Cutthroat Trout

Total Page:16

File Type:pdf, Size:1020Kb

Cutthroat Trout Cutthroat Trout Coastal cutthroat trout (Oncorhynchus clarkii clarkii) exhibit both resident and sea-run life history forms in Alaska and range throughout the coastal waters from the southern tip of Southeast Alaska to Gore Point on the Kenai Peninsula. There are approximately 14 subspecies of cutthroat trout (i.e., Lahontan, Westslope, Yellowstone, etc.) identified in the world but the coastal cutthroat trout is the only one found in Alaska and is also the only one that utilizes the marine environment. It is believed that all of the inland subspecies of cutthroat trout found throughout the western United States evolved from the ancestral coastal cutthroat trout. The resident or non-migratory form of coastal cutthroat trout live in a wide variety of habitats ranging from small headwater tributaries and beaver ponds to large lakes and rivers. Resident forms may coexist with sea-run forms in anadromous lakes and rivers but the resident or non-migratory form are usually confined to streams and lakes above natural barriers to upstream migrations. Coastal cutthroat trout typically migrate into small tributary streams to spawn, regardless of their life history form. The sea-run form migrates back and forth between saltwater and freshwater environments and may be found in small ponds and streams to large lakes and rivers. Since sea-run and resident coastal cutthroat trout may occupy the same habitat in lakes and streams they may successfully spawn together; the extent of what life form the progeny may adopt is unknown. There is evidence that resident fish occasionally migrate downstream, often over a natural barrier, such as a waterfall, and adopt a sea-run life history. Obviously this is a one-way street as they can not migrate back over the barrier. In several systems in Southeast Alaska, uniquely tagged resident fish captured above barriers have been subsequently recovered below the barrier in waters suitable for sea-run migrations. The mechanism that triggers a resident fish to migrate downstream is unclear but environmental factors such as food availability, water temperature, and water quality and quantity, may play a role. General description: Coastal cutthroat trout are silver, brassy, or yellowish in color and have small densely packed irregularly shaped dark brown or black spots on their body, head, and fins. Juvenile coastal cutthroat trout range in size from 1 to 6 inches and have about 10 oval parr marks overlaid with small black spots and may have a faint red or pink coloration along the lateral line and possibly on the gill covers. Typically the distinguishing cutthroat “cut-slash” is present on Alaskan coastal cutthroat trout as a red or orange band of color on the underside of the lower jaw in the skin folds. However, not all coastal cutthroat trout have a distinct slash, especially the silver colored sea-run fish which have just returned to freshwater where the slash may be present but inconspicuous. Coastal cutthroat trout can spawn with rainbow trout and produce fertile hybrids with physical characteristics of both (i.e., cutthroat slash and pink/red color band along the lateral line). Biologists often use the presence of small teeth at the base of the tongue called basibranchial teeth as a means to distinguish between rainbow trout (teeth absent) coastal cutthroat trout (teeth present). However, the presence or absence of basibranchial teeth is not a 100% accurate means of positively distinguishing all coastal cutthroat trout from all rainbow trout and this distinguishing trait may be further complicated in the presence of hybrid trout. Coastal cutthroat trout, like other species of trout, reportedly have the ability to change the size, shape, and distribution of spots in relationship to the environment they live in. Life History: Both resident and sea-run coastal cutthroat trout have similar early life histories. Adults typically spawn in small, isolated headwater streams from late April through June as daylight hours are increasing and daily water temperatures reach 6 – 9 degrees Celsius. Coastal cutthroat trout in Alaska have been observed spawning in small lake inlet streams 6 inches wide and 2 inches deep to larger rivers in approximately 5 feet of water. While not a preferred choice, coastal cutthroat trout may also spawn successfully in lakes where there is suitable gravel and adequate upwelling. Selection of isolated spawning areas is thought to have evolved to reduce interaction of young coastal cutthroat trout with more aggressive juvenile steelhead trout and coho salmon. Young coastal cutthroat trout emerge from the gravel in July and by fall they may be found in the dense cover of root wads or in along the edges of beaver ponds, sloughs, or lakes. There may be large variation in the size and age of smolting and maturity among different