Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T

Total Page:16

File Type:pdf, Size:1020Kb

Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T Protein-induced photophysical changes to the amyloid indicator dye thioflavin T Leslie S. Wolfe1, Matthew F. Calabrese1, Abhinav Nath1, Dorottya V. Blaho, Andrew D. Miranker2, and Yong Xiong2 Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114 Edited by José N. Onuchic, University of California San Diego, La Jolla, CA, and approved August 4, 2010 (received for review March 8, 2010) The small molecule thioflavin T (ThT) is a defining probe for the spectrum and an increase in quantum yield (Fig. 1D, Inset, and identification and mechanistic study of amyloid fiber formation. Fig. S1) (9). ThT in protic solvents principally absorbs at As such, ThT is fundamental to investigations of serious diseases 340 nm with an emission maximum at 445 nm. Upon binding amy- such as Alzheimer’s disease, Parkinson disease, and type II diabetes. loid-like states, a peak at approximately 440 nm becomes domi- For each disease, a different protein undergoes conformational nant with the fluorescent emission maximum shifted to 480 nm. conversion to a β-sheet rich fiber. The fluorescence of ThT exhibits This is accompanied by a strong enhancement of the fluorescence. an increase in quantum yield upon binding these fibers. Despite These changes are collectively referred to as a “ThT positive” its widespread use, the structural basis for binding specificity and state. Despite the extensive use of ThT as an indicator dye, the for the changes to the photophysical properties of ThT remain structural basis of its interactions with amyloid and amyloid-like poorly understood. Here, we report the co-crystal structures of states remains poorly understood (10). ThT with two alternative states of β-2 microglobulin (β2m); one Recently, we reported the crystal structure of an amyloid-like monomeric, the other an amyloid-like oligomer. In the latter, the oligomer of β-2 microglobulin (β2m) (11). β2m is the 12 kDa light dye intercalates between β-sheets orthogonal to the β-strands. chain noncovalently associated with the Class I Major Histocom- Importantly, the fluorophore is bound in such a manner that a patibility complex (MHC) (12). It directs proper folding and photophysically relevant torsion is limited to a range of angles cell-surface expression of MHC. As part of normal cellular turn- generally associated with low, not high, quantum yield. Quantum over, β2m is released to the serum and catabolized by the kidneys. mechanical assessment of the fluorophore shows the electronic In patients on long-term hemodialysis therapy, serum levels are BIOPHYSICS AND distribution to be strongly stabilized by aromatic interactions with β elevated and 2m deposits as amyloid plaques. This conversion COMPUTATIONAL BIOLOGY the protein. Monomeric β2m gives little increase in ThT fluorescence can be induced in vitro by exposure to Cu2þ. Under such condi- despite showing three fluorophores, at two binding sites, in config- tions, β2m self-associates to populate closed amyloid-like oligo- urations generally associated with high quantum yield. Our efforts mers prior to mature fiber formation (13). These nonfibrillar, fundamentally extend existing understanding about the origins amyloid-like states are ThT positive in solution yet are amenable of amyloid-induced photophysical changes. Specifically, the β-sheet to crystallization, providing a unique opportunity for structural interface that characterizes amyloid acts both sterically and analysis (11, 13). In this work, we determine the crystal structures CHEMISTRY electronically to stabilize the fluorophore’s ground state electronic of ThT bound to both amyloid-like and nonamyloid states of distribution. By preventing the fluorophore from adopting its β2m. These structures allow for an interrogation of the structural preferred excited state configuration, nonradiative relaxation basis of ThT fluorescence enhancements as well as a direct com- pathways are minimized and quantum yield is increased. parison of the structures of ThT positive and negative states. Alzheimer’s ∣ beta-2 microglobulin ∣ Parkinson ∣ TICT ∣ photophysics Results In order to investigate the structural basis of ThT–amyloid inter- he conversion of a normally soluble protein into fibrillar actions, we first prepared two sets of β2m crystals in the presence β2 β2 2þ β2 Taggregates is of central importance to a range of diseases ( mholo) and absence ( mapo) of its metal ligand, Cu . mapo is including Alzheimer’s disease, Parkinson disease, and type II monomeric and well behaved under physiological solution condi- diabetes (1). Despite the involvement of distinct proteins in each tions. In contrast, the holo state undergoes conformational of these conditions, the fibers formed share a common set of changes resulting in the formation of a hexameric species (11, 13). β2 structural and biophysical