Issues of Convection in Insect Respiration: Insights from Synchrotron X-Ray Imaging and Beyondଝ,ଝଝ

Total Page:16

File Type:pdf, Size:1020Kb

Issues of Convection in Insect Respiration: Insights from Synchrotron X-Ray Imaging and Beyondଝ,ଝଝ Respiratory Physiology & Neurobiology 173S (2010) S65–S73 Contents lists available at ScienceDirect Respiratory Physiology & Neurobiology journal homepage: www.elsevier.com/locate/resphysiol Review Issues of convection in insect respiration: Insights from synchrotron X-ray imaging and beyondଝ,ଝଝ John J. Socha a,∗, Thomas D. Förster b, Kendra J. Greenlee c a Virginia Tech, Engineering Science and Mechanics, 332 Norris Hall (MC 0219), Blacksburg, VA 24061, United States b Humboldt Universität zu Berlin, Animal Physiology Group, Philippstrasse 13, 10115 Berlin, Germany c North Dakota State University, Biological Sciences, 317 Stevens Hall, PO Box 6050, Fargo, ND 58108, United States article info abstract Article history: While it has long been known that in small animals, such as insects, sufficient gas transport could be pro- Accepted 11 March 2010 vided by diffusion, it is now recognized that animals generate and control convective flows to improve oxygen delivery across a range of body sizes and taxa. However, size-based methodological limitations Keywords: have constrained our understanding of the mechanisms that underlie the production of these convective Insect gas exchange flows. Recently, new techniques have enabled the elucidation of the anatomical structures and physio- Development logical processes that contribute to creating and maintaining bulk flow in small animals. In particular, Synchrotron imaging synchrotron X-ray imaging provides unprecedented spatial and temporal resolution of internal functional Convection Tracheal compression morphology and is changing the way we understand gas exchange in insects. This symposium highlights Passive suction ventilation recent efforts towards understanding the relationship between form, function, and control in the insect respiratory system. © 2010 Elsevier B.V. All rights reserved. 1. Introduction flation of the tracheal system itself (Herford, 1938; Westneat et al., 2003; Socha et al., 2008), including both tracheal tubes and air sacs The template of the insect gas exchange system is simple. Respi- (Greenlee et al., 2009a,b). This combination of morphological and ratory gases enter and exit the body through spiracular valves, the behavioural variations results in a great variety of respiratory pat- gases are transported through air-filled tracheal tubes that ram- terns and an overall general flexibility in the gas exchange system ify throughout the body, and diffusion occurs directly to and from that may play a large role in the ecological and evolutionary success the tissues. Although this basic pattern is conserved throughout of insects. But despite over a century of study, our understanding of the insects, tremendous variation exists in tracheal morphology insect gas exchange systems—both pattern and process—can still be and respiratory dynamics (e.g., Buck, 1962; Keister and Buck, 1974; considered immature, largely due to this immense variation. Fun- Wasserthal, 1996; Harrison, 1997; Chapman, 1998; Bradley, 2007). damental questions, such as the relative roles of convection and Anatomically, variation is manifest in such features as spiracle diffusion as a function of body size, phylogeny, development, and number and location; tracheal size, shape, wall thickness, and life history, remain unanswered. branching pattern; density of tracheoles; and presence or absence Most research on gas exchange dynamics has focused on of air sacs. Dynamically, time-dependent variation occurs due to measurements made externally to the animal. These include mea- coordinated opening and closing of the spiracles (e.g., Mill, 1985; surements of CO2 and H2O emission (Lighton, 2008), airflow Lehmann and Heymann, 2005; Wasserthal, 2001), movement of the patterns at the spiracles (Slama, 1988), frequency and duration fluid level at the terminal ends of the tracheoles (Wigglesworth, of spiracle opening and closing (Lighton and Garrigan, 1995; 1935; Woods et al., 2009) and, in some species, collapse and rein- Terblanche et al., 2008), and magnitude of exoskeleton movements (Slama, 2008). These techniques have been and still serve as an invaluable source of information on insect respiration, but they do not provide direct knowledge of internal gas exchange pro- ଝ This paper is part of the ‘ICRS Supplement’, guest-edited