Pragmatic Programmer, The: from Journeyman to Master Andrew Hunt David Thomas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rugby - a Process Model for Continuous Software Engineering
INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort. -
Declarative Immutability in Java
International Journal of Computer and Systems Engineering Volume 1 Issue 1 Article 4 July 2020 Declarative Immutability in Java John Crowley Boston College, University of Pennsylvania, [email protected] Follow this and additional works at: https://digitalcommons.fairfield.edu/ijcase Recommended Citation Crowley, John (2020) "Declarative Immutability in Java," International Journal of Computer and Systems Engineering: Vol. 1 : Iss. 1 , Article 4. Available at: https://digitalcommons.fairfield.edu/ijcase/vol1/iss1/4 This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights- holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Declarative Immutability in Java Online at https://digitalcommons.fairfield.edu/ijcase/ Published by Fairfield University, DigitalCommons@Fairfield © 2020 Vol. 1, No. 1, 2020 Declarative Immutability in Java by John D. Crowley ABSTRACT A pervasive mechanism is proposed to declare that variables and object instances are mutable or immutable, and whether methods mutate instances. These declarations are integral to the type structure of the language and allow the developer to declare, and the reader (and compiler) to determine, if a variable or instance is immutable (even if other instances of the Class are mutable) or that an instance is immutable throughout the application (a Pure instance). -
Smart Battery Charging Programmer Software User Manual Smart Battery Charging Programmer Software User Manual
Smart Battery Charging Programmer Software User Manual Smart Battery Charging Programmer Software User Manual 1. Introduction ............................................................................................................... 1 ................................................................................................... 2. Prerequisites 1 .................................................................................................. 2.1 System requirements 1 .................................................................................................. 2.2 Hardware installation 1 ................................................................................................... 2.3 Software installation 2 3. User Interface ............................................................................................................ 2 .............................................................................................................. 3.1 Basic layout 2 CURVE PROFILE ......................................................................................................... 3.2 2 SETTING ...................................................................................... ............. 3.3 ................ 3 . ...................................................................................................... 4 General Operation 4 ...................................................................................................... 4.1 Connection 4 4.2 ......................................................................... -
Scala for the Impatient Second Edition This Page Intentionally Left Blank Scala for the Impatient Second Edition
Scala for the Impatient Second Edition This page intentionally left blank Scala for the Impatient Second Edition Cay S. Horstmann Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at [email protected] or (800) 382–3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the United States, please contact [email protected]. Visit us on the Web: informit.com/aw Library of Congress Control Number: 2016954825 Copyright © 2017 Pearson Education, Inc. All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. -
The Pragmatic Programmer Your Journey to Mastery
Extracted from: The Pragmatic Programmer your journey to mastery 20th Anniversary Edition Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo The Pragmatic Programmer your journey to mastery 20th Anniversary Edition Dave Thomas Andy Hunt Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of The Pragmatic Programmers, LLC. The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at [email protected] or (800) 382-3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the U.S., please contact [email protected]. -
MAKING DATA MODELS READABLE David C
MAKING DATA MODELS READABLE David C. Hay Essential Strategies, Inc. “Confusion and clutter are failures of [drawing] design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity ¾ rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding.” ¾ Edward R. Tufte1 Entity/relationship models (or simply “data models”) are powerful tools for analyzing and representing the structure of an organization. Properly used, they can reveal subtle relationships between elements of a business. They can also form the basis for robust and reliable data base design. Data models have gotten a bad reputation in recent years, however, as many people have found them to be more trouble to produce and less beneficial than promised. Discouraged, people have gone on to other approaches to developing systems ¾ often abandoning modeling altogether, in favor of simply starting with system design. Requirements analysis remains important, however, if systems are ultimately to do something useful for the company. And modeling ¾ especially data modeling ¾ is an essential component of requirements analysis. It is important, therefore, to try to understand why data models have been getting such a “bad rap”. Your author believes, along with Tufte, that the fault lies in the way most people design the models, not in the underlying complexity of what is being represented. An entity/relationship model has two primary objectives: First it represents the analyst’s public understanding of an enterprise, so that the ultimate consumer of a prospective computer system can be sure that the analyst got it right. -
PHP Programmer Location: North Las Vegas NV, USA
