Math 9054B/4154B, Functional Analysis Winter 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis Lecture Notes Chapter 2. Operators on Hilbert Spaces
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous and Bounded Operators). Let X, Y be normed linear spaces, and let L: X Y be a linear operator. ! (a) L is continuous at a point f X if f f in X implies Lf Lf in Y . 2 n ! n ! (b) L is continuous if it is continuous at every point, i.e., if fn f in X implies Lfn Lf in Y for every f. ! ! (c) L is bounded if there exists a finite K 0 such that ≥ f X; Lf K f : 8 2 k k ≤ k k Note that Lf is the norm of Lf in Y , while f is the norm of f in X. k k k k (d) The operator norm of L is L = sup Lf : k k kfk=1 k k (e) We let (X; Y ) denote the set of all bounded linear operators mapping X into Y , i.e., B (X; Y ) = L: X Y : L is bounded and linear : B f ! g If X = Y = X then we write (X) = (X; X). B B (f) If Y = F then we say that L is a functional. The set of all bounded linear functionals on X is the dual space of X, and is denoted X0 = (X; F) = L: X F : L is bounded and linear : B f ! g We saw in Chapter 1 that, for a linear operator, boundedness and continuity are equivalent. -
Proved for Real Hilbert Spaces. Time Derivatives of Observables and Applications
AN ABSTRACT OF THE THESIS OF BERNARD W. BANKSfor the degree DOCTOR OF PHILOSOPHY (Name) (Degree) in MATHEMATICS presented on (Major Department) (Date) Title: TIME DERIVATIVES OF OBSERVABLES AND APPLICATIONS Redacted for Privacy Abstract approved: Stuart Newberger LetA andH be self -adjoint operators on a Hilbert space. Conditions for the differentiability with respect totof -itH -itH <Ae cp e 9>are given, and under these conditionsit is shown that the derivative is<i[HA-AH]e-itHcp,e-itHyo>. These resultsare then used to prove Ehrenfest's theorem and to provide results on the behavior of the mean of position as a function of time. Finally, Stone's theorem on unitary groups is formulated and proved for real Hilbert spaces. Time Derivatives of Observables and Applications by Bernard W. Banks A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 1975 APPROVED: Redacted for Privacy Associate Professor of Mathematics in charge of major Redacted for Privacy Chai an of Department of Mathematics Redacted for Privacy Dean of Graduate School Date thesis is presented March 4, 1975 Typed by Clover Redfern for Bernard W. Banks ACKNOWLEDGMENTS I would like to take this opportunity to thank those people who have, in one way or another, contributed to these pages. My special thanks go to Dr. Stuart Newberger who, as my advisor, provided me with an inexhaustible supply of wise counsel. I am most greatful for the manner he brought to our many conversa- tions making them into a mutual exchange between two enthusiasta I must also thank my parents for their support during the earlier years of my education.Their contributions to these pages are not easily descerned, but they are there never the less. -
Quantum Mechanics, Schrodinger Operators and Spectral Theory
Quantum mechanics, SchrÄodingeroperators and spectral theory. Spectral theory of SchrÄodinger operators has been my original ¯eld of expertise. It is a wonderful mix of functional analy- sis, PDE and Fourier analysis. In quantum mechanics, every physical observable is described by a self-adjoint operator - an in¯nite dimensional symmetric matrix. For example, ¡¢ is a self-adjoint operator in L2(Rd) when de¯ned on an appropriate domain (Sobolev space H2). In quantum mechanics it corresponds to a free particle - just traveling in space. What does it mean, exactly? Well, in quantum mechanics, position of a particle is described by a wave 2 d function, Á(x; t) 2 L (R ): The physical meaningR of the wave