by Dr. Steven F. Perry. cesses. Studies of morphology include description by dissection ଝଝ From the symposium: Insights from synchrotron X-ray imaging and beyond: (Hartung et al., 2004; Harrison et al., 2005), endocasting using Mechanisms and regulation of flow generation in tracheal systems, Organized by low-viscosity polymers (Meyer, 1988), and stereology (Schmitz John J. Socha, Virginia Polytechnic Institute and State University, USA. ∗ and Perry, 1999; Hartung et al., 2004), which involves sectioning Corresponding author. Tel.: +1 540 231 6188; fax: +1 540 231 0696. E-mail addresses: [email protected] (J.J. Socha), [email protected] of the animal. These techniques are effective for determining tra- (T.D. Förster), [email protected] (K.J. Greenlee). cheal system morphology, but they are relatively time consuming, 1569-9048/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.resp.2010.03.013 S66 J.J. Socha et al. / Respiratory Physiology & Neurobiology 173S (2010) S65–S73 require skillful preparation, or involve altering the system in some 1.1. Synchrotron imaging of insects way, either by breaching the exoskeleton and relieving the native hemolymph pressure around the tracheal system, or by cutting the Synchrotron imaging has changed the way that we understand system itself. Perhaps resulting from these difficulties, it is not sur- insect respiration. Although a few isolated X-ray images of insects prising that there are relatively few quantitative descriptions of appeared in the physical literature in the early 2000s (e.g., Matsui entire tracheal systems (e.g., Clarke, 1957; Lease et al., 2006), and et al., 2000; Hwu et al., 2002), synchrotron X-ray imaging of insects little is known about the variation of tracheal morphology across began in earnest in 2001 when Wah-Keat Lee, a physicist at Argonne phylogeny. National Laboratory’s Advanced Photon Source, became curious This symposium was inspired by a new tool used to study insect about what an insect would look like when viewed at his X-ray physiology, synchrotron X-ray imaging, which is opening up a beamline (1-ID). Lee took an X-ray snapshot of the head of a carpen- whole new window into the world of insect respiration. This tool ter ant (Fig. 1a) caught outdoors and, with it, sought the interest of provides the ability to visualize the tracheal system in an intact, liv- biologists. He contacted Mark Westneat, a biomechanist at the Field ing animal, and is motivating new work that revisits long-standing Museum and University of Chicago, and they teamed together to questions of insect respiratory physiology. Because the tracheal explore the diversity of internal movements and morphology that system can be observed in real time, this resource is particularly can be seen with this powerful tool. As a necessary first step, their powerful for understanding internal dynamics involved in respira- experimental approach was exploratory—they captured insects tion. from the woods just beyond the doors of the synchrotron source Fig. 1. Samples of synchrotron X-ray images of insects. (A) Demonstration of the capability of phase-contrast imaging with synchrotron X-rays. The two images show the head of a carpenter ant (Camponotus pennsylvanicus) in standard absorption-only configuration (left) and in phase-contrast configuration (right). Images were recorded in 2001 at beamline 1-ID-C at the Advanced Photon Source, Argonne National Laboratory. Images courtesy of Wah-Keat Lee. (B) and (C) Depict high-quality projection images of an ant worker (Camponotus pennsylvanicus) and carabid beetle (Notiophilus spp.), respectively. Large-scale differences in tracheal system architecture between the two insects can be easily discerned, including the ant’s abdominal and head air-sacs and sac-like main tracheal trunks in the thorax. The round structures in the ant’s abdomen are air bubbles. J.J. Socha et al. / Respiratory Physiology & Neurobiology 173S (2010) S65–S73 S67 and observed what could be seen inside their living bodies. Quite in insect respiration. Broad questions that are under current inves- quickly, it became evident that the internal insect was far more tigation include: dynamic than expected. Indeed, many of the videos they created What explains the diversity of tracheal architecture and organi- were puzzling, because what they were seeing had not been previ- zation? ously documented. Within two years, they published data showing How does the respiratory system respond to changing metabolic massive collapsing movements in the