forms and populations of coastal cutthroat trout. Typically coastal cutthroat trout rear in freshwater for two to five years before emigrating to salt water during April through May when they are 6 to 8 inches long. The larger coastal cutthroat trout are the first to emigrate to saltwater every spring, either to migrate to a small stream for spawning or to resume feeding in the rich marine environment after a long winter. Resident forms may reside and feed in the main stem of rivers or lakes and then migrate to small tributaries to spawn. This is similar to the sea-run form except that larger bodies of fresh water are utilized instead of marine waters. While in the marine environment, sea-run coastal cutthroat trout do not stray far from the shoreline and rarely if ever cross large, open bodies of water. During their marine migrations coastal cutthroat trout may enter several freshwater bodies or hold in various intertidal areas but are thought to stay within 50 miles of their natal stream. Time in saltwater may vary from a few days to over a hundred days before they reenter freshwater either following the salmon immigrations to feed on salmon eggs or in the fall returning to a lake system to overwinter. Homing appears to be very precise as coastal cutthroat trout can return to the same tributary stream where they emerged and reared. The size at which female coastal cutthroat trout first reach sexual maturity may vary greatly. In some populations mature fish as small as 5 to 7 inches have been observed but on average, most female coastal cutthroat trout reach sexual maturity by 11 to 12 inches. However, females in some populations may not become sexually mature for the first time until 13 inches or larger. Like all species of trout, coastal cutthroat trout spawn in the spring but due to cold water temperatures in Alaska their gonad development must be in an advanced stage going into the fall in order to ensure successful spawning. Thus, mature coastal cutthroat trout are occasionally captured in the fall dripping eggs or milt which has lead people to believe they are spawning during the fall. There is evidence to suggest that some coastal cutthroat trout may not spawn annually i.e., they may skip a year before spawning again. The fecundity of coastal cutthroat trout is low and ranges from an average of 100 eggs for a 6 inch fish to just under 600 eggs for a 14 inch fish. The oldest and biggest coastal cutthroat trout are the resident lake form and some fish are known to be at least 15 years old, reaching lengths over 27 inches and weighing nearly 8 pounds. One uniquely tagged fish in Turner Lake was recaptured 12 years after first being tagged and it had grown from just under 7 inches to over 23 inches. These trophy-class coastal cutthroat trout (≥20 inches) are only found in the large landlocked lakes in Southeast Alaska that also contain good populations of kokanee (landlocked sockeye salmon). Sea-run coastal cutthroat trout tend to have shorter life spans, rarely surviving more than 10 years, and generally only reaching a maximum length of 16 to 22 inches. Coastal cutthroat trout are highly predaceous and may feed extensively on small fish; coastal cutthroat trout are known to have a higher percentage of fish in their diets compared to either rainbow trout or Dolly Varden. Coastal cutthroat trout in lakes may hide among lily pads, sunken logs, or rubble and dart out and seize insects and small fish while coastal cutthroat trout in streams may establish a territory and adopt a "sit and wait” feeding strategy. Some fish become “cruisers” when they reach about 14 inches, pursuing and primarily eating other fish. Sport fishing: Coastal cutthroat trout are a wonderful angling fish as their aggressive behavior lends itself well to a variety of tackle and techniques. Small spinners, spoons or lures cast along banks and lake shore lines are highly effective. Coastal cutthroat trout are also readily caught on fly gear using either wet or dry flies. Some of the best wet fly patterns imitate large aquatic insects or small fish while dry fly fishermen can do well by imitating flying insects. Coastal cutthroat trout are very susceptible to bait and the mortality of fish caught with bait and then released may be as high as 50%. Thus, the use of bait to sport fish for coastal cutthroat trout is prohibited throughout much of its range in Alaska. Catch-and-release: Throughout much of Alaska, minimum size and bag limit regulations for coastal cutthroat trout means that many of the fish captured will subsequently be released. Anglers are encouraged to practice proper catch-and-release techniques to help protect and preserve this beautiful trout. Text: Steve Elliott Illustration: Ashley Dean Revised and reprinted 2008 Links to related information: Southeast Alaska online cutthrout trout informational brochure Southeast Alaska cutthroat trout research .