function is that the probability 2 to ¯nd it in a region at time t is equal to jÁ(x; t)j dx: You can't know for sure where the particle is for sure. If initially the wave function is given by Á(x; 0) = Á0(x); the SchrÄodinger ¡i¢t equation says that its evolution is given by Á(x; t) = e Á0: But how to compute what is e¡i¢t? This is where Fourier transform comes in handy. Di®erentiation becomes multiplication on the Fourier transform side, and so Z ¡i¢t ikx¡ijkj2t ^ e Á0(x) = e Á0(k) dk; Rd R ^ ¡ikx where Á0(k) = Rd e Á0(x) dx is the Fourier transform of Á0: I omitted some ¼'s since they do not change the picture. Stationary phase methods lead to very precise estimates on free SchrÄodingerevolution. -
On Relaxation of Normality in the Fuglede-Putnam Theorem
proceedings of the american mathematical society Volume 77, Number 3, December 1979 ON RELAXATION OF NORMALITY IN THE FUGLEDE-PUTNAM THEOREM TAKAYUKIFURUTA1 Abstract. An operator means a bounded linear operator on a complex Hubert space. The familiar Fuglede-Putnam theorem asserts that if A and B are normal operators and if X is an operator such that AX = XB, then A*X = XB*. We shall relax the normality in the hypotheses on A and B. Theorem 1. If A and B* are subnormal and if X is an operator such that AX = XB, then A*X = XB*. Theorem 2. Suppose A, B, X are operators in the Hubert space H such that AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then A*X = XB* under any one of the following hypotheses: (i) A is k-quasihyponormal and B* is invertible hyponormal, (ii) A is quasihyponormal and B* is invertible hyponormal, (iii) A is nilpotent and B* is invertible hyponormal. 1. In this paper an operator means a bounded linear operator on a complex Hilbert space. An operator T is called quasinormal if F commutes with T* T, subnormal if T has a normal extension and hyponormal if [ F*, T] > 0 where [S, T] = ST - TS. The inclusion relation of the classes of nonnormal opera- tors listed above is as follows: Normal § Quasinormal § Subnormal ^ Hyponormal; the above inclusions are all proper [3, Problem 160, p. 101]. The familiar Fuglede-Putnam theorem is as follows ([3, Problem 152], [4]). Theorem A. If A and B are normal operators and if X is an operator such that AX = XB, then A*X = XB*. -
Operator Algebras: an Informal Overview 3
OPERATOR ALGEBRAS: AN INFORMAL OVERVIEW FERNANDO LLEDO´ Contents 1. Introduction 1 2. Operator algebras 2 2.1. What are operator algebras? 2 2.2. Differences and analogies between C*- and von Neumann algebras 3 2.3. Relevance of operator algebras 5 3. Different ways to think about operator algebras 6 3.1. Operator algebras as non-commutative spaces 6 3.2. Operator algebras as a natural universe for spectral theory 6 3.3. Von Neumann algebras as symmetry algebras 7 4. Some classical results 8 4.1. Operator algebras in functional analysis 8 4.2. Operator algebras in harmonic analysis 10 4.3. Operator algebras in quantum physics 11 References 13 Abstract. In this article we give a short and informal overview of some aspects of the theory of C*- and von Neumann algebras. We also mention some classical results and applications of these families of operator algebras. 1. Introduction arXiv:0901.0232v1 [math.OA] 2 Jan 2009 Any introduction to the theory of operator algebras, a subject that has deep interrelations with many mathematical and physical disciplines, will miss out important elements of the theory, and this introduction is no ex- ception. The purpose of this article is to give a brief and informal overview on C*- and von Neumann algebras which are the main actors of this summer school. We will also mention some of the classical results in the theory of operator algebras that have been crucial for the development of several areas in mathematics and mathematical physics. Being an overview we can not provide details. Precise definitions, statements and examples can be found in [1] and references cited therein. -