tracheal system of beetles, needs during development and the transition from rest to activity? crickets and ants (Westneat et al., 2003), movements that either What are the rules of convection—under what circumstances is had not been described or were under-appreciated. Since then, it required or employed? synchrotron imaging of insects has been improved and refined to How are convective airflows created, and what airflow patterns address more sophisticated and specific questions of insect respi- are used? ration (Lee, 2009). Below (in Sections 1.2–1.6), we highlight symposium contri- The power of synchrotron imaging is twofold: (1) it enables the butions that aimed to answer some of
Recommended publications
  • SEARCH for EXTANT LIFE THROUGH HUMAN MISSION on the SURFACE of MARS P. Yun (El Camino College 16007 Crenshaw Blvd., Torrance, Ca
    Mars Extant Life: What's Next? 2019 (LPI Contrib. No. 2108) 5024.pdf SEARCH FOR EXTANT LIFE THROUGH HUMAN MISSION ON THE SURFACE OF MARS P. Yun (El Camino College 16007 Crenshaw Blvd., Torrance, California 90506 USA, [email protected]) Introduction: NASA Mars missions focus on in- vestigating life in past and present Mars, understanding geological history and climate of Mars, and preparing human mission on the surface of Mars. If Martian ex- tant life exists, then it is expected to be a microorgan- ism due to a high level of radiation and the limited amount of liquid water on surface as well as a high level of carbon dioxide in atmosphere. Through human mission, currently available microbiological sensing technologies on Earth can be implemented on Mars with necessary modification and adjustment to Martian Figure 2. Scanning electron micrographs(SEM) of environment which has a high level of radiation on bacteria found in ice in Greenland and Antarctica surface and a high level of carbon dioxide in atmos- (Credit: Knowlton) phere as well as a low gravity compared to Earth. Mar- Water: Some liquid water may occur transiently on tian extant life may make a home in atmosphere, water, the Martian surface today.[6] Currently available de- ice, soil, or rock of surface or subsurface. tection techniques of microorganism in water include Atmosphere: Microbes consuming carbon- Biosensors, Vibrational Spectroscopy, MALDI/TOF containing chemicals exist in the in the middle-to- mass spectrometry, and Adenosine Tri-phosphate as- upper troposphere (8–15 km altitude) of Earth, and the say.[7] proportion of some microbes in atmosphere is higher Conclusion: Through human mission, currently than in soil and dust.[1] MSL Curiosity’s detection of a available sensing technologies to find microbes in at- seasonal methane cycle suggests that microbes may mosphere, water, ice, soil, rock of surface or subsur- exist in Martian atmosphere, which is composed of face on Earth can be utilized on Mars with necessary 96% carbon dioxide.
    [Show full text]
  • Journal of Insect Physiology 81 (2015) 21–27
    Journal of Insect Physiology 81 (2015) 21–27 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera: Noctuidae): New insights via nutritional geometry ⇑ Carrie A. Deans a, , Gregory A. Sword a,b, Spencer T. Behmer a,b a Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA b Ecology and Evolutionary Biology Program, Texas A&M University, TAMU 2475, College Station, TX 77843, USA article info abstract Article history: Insect herbivores that ingest protein and carbohydrates in physiologically-optimal proportions and con- Received 7 April 2015 centrations show superior performance and fitness. The first-ever study of protein–carbohydrate regula- Received in revised form 27 June 2015 tion in an insect herbivore was performed using the polyphagous agricultural pest Helicoverpa zea. In that Accepted 29 June 2015 study, experimental final instar caterpillars were presented two diets – one containing protein but no car- Available online 30 June 2015 bohydrates, the other containing carbohydrates but no protein – and allowed to self-select their protein– carbohydrate intake. The results showed that H. zea selected a diet with a protein-to-carbohydrate (p:c) Keywords: ratio of 4:1. At about this same time, the geometric framework (GF) for the study of nutrition was intro- Nutrition duced. The GF is now established as the most rigorous means to study nutrient regulation (in any animal). Protein Carbohydrates It has been used to study protein–carbohydrate regulation in several lepidopteran species, which exhibit Physiology a range of self-selected p:c ratios between 0.8 and 1.5.