properties, which define them as amy- Long-term incubation at 37 °C results in aggregation of mholo β2 loid. Amyloid fibers are homopolymeric, noncovalent assemblies, but not mapo (14). Both sets of crystals were prepared in the pre- which present morphologically as twisted sets of unbranched sence of 5 mM ThT. We then directly analyzed the fluorescence filaments. These filaments are composed of two or more β-sheets properties of the crystals. This was followed by a determination whose strands run in a direction orthogonal to the long axis of of the structures of these two states at atomic resolution. : β2 the fiber (2, 3). This arrangement yields a characteristic cross-β Co-crystals of ThT mholo show strong fluorescence intensity : β2 pattern by X-ray diffraction, the presence of which represents when compared to ThT mapo. Crystals were imaged using both the gold standard for unequivocal identification of amyloid struc- near-UV (340 nm) and blue (440 nm) excitation light to enable ture (4, 5). As the routine use of diffraction has proven impractical for most Author contributions: L.S.W., M.F.C., A.N., and A.D.M. designed research; L.S.W., M.F.C., mechanistic studies of amyloid assembly, a considerable fraction A.N., D.V.B., A.D.M., and Y.X. performed research; L.S.W., A.N., A.D.M., and Y.X. analyzed of the publication record relies in whole or in part on the use of data; and L.S.W. and A.D.M. wrote the paper. benzothiazole dyes, most commonly thioflavin T (ThT) (Fig. 1A). The authors declare no conflict of interest. The breadth of their use includes histological, kinetic, imaging, This article is a PNAS Direct Submission. and structural studies (6, 7). ThT was first reported as a tool Data deposition: The atomic coordinates have been deposited in the Protein Databank, for detecting amyloid in ex vivo tissue samples in 1959, and this www.pdb.org (PDB ID codes 3MYZ and 3MZT). interaction was suggested to be highly specific for amyloid-like 1L.S.W., M.F.C., and A.N. contributed equally to this work. structures (8). In later years, ThTwas characterized biophysically, 2To whom correspondence may be addressed. E-mail: [email protected] or resulting in its broad acceptance as a defining characteristic for [email protected]. the presence of amyloid (9). The changes in the fluorescent prop- This article contains supporting information online at www.pnas.org/lookup/suppl/ erties of ThTupon binding amyloid include a shift in its excitation doi:10.1073/pnas.1002867107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1002867107 PNAS Early Edition ∣ 1of6 Downloaded by guest on September 26, 2021 A B structure (11) (chain D) gives an rmsd of 0.39 Å for the Cα posi- tions (Fig. 2B, Left). Thus, only modest deviations occur at the main chain. Most alterations are apparent at side chains within φ the interface, notably Gln8, Tyr10, and Tyr26. The maximum change appears limited to a rotamer change in Tyr10, which re- sults in a 2 Å shift in the position of the side-chain hydroxyl group (Fig. 2B, Left). If instead, alignment is performed using one of the pairs of chains that form the ThT binding pocket (chains D and E), a Cα rmsd of 0.69 Å is observed. In effect, chain E has moved approximately 1.5 Å away from chain D in comparison to our 30µm previously published structure (11) (Fig. 2B, Right). The change in the respective Cα positions reflects a simple increase in overall C D separation of the two subunits from one another in order to accommodate the fluorophore. We additionally note that the binding site is symmetric at this location. Indeed, two equivalent alternative conformations of ThTcan be modeled at this site with the benzothiazole ring stacking in parallel with one or the other of the Tyr10 residues (Fig. 3A and Figs. S3 and S4A). For both conformations, it is clear that ThT is buried within a β-sheet interface whose structure requires only modest alteration to ac- commodate the fluorophore. 30µm 30µm β2 In mholo, the binding pocket of the benzothiazole ring is well defined and dominated by the side chains of Tyr10 and Tyr26. Fig. 1. Visualization of ThT in protein crystals and aggregates. (A) The che- Contacts made by the benzothiazole ring include aromatic stack- mical structure of ThT. The angle ϕ is defined by the torsion angle between ing with Tyr10 in a configuration that includes cation–π and π–π the benzothiazole ring and the dimethylaminobenzene ring (20). ϕ ¼ 0 interactions (Fig. 3C). While density for the benzothiazole ring is corresponds to coplanarity of the two aromatic moieties. (B–D) False-color well defined, density for the dimethylaminobenzene portion of fluorescence images collected using blue-light (440 nm) excitation of human β2 β2 the fluorophore appears limited to a rotationally averaged con- islet amyloid fibers, mholo crystals and mapo crystals respectively. Relative ϕ intensity across panels B and D are directly comparable and use the same in- tribution along the -axis (Fig.