Hilbert Space Quantum Mechanics
qmd113 Hilbert Space Quantum Mechanics Robert B. Griffiths Version of 27 August 2012 Contents 1 Vectors (Kets) 1 1.1 Diracnotation ................................... ......... 1 1.2 Qubitorspinhalf ................................. ......... 2 1.3 Intuitivepicture ................................ ........... 2 1.4 General d ............................................... 3 1.5 Ketsasphysicalproperties . ............. 4 2 Operators 5 2.1 Definition ....................................... ........ 5 2.2 Dyadsandcompleteness . ........... 5 2.3 Matrices........................................ ........ 6 2.4 Daggeroradjoint................................. .......... 7 2.5 Hermitianoperators .............................. ........... 7 2.6 Projectors...................................... ......... 8 2.7 Positiveoperators............................... ............ 9 2.8 Unitaryoperators................................ ........... 9 2.9 Normaloperators................................. .......... 10 2.10 Decompositionoftheidentity . ............... 10 References: CQT = Consistent Quantum Theory by Griffiths (Cambridge, 2002). See in particular Ch. 2; Ch. 3; Ch. 4 except for Sec. 4.3. 1 Vectors (Kets) 1.1 Dirac notation ⋆ In quantum mechanics the state of a physical system is represented by a vector in a Hilbert space: a complex vector space with an inner product. The term “Hilbert space” is often reserved for an infinite-dimensional inner product space having the property◦ that it is complete or closed. However, the term is often used nowadays, as in these notes, in a way that includes finite-dimensional spaces, which automatically satisfy the condition of completeness. ⋆ We will use Dirac notation in which the vectors in the space are denoted by v , called a ket, where v is some symbol which identifies the vector. | One could equally well use something like v or v. A multiple of a vector by a complex number c is written as c v —think of it as analogous to cv of cv. | ⋆ In Dirac notation the inner product of the vectors v with w is written v w . -
Common Cyclic Vectors for Normal Operators 11
COMMON CYCLIC VECTORS FOR NORMAL OPERATORS WILLIAM T. ROSS AND WARREN R. WOGEN Abstract. If µ is a finite compactly supported measure on C, then the set Sµ 2 2 ∞ of multiplication operators Mφ : L (µ) → L (µ),Mφf = φf, where φ ∈ L (µ) is injective on a set of full µ measure, is the complete set of cyclic multiplication operators on L2(µ). In this paper, we explore the question as to whether or not Sµ has a common cyclic vector. 1. Introduction A bounded linear operator S on a separable Hilbert space H is cyclic with cyclic vector f if the closed linear span of {Snf : n = 0, 1, 2, ···} is equal to H. For many cyclic operators S, especially when S acts on a Hilbert space of functions, the description of the cyclic vectors is well known. Some examples: When S is the multiplication operator f → xf on L2[0, 1], the cyclic vectors f are the L2 functions which are non-zero almost everywhere. When S is the forward shift f → zf on the classical Hardy space H2, the cyclic vectors are the outer functions [10, p. 114] (Beurling’s theorem). When S is the backward shift f → (f − f(0))/z on H2, the cyclic vectors are the non-pseudocontinuable functions [9, 16]. For a collection S of operators on H, we say that S has a common cyclic vector f, if f is a cyclic vector for every S ∈ S. Earlier work of the second author [19] showed that the set of co-analytic Toeplitz operators Tφ, with non-constant symbol φ, on H2 has a common cyclic vector. -