Recommended publications
  • Crappie and Crappie Fishing
    Crappie & Crappie Fishing Crappie are among the most popular sport fishes in Texas. They are known by various names including white perch, sac-a-lait, calico bass, and paper-mouth. Two species are found in Texas, the white crappie (Pomoxis annularis) and black crappie (P. nigromaculatus). Black crap­ pie have irregular dark speck­ les and blotches on their sides. On white crappie, the dark markings consist of regularly arranged vertical bars. When in doubt, count the number of sharp dorsal spines at the front of a crappie’s dorsal fin. Black crappie have seven or eight spines while white crappie Young crappie feed on microscopic crustaceans called have five or six. During the spawning season, males of zooplankton. Juveniles and adults feed primarily on both species develop dark markings over most of the small threadfin and gizzard shad and insect larvae, es­ body, causing many anglers to misidentify male white pecially mayflies. Their diet also includes minnows, crappie as black crappie. silversides, other crappie and any other fish small enough to swallow. Black crappie are more numerous in the clear, acidic to slightly alkaline waters of East Texas. White crappie are found state­ In lakes with low bass populations, crappie often wide. Fish of both species may live up to eight years and overpopulate and become stunted. For crappie to reach become sexually mature at one to two years. Crappie belong larger sizes, populations must experience high total mor­ to the same family as the sunfishes and black basses; like tality to keep their numbers within the carrying capacity their cousins, crappie are nest builders.
    [Show full text]
  • Fish Spawning Aggregations
    Fish Spawning Aggregations a focal point of fisheries management and marine conservation in Mexico Photo: Octavio Aburto Authorship Brad Erisman – Coastal Fisheries Research Program, University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373 William Heyman – LGL Ecological Research Associates, Inc., 4103 S. Texas Avenue, Bryan TX 77802 Stuart Fulton – Comunidad y Biodiversidad, Isla del Peruano 215, Lomas de Miramar, Guaymas, Sonora, Mexico Timothy Rowell – Gulf of California Marine Program, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92037 Illustrations – Larry Allen and Madeline Wukusick Graphic Design – Madeline Wukusick | www.communique.design Photography – Octavio Aburto, Richard Barnden, Douglas David Seifert, Walt Stearns, Cristina Limonta, Alfredo Barroso Citation – Erisman, B., W.D. Heyman, S. Fulton, and T.Rowell 2018. Fish spawning aggregations: a focal point of fisheries management and marine conservation in Mexico. Gulf of California Marine Program, La Jolla, CA. 24 p. Email Contact: Brad Erisman, [email protected] Fish Spawning Aggregations // 2 Contents > Introduction .................................................................................................................................................................. 4 > What are fish spawning aggregations (FSAs)? ............................................................................................................ 5 > What kinds of fishes form FSAs? ................................................................................................................................
    [Show full text]
  • If I Catch It, Can I Eat It? a Guide to Eating Fish Safely, 2017 Connecticut
    If I Catch It, This pamphlet will give you information that will help your family avoid chemicals in fish and eat fish safely. Fish from Connecticut’s waters are a healthy, low-cost source of protein. Conne<ti<ut Oep.trtment Unfortunately, some fish take up chemicals such as mercury and polychlorinated of Public Health Can I Eat It? biphenyls (PCBs). These chemicals can build up in your body and increase health risks. The developing fetus and young children are most sensitive. Women who eat A Guide to Eating Fish Safely fish containing these chemicals before or during pregnancy or nursing may have 2017 Connecticut Fish Consumption Advisory children who are slow to develop and learn. Long term exposure to PCBs may increase cancer risk. What Does The Fish Consumption Advisory Say? The advisory tells you how often you can safely eat fish from Connecticut’s waters and from a store or restaurant. In many cases, separate advice is given for the High Risk and Low Risk Groups. You are in the High Risk Group if you are a pregnant woman, a woman who could become pregnant, a nursing mother, or a child under six. If you do not fit into the High Risk Group, you are in the Low Risk Group. Advice is given for three different types of fish consumption: 1. Statewide FRESHWATER Fish Advisory: Most freshwater fish in Connecticut contain enough mercury to cause some limit to consumption. The statewide freshwater advice is that: High Risk Group: eat no more than 1 meal per month Low Risk Group: eat no more than 1 meal per week 2.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Largemouth Bass Biology and Life History
    SRAC Publication No. 200 August 1997 VI PR Revision Largemouth Bass Biology and Life History James T. Davis and Joe T. Lock* The largemouth bass (Micropterus Largemouth bass will eat a variety salmoides) is one of several “bass- of live fish, but bluegill are partic- es” that are actually members of ularly important in ponds and the sunfish family. There are two small lakes because they repro- recognized subspecies, the duce throughout the warm Florida and the Northern, which months. This furnishes a continual will blend genetically. Although supply of different size forage. the two subspecies differ slightly Tilapia* and/or goldfish are com- in body structure, behavior, and monly used as forage on fish growth, biochemical tests are nec- farms and in intensively managed essary to positively identify them. Largemouth bass. lakes because more can be pro- duced at lower cost. About 5 Food and growth reflex action toward anything that pounds of live forage are required moves. (The bass motto: If food is for annual maintenance, and 10 Largemouth bass are valued by there, eat it.) pounds of forage are required to fishermen chiefly because of their add 1 pound of gain to large- The availability of adequate size fighting ability. They are vora- mouth bass. cious predators that readily strike live food (baitfish or forage) usu- artificial baits. Bass begin to eat ally limits bass growth. With ade- The swimming speed of large- fish when they are about 2 inches quate forage, largemouth bass can mouth bass has not been studied long. They swallow live fish and surpass 2 pounds the first year, in depth.