    [Show full text]
  • A Novel Technique for the Precise Measurement of CO2 Production Rate in Small Aquatic Organisms As Validated on Aeshnid Dragonfly Nymphs Till S
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 964-968 doi:10.1242/jeb.150235 METHODS & TECHNIQUES A novel technique for the precise measurement of CO2 production rate in small aquatic organisms as validated on aeshnid dragonfly nymphs Till S. Harter*, Colin J. Brauner and Philip G. D. Matthews Ṁ in vitro ABSTRACT measuring small aquatic CO2 was validated both and in vivo The present study describes and validates a novel yet simple system using aeshnid dragonfly nymphs. for simultaneous in vivo measurements of rates of aquatic CO2 ̇ ̇ MATERIALS AND METHODS production (MCO2) and oxygen consumption (MO2), thus allowing the calculation of respiratory exchange ratios (RER). Diffusion of CO Animal collection and husbandry 2 Aeshna Anax junius from the aquatic phase into a gas phase, across a hollow fibre Aeshnid dragonfly nymphs ( spp. and ; wet mass ̇ 2.17 mg–1.46 g; n=15) were caught in the experimental ponds at the membrane, enabled aquatic MCO2 measurements with a high- ̇ University of British Columbia (summer 2016), and were held in the precision infrared gas CO2 analyser. MO was measured with a 2 laboratory for several weeks before experiments. Housing was in 1 l PO optode using a stop-flow approach. Injections of known amounts 2 glass containers connected to a recirculation system supplied with of CO2 into the apparatus yielded accurate and highly reproducible 2 dechlorinated Vancouver tap water at room temperature (22°C). measurements of CO2 content (R =0.997, P<0.001). The viability of in vivo measurements was demonstrated on aquatic dragonfly Animals were fed various wild-caught aquatic insects, twice a week.
    [Show full text]
  • Phenotypic Impacts of PBAN RNA Interference in an Ant, Solenopsis Invicta, and a Moth, Helicoverpa Zea ⇑ ⇑ Man-Yeon Choi A, , Robert K
    Journal of Insect Physiology 58 (2012) 1159–1165 Contents lists available at SciVerse ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea ⇑ ⇑ Man-Yeon Choi a, , Robert K. Vander Meer a, , Monique Coy b, Michael E. Scharf b,c a U. S. Department of Agriculture, Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW, 23rd Drive, Gainesville, FL 32608, USA b Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA c Department of Entomology, Purdue University, West Lafayette, IN 47907, USA article info abstract Article history: Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin fam- Received 30 January 2012 ily is a major group of insect neuropeptides, and they are expected to be found from all insect groups. Received in revised form 1 June 2012 These species-specific neuropeptides have been shown to have a variety of functions from embryo to Accepted 5 June 2012 adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other poten- Available online 13 June 2012 tial functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a Keywords: convenient tool to investigate unknown physiological functions in insects, and it is now an emerging PBAN method for development of novel biologically-based control agents as alternatives to insecticides.
    [Show full text]
  • Discontinuous Co2 Emission in a Small Insect, the Formicine Ant Campoxotus Vicixus
    J. exp. Biol. 134, 363-376 (1988) 363 Printed in Great Britain © The Company of Biologists Limited I9SS DISCONTINUOUS CO2 EMISSION IN A SMALL INSECT, THE FORMICINE ANT CAMPOXOTUS VICIXUS BY JOHN R. B. LIGHTON Department of Biology, University of California at Los Angeles, Los Angeles, CA 90024, USA Accepted 21 July 1987 SUMMARY Standard rates of oxygen consumption (VO2) and CO2 production (VCO2) were measured by constant-volume respirometry in the formicine ant, Camponotus vicinus Mayr, at temperatures ranging from 10 to 40°C. Over this range, the Q10 with regard to VO2 was 1-79, and with regard to VCO2, 1-84. Multiple regression equations relating VO2 and VCO2 of inactive ants to mass (0016-0088g) and temperature were calculated. Periodic CO2 emissions ('bursts') were monitored with flow-through respirometry. Burst frequency increased exponentially with tempera- ture (QiO = 3-05), from 814h"' at 15°C to 81-4h~' at 35°C, and was not significantly correlated with body mass over the mass range (0041-0086g) investigated. Burst volume, which could be accurately measured in one ant, decreased with temperature (Qio = 0'61). thus yielding the observed Vcc>2 Q10 °f 1-84. INTRODUCTION The dynamics of external gas exchange in insects has important implications in the measurement of insect metabolic rates; it also provides insights into the functioning of a respiratory system that is complex, efficient, and unique to insects and a few other arthropods. One of the most striking aspects of external gas exchange in insects is its discontinuous, or intermittent, nature. Reports of periodic emissions, or bursts, of CO2 from large insects have been present in the literature for many years (Schneiderman, 1953; Punt, Parser & Kuchlein, 1957; Hamilton, 1964), and such reports have now become commonplace (see reviews by Miller, 1981; Kaars, 1981).
