration uncertainties to 4% and 3.5%, respectively.
    [Show full text]
  • Pierre Auger Observatory
    Pierre Auger Observatory FCPA Retreat 2010 PAO @ FNAL Eun-Joo Ahn, Aaron Chou, Henry Glass, Carlos Hojvat, Peter Kasper, Frederick Kuehn, Paul Lebrun, Paul Mantsch, Peter Mazur 450 scientists from 18 countries 17 peer-reviewed full collaboration publications Pierre Auger Observatory — Science Mission ✦ Fermilab’s mission is to study the fundamental properties of matter and energy ✦ The PAO studies the nature of the highest energy matter particles in the universe ★ The only experiment able to probe matter in this regime ★ Determining the properties of particle interactions at greater than a hundred TeV center of mass energy (~10-30 times the LHC energy) ★ Produced the only evidence related to the nature of potential sources via anisotropy — correlation with local large scale matter distribution ★ First sky map at energies ≥10 Joules The mission of OHEP is to understand how our universe works at its most fundamental level http://www.er.doe.gov/hep/mission/index.shtml 2 Pierre Auger Observatory — Leading the Field ✦ The PAO is the largest cosmic ray experiment (> 1018 eV) ✦ Size matters — low rate of events at the highest energies ✦ Combines two established detection techniques ๏ Fluorescence telescopes provide energy calibration and shower properties ๏ Surface array provides statistics Surface Array (3000 km2) •1642 surface detector tank assemblies deployed ๏ Detector upgrades/enhancements •1619 surface detector stations with water proceeding •1587 surface detector stations have electronics Fluorescence Detectors •24 telescopes (6 at each site) 3 •+3 telescopes for HEAT Pierre Auger Observatory — Leading the Field ✦ Northern site science case has strong international support ๏ See “Important Notes: Auger North” ― slide 21 PASAG report, S.
    [Show full text]