    [Show full text]
  • Coral Reef Fish Spawning Periodicity and Habitat in New Caledonia: a Multi-Faceted Approach in a Data-Deficient Environment
    Coral Reef Fish Spawning Periodicity and Habitat in New Caledonia: a multi-faceted approach in a data-deficient environment Adrian FLYNN1*, Sébastien SARRAMEGNA2 and Michel KULBICKI3 1Hydrobiology Pty Ltd. 47 Park Rd. PO Box 2050 Milton 4064 Queensland, Australia 2 Falconbridge NC SAS, 9, rue d'Austerlitz BP MGA08 98802 Nouméa Cedex, Nouvelle-Calédonie 3 Institut de recherche pour le développment, BP A5 98848 Nouméa Cedex, Nouvelle-Calédonie *Corresponding Author: A. Flynn e-mail: [email protected] Abstract An Environmental Impact Assessment Introduction (EIA) for a proposed mining project on the west coast While most temperate fishes have a well-defined of Northern Province, New Caledonia, required an breeding season that is regulated by hormonal changes understanding of coral reef fish spawning/aggregation and a variety of environmental cues such as periodicity and habitat utilisation in New Caledonia in temperature and photoperiod (Scott 1979; Lam 1983; order to describe and mitigate the potential impacts of Bye 1984; Stacey 1984), tropical species generally the development. A study was undertaken that have a protracted breeding season and the specific encompassed literature review, interpretation of cues regulating spawning periodicity are not well oceanographic data, analysis of gonad index data known, although photoperiod, sea temperature and spanning some 18 years, analysis of commercial currents are often quoted as the most influential fisheries production data, interpretation of sales data (Munro et al. 1973; Thresher 1984; Walsh 1987). from the Nouméa fish market, interviews with Although the timing of spawning can occur commercial and subsistence fishermen and personal randomly in tropical environments, spawning is more communication with researchers at University of New commonly synchronised within a population Caledonia regarding unpublished records and (Johannes 1978; Colin and Clavijo 1988).
    [Show full text]
  • Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA
    fishes Article Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA Kyle D. Martens 1,* and Jason Dunham 2 1 Washington Department of Natural Resources, 1111 Washington Street SE, Olympia, WA 98504, USA 2 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected] Abstract: When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions Citation: Martens, K.D.; Dunham, J. (size and gradient), suggesting that physical conditions may have more of an influence on density Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout than species interactions.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Bonneville Cutthroat Trout (Oncorhynchus Clarki Utah) Bonneville Cutthroat Trout Is One of Three Cutthroat Trout Subspecies Native to Utah
    FISH Bonneville Cutthroat Trout (Oncorhynchus clarki utah) Bonneville cutthroat trout is one of three cutthroat trout subspecies native to Utah. Bonneville cutthroat trout historically occurred in the Pleistocene Lake Bonneville basin, which included portions of Idaho, Nevada, Utah, and Wyoming (Kershner 1995). The desiccation of Lake Bonneville into the smaller Great Salt Lake and fragmentation of other stream and lake habitats may have led to three slightly differentiated groups of Bonneville cutthroat trout. These groups are found in the Bonneville basin proper, the Bear River drainage, and the Snake Valley (Behnke 1992). There are five known populations of pure strain Bonneville cutthroat trout on the Fishlake National Forest inhabiting approximately 38 miles of stream habitat. There are several recently reintroduced populations, and several small potential remnant populations. Habitat for the Bonneville cutthroat trout is widely distributed and variable. It ranges from high elevation (3,500 m mean sea level) streams with coniferous and deciduous riparian trees to low elevation (1,000 m mean sea level) streams in sage-steppe grasslands containing herbaceous riparian zones. As such, Bonneville cutthroat trout have adapted to a broad spectrum of habitat conditions throughout their range (Kershner 1995). Sexual maturity is typically reached during the second year for males and the third year for females (May et al. 1978). Both the age at maturity and the annual timing of spawning vary geographically with elevation, temperature, and life history strategy. Lake resident trout may begin spawning at two years of age and usually continue throughout their lives, while adfluvial individuals may not spawn for several years.