Mathematical Work of Franciszek Hugon Szafraniec and Its Impacts
Tusi Advances in Operator Theory (2020) 5:1297–1313 Mathematical Research https://doi.org/10.1007/s43036-020-00089-z(0123456789().,-volV)(0123456789().,-volV) Group ORIGINAL PAPER Mathematical work of Franciszek Hugon Szafraniec and its impacts 1 2 3 Rau´ l E. Curto • Jean-Pierre Gazeau • Andrzej Horzela • 4 5,6 7 Mohammad Sal Moslehian • Mihai Putinar • Konrad Schmu¨ dgen • 8 9 Henk de Snoo • Jan Stochel Received: 15 May 2020 / Accepted: 19 May 2020 / Published online: 8 June 2020 Ó The Author(s) 2020 Abstract In this essay, we present an overview of some important mathematical works of Professor Franciszek Hugon Szafraniec and a survey of his achievements and influence. Keywords Szafraniec Á Mathematical work Á Biography Mathematics Subject Classification 01A60 Á 01A61 Á 46-03 Á 47-03 1 Biography Professor Franciszek Hugon Szafraniec’s mathematical career began in 1957 when he left his homeland Upper Silesia for Krako´w to enter the Jagiellonian University. At that time he was 17 years old and, surprisingly, mathematics was his last-minute choice. However random this decision may have been, it was a fortunate one: he succeeded in achieving all the academic degrees up to the scientific title of professor in 1980. It turned out his choice to join the university shaped the Krako´w mathematical community. Communicated by Qingxiang Xu. & Jan Stochel [email protected] Extended author information available on the last page of the article 1298 R. E. Curto et al. Professor Franciszek H. Szafraniec Krako´w beyond Warsaw and Lwo´w belonged to the famous Polish School of Mathematics in the prewar period. -
Functional Analysis (WS 19/20), Problem Set 8 (Spectrum And
Functional Analysis (WS 19/20), Problem Set 8 (spectrum and adjoints on Hilbert spaces)1 In what follows, let H be a complex Hilbert space. Let T : H ! H be a bounded linear operator. We write T ∗ : H ! H for adjoint of T dened with hT x; yi = hx; T ∗yi: This operator exists and is uniquely determined by Riesz Representation Theorem. Spectrum of T is the set σ(T ) = fλ 2 C : T − λI does not have a bounded inverseg. Resolvent of T is the set ρ(T ) = C n σ(T ). Basic facts on adjoint operators R1. | Adjoint T ∗ exists and is uniquely determined. R2. | Adjoint T ∗ is a bounded linear operator and kT ∗k = kT k. Moreover, kT ∗T k = kT k2. R3. | Taking adjoints is an involution: (T ∗)∗ = T . R4. Adjoints commute with the sum: ∗ ∗ ∗. | (T1 + T2) = T1 + T2 ∗ ∗ R5. | For λ 2 C we have (λT ) = λ T . R6. | Let T be a bounded invertible operator. Then, (T ∗)−1 = (T −1)∗. R7. Let be bounded operators. Then, ∗ ∗ ∗. | T1;T2 (T1 T2) = T2 T1 R8. | We have relationship between kernel and image of T and T ∗: ker T ∗ = (im T )?; (ker T ∗)? = im T It will be helpful to prove that if M ⊂ H is a linear subspace, then M = M ??. Btw, this covers all previous results like if N is a nite dimensional linear subspace then N = N ?? (because N is closed). Computation of adjoints n n ∗ M1. ,Let A : R ! R be a complex matrix. Find A . 2 M2. | ,Let H = l (Z). For x = (:::; x−2; x−1; x0; x1; x2; :::) 2 H we dene the right shift operator −1 ∗ with (Rx)k = xk−1: Find kRk, R and R . -
Quantum Dynamics