Recommended publications
  • Thioflavin Derivatives for Use in the Diagnosis of Alzheimer's Disease
    (19) TZZ Z__T (11) EP 2 264 018 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 277/66 (2006.01) C07D 277/64 (2006.01) 11.02.2015 Bulletin 2015/07 A61K 49/00 (2006.01) A61K 31/428 (2006.01) A61K 51/04 (2006.01) A61P 25/28 (2006.01) (2006.01) (21) Application number: 10185669.8 G01N 33/534 (22) Date of filing: 24.08.2001 (54) Thioflavin derivatives for use in the diagnosis of Alzheimer’s disease Thioflavinderivate zur Diagnose der Alzheimerschen Krankheit Dérivés de thioflavine pour le diagnostic de la maladie d’Alzheimer (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • Klunk, William, E. MC NL PT SE TR Pittsburgh, PA 15218 (US) Designated Extension States: • Mathis, Chester, A., JR. AL LT LV MK RO SI Pittsburgh, PA 15238 (US) • Wang, Yanming (30) Priority: 24.08.2000 US 227601 P Imperial, PA 15126 (US) (43) Date of publication of application: (74) Representative: Plougmann & Vingtoft A/S 22.12.2010 Bulletin 2010/51 Rued Langgaards Vej 8 2300 Copenhagen S (DK) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (56) References cited: 01966165.1 / 1 334 091 WO-A-97/26919 WO-A1-01/14354 (73) Proprietor: University of Pittsburgh - Of the Commonwealth System of Higher Education Pittsburgh, PA 15260 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Multimodal Imaging Gd-Nanoparticles Functionalized with Pittsburgh Compound B Or a Nanobody for Amyloid Plaques Targeting
    Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Jonathan Pansieri, Marie Plissonneau, Nathalie Stransky-Heilkron, Mireille Dumoulin, Laurence Heinrich-Balard, Pascaline Rivory, Jean-François Morfin, Éva Tóth, Saraiva Maria Joao, Eric Allémann, et al. To cite this version: Jonathan Pansieri, Marie Plissonneau, Nathalie Stransky-Heilkron, Mireille Dumoulin, Laurence Heinrich-Balard, et al.. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh com- pound B or a nanobody for amyloid plaques targeting.. Nanomedicine, Future Medicine, 2017, 12 (14), pp.1675-1687. 10.2217/nnm-2017-0079. hal-01561318 HAL Id: hal-01561318 https://hal.archives-ouvertes.fr/hal-01561318 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Research Article For reprint orders, please contact: [email protected] 12 Research Article 2017/06/30 Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting Jonathan Pansieri‡,1, Marie Nanomedicine (Lond.) Plissonneau‡,2,3, Nathalie Aim: Gadolinium-based nanoparticles were functionalized with either the Pittsburgh Stransky-Heilkron4, Mireille compound B or a nanobody (B10AP) in order to create multimodal tools for an early Dumoulin5, Laurence diagnosis of amyloidoses.
    [Show full text]
  • In Vitrocharacterization of Pittsburgh Compound-B Binding to Lewy Bodies
    The Journal of Neuroscience, September 26, 2007 • 27(39):10365–10371 • 10365 Neurobiology of Disease In Vitro Characterization of Pittsburgh Compound-B Binding to Lewy Bodies Michelle T. Fodero-Tavoletti,1,2,4 David P. Smith,1,4 Catriona A. McLean,5 Paul A. Adlard,4 Kevin J. Barnham,1,2,4 Lisa E. Foster,1 Laura Leone,1 Keyla Perez,1,2,4 Mikhalina Corte´s,4 Janetta G. Culvenor,1,3,4 Qiao-Xin Li,1,4 Katrina M. Laughton,1,4 Christopher C. Rowe,6 Colin L. Masters,1,4 Roberto Cappai,1,2,4 and Victor L. Villemagne1,4,6 1Department of Pathology, 2Bio21 Institute, and 3Centre for Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia, 4The Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia, 5Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia, and 6Centre for PET, Austin Hospital, Heidelberg, Victoria 3084, Australia Dementia with Lewy bodies (DLB) is pathologically characterized by the presence of ␣-synuclein-containing Lewy bodies within the neocortical, limbic, and paralimbic regions. Like Alzheimer’s disease (AD), A␤ plaques are also present in most DLB cases. The contri- bution of A␤ to the development of DLB is unclear. [ 11C]-Pittsburgh compound B ([ 11C]-PIB) is a thioflavin-T derivative that has allowed in vivo A␤ burden to be quantified using positron emission tomography (PET). [ 11C]-PIB PET studies have shown similar high cortical [ 11C]-PIB binding in AD and DLB subjects. To establish the potential binding of PIB to ␣-synuclein in DLB patients, we characterized the in vitro binding of PIB to recombinant human ␣-synuclein and DLB brain homogenates.