    [Show full text]
  • Clean &Unclean Meats
    Clean & Unclean Meats God expects all who desire to have a relationship with Him to live holy lives (Exodus 19:6; 1 Peter 1:15). The Bible says following God’s instructions regarding the meat we eat is one aspect of living a holy life (Leviticus 11:44-47). Modern research indicates that there are health benets to eating only the meat of animals approved by God and avoiding those He labels as unclean. Here is a summation of the clean (acceptable to eat) and unclean (not acceptable to eat) animals found in Leviticus 11 and Deuteronomy 14. For further explanation, see the LifeHopeandTruth.com article “Clean and Unclean Animals.” BIRDS CLEAN (Eggs of these birds are also clean) Chicken Prairie chicken Dove Ptarmigan Duck Quail Goose Sage grouse (sagehen) Grouse Sparrow (and all other Guinea fowl songbirds; but not those of Partridge the corvid family) Peafowl (peacock) Swan (the KJV translation of “swan” is a mistranslation) Pheasant Teal Pigeon Turkey BIRDS UNCLEAN Leviticus 11:13-19 (Eggs of these birds are also unclean) All birds of prey Cormorant (raptors) including: Crane Buzzard Crow (and all Condor other corvids) Eagle Cuckoo Ostrich Falcon Egret Parrot Kite Flamingo Pelican Hawk Glede Penguin Osprey Grosbeak Plover Owl Gull Raven Vulture Heron Roadrunner Lapwing Stork Other birds including: Loon Swallow Albatross Magpie Swi Bat Martin Water hen Bittern Ossifrage Woodpecker ANIMALS CLEAN Leviticus 11:3; Deuteronomy 14:4-6 (Milk from these animals is also clean) Addax Hart Antelope Hartebeest Beef (meat of domestic cattle) Hirola chews
    [Show full text]
  • The Native Trouts of the Genus Salmo of Western North America
    CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction ..................................................................................................................................................................
    [Show full text]
  • Provision of Information on Place of Product Origin to Consumers
    Fishery Provision of Information on Place of Product Origin to Products Consumers ○Since October 2011, it has been recommended to display places of origin of fresh fishery products, mainly those caught on the Pacific side of eastern Japan, by dividing the sea areas into 7 zones and clarifying these zone names. Zones for migratory fish Display example [Migratory fish species] Salmon shark, blue shark, shortfin mako shark, sardines, salmon and trout, Pacific saury, Japanese amberjack, Japanese Indicate the water zone jack mackerel, marlins, mackerels, bonito and tunas, Japanese of catch on a label flying squid, spear squid, and neon flying squid Line of 200 nautical miles off the coast of Honshu (i) Pacific Ocean off the coast of Due east line extending from Hokkaido and Aomori the border between Aomori and Iwate Prefectures (ii) Off the coast of Sanriku Due east line extending from (northern part) the border between Iwate and Miyagi Prefectures (iii) Off the coast of Sanriku Due east line extending from (southern part) the border between Miyagi and Indicate the water zone (iv) Off the coast of Fukushima Prefectures of catch on a label Fukushima Due east line extending from Fishery Products 8.6 (v) Off the coast of the border between Fukushima Hitachi and Kashima and Ibaraki Prefectures (vi) Off the coast of Boso Due east line extending from the border between Ibaraki and Due east line Chiba Prefectures extending to the east from Nojimazaki, Chiba Prepared based on the "Responses at Farmland" by the Ministry of Agriculture, Forestry and Fisheries (MAFF) MAFF Since October 2011, the national government has been encouraging producers to display places of origin of fresh fishery products, mainly those caught on the Pacific side of eastern Japan so that consumers can easily understand where the relevant fishery product was caught.
    [Show full text]