Quantum Dynamics William G. Faris August 12, 1992 Contents I Hilbert Space 5 1 Introduction 7 1.1 Quantum mechanics . 7 1.2 The quantum scale . 8 1.2.1 Planck's constant . 8 1.2.2 Diffusion . 9 1.2.3 Speed . 9 1.2.4 Length . 10 1.2.5 Energy . 10 1.2.6 Compressibility . 10 1.2.7 Frequency . 11 1.2.8 Other length scales . 11 1.3 The Schr¨odingerequation . 11 1.3.1 The equation . 11 1.3.2 Density and current . 13 1.3.3 Osmotic and current velocity . 14 1.3.4 Momentum . 15 1.3.5 Energy . 15 1.4 The uncertainty principle . 17 1.5 Quantum stability . 18 2 Hilbert Space 21 2.1 Definition . 21 2.2 Self-duality . 24 2.3 Projections . 26 2.4 Operators . 27 2.5 Bounded operators . 28 1 2 CONTENTS 3 Function Spaces 31 3.1 Integration . 31 3.2 Function spaces . 34 3.3 Convergence . 36 3.4 Integral operators . 37 4 Bases 41 4.1 Discrete bases . 41 4.2 Continuous bases . 42 5 Spectral Representations 49 5.1 Multiplication operators . 49 5.2 Spectral representations . 50 5.3 Translation . 52 5.4 Approximate delta functions . 53 5.5 The Fourier transform . 54 5.6 Free motion . 57 5.6.1 Diffusion . 57 5.6.2 Oscillation . 58 6 The Harmonic Oscillator 61 6.1 The classical harmonic oscillator . 61 6.2 The one dimensional quantum harmonic oscillator . 62 6.3 The Fourier transform . 65 6.4 Density theorems . 65 6.5 The isotropic quantum harmonic oscillator . -
Notes on Von Neumann Algebras
Notes on von Neumann algebras Jesse Peterson April 5, 2013 2 Chapter 1 Spectral theory If A is a complex unital algebra then we denote by G(A) the set of elements which have a two sided inverse. If x 2 A, the spectrum of x is σA(x) = fλ 2 C j x − λ 62 G(A)g: The complement of the spectrum is called the resolvent and denoted ρA(x). Proposition 1.0.1. Let A be a unital algebra over C, and consider x; y 2 A. Then σA(xy) [ f0g = σA(yx) [ f0g. Proof. If 1 − xy 2 G(A) then we have (1 − yx)(1 + y(1 − xy)−1x) = 1 − yx + y(1 − xy)−1x − yxy(1 − xy)−1x = 1 − yx + y(1 − xy)(1 − xy)−1x = 1: Similarly, we have (1 + y(1 − xy)−1x)(1 − yx) = 1; and hence 1 − yx 2 G(A). Knowing the formula for the inverse beforehand of course made the proof of the previous proposition quite a bit easier. But this formula is quite natural to consider. Indeed, if we just consider formal power series then we have 1 1 X X (1 − yx)−1 = (yx)k = 1 + y( (xy)k)x = 1 + y(1 − xy)−1x: k=0 k=0 1.1 Banach and C∗-algebras A Banach algebra is a Banach space A, which is also an algebra such that kxyk ≤ kxkkyk: 3 4 CHAPTER 1. SPECTRAL THEORY A Banach algebra A is involutive if it possesses an anti-linear involution ∗, such that kx∗k = kxk, for all x 2 A. -
A Note on the Definition of an Unbounded Normal Operator
A NOTE ON THE DEFINITION OF AN UNBOUNDED NORMAL OPERATOR MATTHEW ZIEMKE 1. Introduction Let H be a complex Hilbert space and let T : D(T )(⊆ H) !H be a generally unbounded linear operator. In order to begin the discussion about whether or not the operator T is normal, we need to require that T have a dense domain. This ensures that the adjoint operator T ∗ is defined. In the literature, one sees two definitions for what it means for a densely defined operator T to be normal. The first requires that T be closed and that T ∗T = TT ∗ while the second requires that D(T ) = D(T ∗) and kT xk = kT ∗xk for all x 2 D(T ) = D(T ∗). There is no harm in having these competing definitions as they are, in fact, equivalent. While the equivalence of these statements seems to be widely known, the proof is not obvious, and my efforts to find a detailed and self-contained proof of this fact have left me empty-handed. I attempt to give such a proof here. I also want to note that while we say a bounded linear operator T is normal if and only if T ∗T = TT ∗, the lone requirement of T ∗T = TT ∗ for an unbounded densely defined operator does not, in general, imply T is normal. I used [1] and [2] to write this note. 2. Proof of the equivalence We begin with a definition. Definition 2.1. Let T : D(T )(⊆ H) !H be a densely defined operator. We define the T -inner product on D(T ) × D(T ), denoted as h·; ·iT , by the equation hx; yiT = hx; yi + hT x; T yi; for all x; y 2 D(T ): It is easy to see that the T -inner product is, in fact, an inner product on D(T ).