    [Show full text]
  • Vizamyl, INN-Flutemetamol (18F)
    26 June 2014 EMA/546752/2014 Committee for Medicinal Products for Human Use (CHMP) Vizamyl flutemetamol (18F) Procedure No. EMEA/H/C/002553 Marketing authorisation holder: GE HEALTHCARE LIMITED Assessment report for an initial marketing authorisation application Assessment report as adopted by the CHMP with all commercially confidential information deleted 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ................................................................................ 9 2.1. Introduction......................................................................................................... 9 2.2. Quality aspects .................................................................................................. 11 2.2.1. Introduction ...................................................................................................
    [Show full text]
  • Thioflavin-Positive Tau Aggregates Complicating Quantification
    www.nature.com/scientificreports OPEN Thiofavin‑positive tau aggregates complicating quantifcation of amyloid plaques in the brain of 5XFAD transgenic mouse model Jisu Shin, Sohui Park, HeeYang Lee & YoungSoo Kim* Transgenic mouse models recapitulating Alzheimer’s disease (AD) pathology are pivotal in molecular studies and drug evaluation. In transgenic models selectively expressing amyloid‑β (Aβ), thiofavin S (ThS), a fuorescent dye with β‑sheet binding properties, is widely employed to observe amyloid plaque accumulation. In this study, we investigated the possibility that a commonly used Aβ‑expressing AD model mouse, 5XFAD, generates ThS‑positive aggregates of β‑sheet structures in addition to Aβ fbrils. To test this hypothesis, brain sections of male and female 5XFAD mice were double‑stained with ThS and monoclonal antibodies against Aβ, tau, or α‑synuclein, all of which aggregates are detected by ThS. Our results revealed that, in addition to amyloid plaques, 5XFAD mice express ThS‑positive phospho‑tau (p‑tau) aggregates. Upon administration of a small molecule that exclusively disaggregates Aβ to 5XFAD mice for six weeks, we found that the reduction level of plaques was smaller in brain sections stained by ThS compared to an anti‑Aβ antibody. Our fndings implicate that the use of ThS complicates the quantifcation of amyloid plaques and the assessment of Aβ‑targeting drugs in 5XFAD mice. Alzheimer’s disease (AD) is defned by accumulation of amyloid-β (Aβ) plaques and neurofbrillary tau tangles in the brain, leading to neurodegeneration and cognitive dysfunction 1. Te need for deeper molecular under- standing underlying AD pathogenesis and the discovery of efective therapeutics has led to the development of transgenic mouse models mimicking Aβ and tau pathologies.
    [Show full text]
  • Characterizing Interactions of Thioflavin-T with Native Proteins
    Characterizing Interactions of Thioflavin-T with Native Proteins Especially Bovine Serum Albumin by Caleb Matthew Stratton April, 2017 Director of Thesis: Atta Ahmad (PhD) Major Department: Biology Abstract Thioflavin T is a fluorescent probe used to monitor formation of cross β-sheet rich amyloid fibrils. Involvement of the amyloid fibrils is implicated in more than 50 human diseases, such as Alzheimer’s, Parkinson’s and Prion’s. The proteins responsible for each of these diseases many as well as model proteins have been used to unravel the process involved in native protein to amyloid transformation, especially, for drug design but with little success thus far. Bovine serum albumin (BSA), predominantly α-helical in constitution, is one such protein that has been observed to transform to β-sheet rich amyloid. For our thesis project, we set on with these basic lines of evidence for ThT and BSA and devised a study outline. The study was divided into sub sections for better redressal compared to what was reported in literature viz., 1) Characterizing the steps involved in the transformation of BSA from native to amyloid state, 2) Develop methodology to gain information of as many steps as possible, 3) Identify the structural changes triggering BSA on pathway to fibrillation, 4) Computational comparison of the sites with chaperone binding sites and finally 5) if from point 4 we could observe chaperones interfering the aggregation process of BSA. During this thesis work, we observed an unexpected interaction of the reporter ThT molecule with the native BSA. We expanded this further and used a suite of standard proteins and found that ThT has the unlikely affinity to bind to some of the proteins, which are predominantly helical in nature.