    [Show full text]
  • O2k-Protocols SOP: O2k Quality Control 1
    O2k-Protocols SOP: O2k Quality Control 1 Mitochondrial Physiology Network 06.03(19):1-19 (2021) Version 19: 2021-08-19 ©2001-2021 Oroboros Updates: http://wiki.oroboros.at/index.php/MiPNet06.03_POS-Calibration-SOP O2k Quality Control 1: Polarographic oxygen sensors and accuracy of calibration Erich Gnaiger Oroboros Instruments High-Resolution Respirometry Schoepfstrasse 18, 6020 Innsbruck, Austria Email: [email protected] www.oroboros.at Contents 1. Oxygen concentration and partial pressure ............................................................................ 2 2. Polarographic oxygen sensor ........................................................................................................ 2 2.1. Cathode ................................................................................................................................................... 3 2.2. Anode ...................................................................................................................................................... 3 2.3. Electrolyte ............................................................................................................................................. 3 2.4. Membrane ............................................................................................................................................. 4 3. Calibration and quality control (O2k-SOP) .............................................................................. 4 3.1. The O2 sensor test ..............................................................................................................................
    [Show full text]
  • BM Respirometry Applied to a Novel Control Strategy of Nitrification in a Wastewater Biological Treatment
    BM Respirometry applied to a novel control strategy of nitrification in a wastewater biological treatment Emilio Serrano - Surcis, S.L. Email: [email protected] Abstract In wastewater treatment plants, the biological nitrogen removal (BNR) has acquired critical importance, which makes that in the majority of the cases the overall process control largely depends on the control of this treatment. The normal aerobic process of nitrification is performed by specific aerobic living microorganisms and a lack of information on their bioactivity may be cause of confusion in terms of control and monitoring criteria. For this reason, the application of the BM Respirometry, for the goal of getting a determined performance within the frame of energy optimization, has achieved an important role for essential information about the actual nitrification situation but also in other situations under different conditions for the process development. 1. Introduction The nitrification processes control must be based on a sufficient removal substrate rate to fit the actual hydraulic retention time of the biological reactor available for nitrification: Nitrification rate = ammonium- nitrogen uptake rate (AUR) Either the nitrification rate is the correct on which the process has to run, the plant operator should find its value. He also has to know if it is enough or not; and in case of not enough, he has to find out the causes and the possible solutions. For that purpose, a BM respirometer can be the perfect instrument to measure the actual nitrification rate and also to analyze if this has a higher or lower value than it is required in any specific process.
    [Show full text]
  • Microtiter Plate, Optode Respirometry, and Inter-Individual Variance in Metabolic Rates Among Nauplii of Artemia Sp
    MARINE ECOLOGY PROGRESS SERIES Vol. 296: 281–289, 2005 Published July 12 Mar Ecol Prog Ser Microtiter plate, optode respirometry, and inter-individual variance in metabolic rates among nauplii of Artemia sp. Tracy L. Szela, Adam G. Marsh* College of Marine Studies, University of Delaware, 700 Pilottown Road, Smith Laboratory, Rm 114, Lewes, Delaware 19958, USA ABSTRACT: Understanding the potential metabolic lifespan of a cohort of marine invertebrate embryos or larvae requires not just precise measurements of respiration rates, but also requires a large number of individual-level measurements to accurately describe the distribution of metabolic rate potentials within that cohort. To this end, we have developed a simple protocol for converting a 384-well microtiter plate into a 384-chamber, microrespirometer, optode using a plate-reading fluorometer for continuous, real-time data acquisition. We have ground-truthed this high-throughput technique using Artemia sp. nauplii at ~48 h post-hydration. In this paper we present >1000 separate respiration rate measurements on nauplii, providing a novel look at the distribution of metabolic rates within a cohort of larvae. At this high level of individual sampling, we have applied a Shan- non–Weaver information entropy statistic to describe the ‘complexity’ of these rate distributions and to show that the range of metabolic phenotypes expressed in a group of nauplii is responsive to the salinity in which they are rehydrated. Understanding the nature and mechanisms by which variations in metabolic rate intensities can be so large within a cohort and can be responsive to environmental parameters represents a real challenge in larval biology, which will require high-throughput method- ologies at both molecular and biochemical levels to decipher.