    [Show full text]
  • Inhalable Thioflavin S for the Detection of Amyloid Beta Deposits
    molecules Article Inhalable Thioflavin S for the Detection of Amyloid Beta Deposits in the Retina Shawn M. Barton 1,2 , Eleanor To 3, Baxter P. Rogers 1,2,4,5 , Clayton Whitmore 1,2, Manjosh Uppal 3, Joanne A. Matsubara 3,* and Wellington Pham 1,2,4,6,7,8,9,10,* 1 Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; [email protected] (S.M.B.); [email protected] (B.P.R.); [email protected] (C.W.) 2 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA 3 Department of Ophthalmology and Visual Sciences, The University of British Columbia, Eye Care Center, Vancouver, BC V5Z 3N9, Canada; [email protected] (E.T.); [email protected] (M.U.) 4 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA 5 Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA 6 Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA 7 Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA 8 Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA 9 Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA 10 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA * Correspondence: [email protected] (J.A.M.); [email protected] (W.P.) Abstract: We present an integrated delivery technology herein employing the aerosolized method to repurpose thioflavin S for imaging amyloid beta (Abeta) deposits in the retina as a surrogate of Abeta in the brain for early detection of Alzheimer’s disease.
    [Show full text]
  • Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt
    International Journal of Molecular Sciences Review Extracellular Amyloid Deposits in Alzheimer’s and Creutzfeldt–Jakob Disease: Similar Behavior of Different Proteins? Nikol Jankovska 1,*, Tomas Olejar 1 and Radoslav Matej 1,2,3 1 Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; [email protected] (T.O.); [email protected] (R.M.) 2 Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic 3 Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +42-026-108-3102 Abstract: Neurodegenerative diseases are characterized by the deposition of specific protein aggre- gates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer’s disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term “amyloid” refers to the amyloid prion protein. In this review, we focused on providing a detailed di- dactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer’s disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differ- ences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity. Keywords: Alzheimer’s disease; Creutzfeldt–Jakob disease; Gerstmann–Sträussler–Scheinker syn- drome; amyloid; senile plaques; PrP plaques; plaque subtypes Citation: Jankovska, N.; Olejar, T.; Matej, R.
    [Show full text]
  • Imaging Technology for Neurodegenerative Diseases Progress Toward Detection of Specific Pathologies
    NEUROLOGICAL REVIEW Imaging Technology for Neurodegenerative Diseases Progress Toward Detection of Specific Pathologies Chester A. Mathis, PhD; William E. Klunk, MD, PhD; Julie C. Price, PhD; Steven T. DeKosky, MD dvances in neuroimaging over the past 2 decades are products of breakthroughs in imaging technology, developments of more powerful computers and image- processing software, and expanding knowledge in basic and clinical neuroscience. In addition to the insights into normal brain structure and function that such methods Aprovide and the information that can be gained from disease-related changes in structure and func- tion, the promise of achieving diagnostic specificity through neuroimaging lies with the potential identification of pathognomonic proteins. Recent advances in imaging ␤-amyloid plaques, one of the hallmarks of Alzheimer disease, offer such a technological breakthrough and the possibility for more efficient assessment of antiamyloid interventions as well as specific noninvasive diagnos- tic capabilities. Arch Neurol. 2005;62:196-200 In the last several decades of the 20th cen- and other pathological disturbances. Tech- tury and the first several years of the 21st, niques for the rapid assessment of blood research and the clinical application of flow advanced functional imaging and the neuroimaging have proceeded at a dizzy- localization of brain activity or function. ing and accelerating rate. Structural im- Magnetic resonance spectroscopy contin- aging was initially limited to skull and ues to develop as another method for the spine radiographs and subsequently to in- noninvasive assessment of brain metabo- ference about what was happening in the lism in development, aging, and disease. brain by analyzing the patterns of arte- The development of positron emis- rial, capillary, and venous blood flow on sion tomography (PET) has followed a cerebral angiography.