    [Show full text]
  • Why Do Models of Insect Respiratory Patterns Fail? John S
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb130039. doi:10.1242/jeb.130039 COMMENTARY Why do models of insect respiratory patterns fail? John S. Terblanche1,* and H. Arthur Woods2 ABSTRACT exchange (the whole surface, lungs, gills, parapodia, everted rectal Insects exchange respiratory gases using an astonishing diversity of sacs, etc.). Usually there is convective transport (see Glossary) of patterns. Of these, discontinuous gas exchange cycles (DGCs) have oxygen to the exchange surface from the environment, either by received the most study, but there are many other patterns exhibited external currents of water or by active ventilation of the surface (e.g. ‘ ’ intraspecifically and interspecifically. Moreover, some individual tidal ventilation of lungs in mammals). Oxygen then moves insects transition between patterns based on poorly understood inward by diffusion across that surface, and CO2 (usually) moves combinations of internal and external factors. Why have biologists outward across the same structure. Because most animals are large failed, so far, to develop a framework capable of explaining this enough that internal diffusion-based supplies of oxygen become diversity? Here, we propose two answers. The first is that the highly inadequate (Schmidt-Nielsen, 1997), they use additional framework will have to be simultaneously general and highly detailed. internal systems for distributing the oxygen from the exchange It should describe, in a universal way, the physical and chemical surface to the mitochondria (and removing CO2). This they do processes that any insect uses to exchange gases through the largely by using muscular pumps that drive internal, oxygen- respiratory system (i.e.
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]
  • Insect Physiology
    Insect Physiology Syllabus for ENY 6401– 3 credit hours Instructor: Daniel Hahn E-mail: Through the course E-learning site in Sakai – this is the best way to reach me! Phone: 352-273-3968 Office: ENY 3112 Office hours: 1 hour after each scheduled lecture and by appointment, I am happy to talk on the phone or Skype with distance students. Delivery options: Please note that this course is delivered in three different ways each with a separate section number based on delivery format. 1) Students in Gainesville will meet with me for a live lecture every Tuesday and Thursday. Gainesville-based students are expected to attend lectures and participate in interactive discourse during the lecture period and in online forums. 2) Students at UF REC sites will tune in for the live lectures using the Polycom system every Tuesday and Thursday. Polycom-based students are expected to attend lectures and participate in interactive discourse during the lecture period and in online forums. 3) Students taking this course by asynchronous distance delivery will use the UF E- learning system. Asynchronous distance students will have access to recorded video lectures via the web. Asynchronous students are expected to keep pace with Gainesville and Polycom students and participate through interactive discussion forums given weekly. Meeting time: On campus and by Polycom Tuesdays and Thursdays from 12:50-2:45 (periods 6 & 7 – 3 contact hours within these periods), distance video delivery will be asynchronous on the web. Meeting location: Steinmetz Hall (ENY) RM# 1027 or your local Polycom unit. Course Objectives: Understand the functions and structures involved in selected physiological systems in insects.
    [Show full text]
  • Some Aspects of Tracheal Ventilation in The
    SOME ASPECTS OF TRACHEAL VENTILATION IN THE COCKROACH, BYRSOTRIA FUMIGATA (GUERIN) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By THEODORE BLOW MYERS, B.Sc., M.Sc. The Ohio State University 1958 Approved by: /L Adviser Department of Zoology and Entomology ACKNOWLEDGMENT In the preparation of this dissertation the author has been under obligation to a number of persons. It is a pleasure to be able to acknowledge some of these debts. Special thanks go to Dr. Prank W. Fisk, upon whose direction the problem was undertaken and under whose direction the work was carried out. His friendly/ counsel and sincere interest are deeply appreciated. The writer also wishes to thank Dr. Robert M. Geist:, head of the Biology Department of Capital University, who provided encouragement, facilities, and time for the research that has been undertaken. ii CONTENTS Chapter Page I. INTRODUCTION............................. 1 II. M E T H O D ............ 12 The Experimental A n i m a l .............. 12 Dissection............................ 13 The Insect Spirograph,................ 15 III. THE NERVOUS SYSTEM ...................... 21 IV. TRACHEAL VENTILATION ...................... 27 'V. VENTILATION. EXPERIMENTS ................... 44 Decerebrate Ventilation.............. 44 Decapitate Ventilation............... 49 Thoracic and Abdominal Exposure to C02 • • 54 Exposure of the Head to C02 ...... 60 Ventilation in the Isolated Abdomen .... 62 Ventilation Without Thoracic Ganglia .... 65 Ventilation Without Abdominal Ganglia ... 69 Ventilation and Nerve Cord S e c ti on.... 72 VI. CONCLUSIONS ................................ 75 LITERATURE CITED.................................. 80 AUTOBIOGRAPHY.................................... 84 iii LIST OF ILLUSTRATIONS Figure Page 1. The Insect Spirograph 16 2.
    [Show full text]