    [Show full text]
  • Modeling Neurodegenerative Disorders in Drosophila Melanogaster
    International Journal of Molecular Sciences Review Modeling Neurodegenerative Disorders in Drosophila melanogaster Harris Bolus 1, Kassi Crocker 2,3, Grace Boekhoff-Falk 3,* and Stanislava Chtarbanova 1,* 1 Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; [email protected] 2 Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA; [email protected] 3 Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA * Correspondence: grace.boekhoff@wisc.edu (G.B.-F.); [email protected] (S.C.) Received: 18 March 2020; Accepted: 21 April 2020; Published: 26 April 2020 Abstract: Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington’s Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders. Keywords: Drosophila; neurodegeneration; neuroregeneration 1. Introduction: Drosophila as a Model System for Studies of Human Disease The common fruitfly Drosophila melanogaster has been used as a genetic model system for more than 100 years. Because Drosophila are inexpensive to maintain and reproduce rapidly, an enormous repertoire of genetic technologies has been created over the past century [1]. Drosophila possess extensive homology with humans at the genetic level making them a useful model for investigation of the cellular and molecular processes underlying development and disease [2].
    [Show full text]
  • Spectral Properties of Thioflavin T and Its Complexes with Amyloid Fibrils
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Applied Spectroscopy, Vol. 70, No. 6, 2003 SPECTRAL PROPERTIES OF THIOFLAVIN T AND ITS COMPLEXES WITH AMYLOID FIBRILS ∗ E. S. Voropai,a M. P. Samtsov,a K. N. Kaplevskii,a A. A. Maskevich,b UDC 535.37 V. I. Stepuro,b O. I. Povarova,c I. M. Kuznetsova,c K. K. Turoverov,c A. L. Fink,d and V. N. Uverskiid,e Comparative analysis of the absorption and fluorescence spectra and fluorescence excitation spectra of thioflavin T (ThT) in various solvents and in the composition of amyloid fibrils has shown that ThT, when ex- cited in the region of the long-wavelength absorption band, fluoresces in the spectral region with a maximum at 478–484 nm. The appearance in aqueous and alcohol solutions of a fluorescence band with a maximum near 440 nm has been attributed to the presence in the composition of the ThT preparations of an impurity with an absorption band in the 340–350-nm range. The literature data showing that in glycerol ThT has a wide fluorescence spectrum with two maxima are due to the artifact connected with the use of a high concen- tration of the dye. It has been suggested that the cause of the low quantum yield of ThT aqueous and alcohol solutions is the breakage of the system of conjugated bonds due to the reorientation of the benzothiozole and benzaminic rings of ThT in the excited state with respect to one another. The main factor determining the high quantum yield of fluorescence of ThT incorporated in fibrils is the steric restriction of the rotation of the rings about one another under these conditions.
    [Show full text]
  • Internalized Tau Oligomers Cause Neurodegeneration by Inducing Accumulation of Pathogenic Tau in Human Neurons Derived from Induced Pluripotent Stem Cells
    14234 • The Journal of Neuroscience, October 21, 2015 • 35(42):14234–14250 Neurobiology of Disease Internalized Tau Oligomers Cause Neurodegeneration by Inducing Accumulation of Pathogenic Tau in Human Neurons Derived from Induced Pluripotent Stem Cells Marija Usenovic, Shahriar Niroomand, Robert E. Drolet, Lihang Yao, Renee C. Gaspar, Nathan G. Hatcher, Joel Schachter, John J. Renger, and Sophie Parmentier-Batteur Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486 Neuronal inclusions of hyperphosphorylated and aggregated tau protein are a pathological hallmark of several neurodegenerative tauopathies, including Alzheimer’s disease (AD). The hypothesis of tau transmission in AD has emerged from histopathological studies of the spatial and temporal progression of tau pathology in postmortem patient brains. Increasing evidence in cellular and animal models supports the phenomenon of intercellular spreading of tau. However, the molecular and cellular mechanisms of pathogenic tau trans- mission remain unknown. The studies described herein investigate tau pathology propagation using human neurons derived from induced pluripotent stem cells. Neurons were seeded with full-length human tau monomers and oligomers and chronic effects on neuronal viability and function were examined over time. Tau oligomer-treated neurons exhibited an increase in aggregated and phos- phorylated pathological tau. These effects were associated with neurite retraction, loss of synapses, aberrant calcium homeostasis, and imbalanced neurotransmitter release. In contrast, tau monomer treatment did not produce any measureable changes. This work sup- ports the hypothesis that tau oligomers are toxic species that can drive the spread of tau pathology and neurodegeneration. Key words: Alzheimer’s disease; hiPSC neurons; neurodegeneration; pathology propagation; tau oligomer seeds Significance Statement Several independent studies have implicated tau protein as central to Alzheimer’s disease progression and cell-to-cell pathology propagation.
    [Show full text]