Batteries ... For Life! PHP Programmer Position Title: PHP Programmer Location: North Las Vegas NV, USA Description: BatterieslnAFlash.com, Inc. has an immediate need for a PH? Web Programmer to join their team full time. The ideal candidate will work on development and implementation ofa wide variety of Web-based products using PHP, JavaScript, MySQL and AJAX. Qualified applicants would be initially working on a 90 day probationary period for a growing online battery company. " Responsibilities: • Participate in a team-oriented environment to develop complex Web-based applications. Improve, repair, and manage existing websites and applications. / ( • Maintain existing codebases to include troubieshooting bugs and adding new features. • Convert data from various formats (Excel, ACCESS etc.) into developed databases. • Balance a variety of concurrent projects. Required Experience: • Ability to work independently, take initiative, and contribute to new ideas required in a diverse, fast paced, deadline-driven team environment. Self-starter with a professional appearance. • Detailed knowledge of web application development and extensive experience using PHP and Javascript as well as relational databases such a~. PostgreSQL and MySQL. • Proven hands on experience with web applicationfi"."meworks such as CAKE, Kohana, Zend, etc. • Proven hands on experience with JavaScript fral.;cworks such as jQuery and EXT JS • Proven hands on experience with SECURE CODING techniques • Experience developing cross-browser frontends using XHTML, CSS, AJAX, JavaScript. • Organization and analytic skills, with strong problem solving ability. • Excellent written and verbal communications skills • Experience with version control systems such as SVN and CVS • Hands on experience with L1NUX especially using command line tools and writing SHELL scripts (Benefit, not required) • Experience using common business software ~ uch as WORD, PowerPoint, Excel and VISIO to visualize, discuss and present ideas to technical and non-technical audiences. -
Dissertation Submitted in Partial Fulfillment of the Requirements for The
ON THE HUMAN FACTORS IMPACT OF POLYGLOT PROGRAMMING ON PROGRAMMER PRODUCTIVITY by Phillip Merlin Uesbeck Master of Science - Computer Science University of Nevada, Las Vegas 2016 Bachelor of Science - Applied Computer Science Universit¨at Duisburg-Essen 2014 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy { Computer Science Department of Computer Science Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas December 2019 c Phillip Merlin Uesbeck, 2019 All Rights Reserved Dissertation Approval The Graduate College The University of Nevada, Las Vegas November 15, 2019 This dissertation prepared by Phillip Merlin Uesbeck entitled On The Human Factors Impact of Polyglot Programming on Programmer Productivity is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy – Computer Science Department of Computer Science Andreas Stefik, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Dean Jan Pedersen, Ph.D. Examination Committee Member Evangelos Yfantis, Ph.D. Examination Committee Member Hal Berghel, Ph.D. Examination Committee Member Deborah Arteaga-Capen, Ph.D. Graduate College Faculty Representative ii Abstract Polyglot programming is a common practice in modern software development. This practice is often con- sidered useful to create software by allowing developers to use whichever language they consider most well suited for the different parts of their software. Despite this ubiquity of polyglot programming there is no empirical research into how this practice affects software developers and their productivity. In this disser- tation, after reviewing the state of the art in programming language and linguistic research pertaining to the topic, this matter is investigated by way of two empirical studies with 109 and 171 participants solving programming tasks. -
Study on Eiffel
Study on Eiffel Jie Yao Anurag Katiyar May 11, 2008 Abstract This report gives an introduction to Eiffel, an object oriented language. The objective of the report is to draw the attention of the reader to the salient features of Eiffel. The report explains some of these features in brief along with language syntax. The report includes some code snippets that were written in the process of learning Eiffel. Some of the more detailed tutorials, books and papers on Eiffel can be found at www.eiffel.com 1 Contents 1 Introduction 3 2 Eiffel Constructs and Grammar 3 2.1 ”Hello World” . 3 2.2 Data Types . 3 2.3 Classes . 3 2.4 Libraries . 4 2.5 Features . 4 2.6 Class relations and hierarchy . 4 2.7 Inheritance . 4 2.8 Genericity . 5 2.9 Object Creation . 5 2.10 Exceptions . 6 2.11 Agents and Iteration . 6 2.12 Tuples . 6 2.13 Typing . 6 2.14 Scope . 7 2.15 Memory Management . 7 2.16 External software . 7 3 Fundamental Properties 7 3.1 ”Has” Properties . 8 3.2 ”Has no” Properties . 9 4 Design principles in Eiffel 10 4.1 Design by Contract . 10 4.2 Command Query Separation . 11 4.3 Uniform Access Principle . 11 4.4 Single Choice Principle . 11 5 Compilation Process in Eiffel 11 6 Exception Handling in the compiler 12 7 Garbage Collection for Eiffel 12 7.1 Garbage Collector Structure . 12 7.2 Garbage Collector in Action . 13 8 Eiffel’s approach to typing 13 8.1 Multiple inheritance . -
Intermittent Computation Without Hardware Support Or Programmer
Intermittent Computation without Hardware Support or Programmer Intervention Joel Van Der Woude, Sandia National Laboratories; Matthew Hicks, University of Michigan https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude This paper is included in the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16). November 2–4, 2016 • Savannah, GA, USA ISBN 978-1-931971-33-1 Open access to the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. Intermittent Computation without Hardware Support or Programmer Intervention Joel Van Der Woude Matthew Hicks Sandia National Laboratories∗ University of Michigan Abstract rapid changes drive us closer to the realization of smart As computation scales downward in area, the limi- dust [20], enabling applications where the cost and size tations imposed by the batteries required to power that of computation had previously been prohibitive. We are computation become more pronounced. Thus, many fu- rapidly approaching a world where computers are not ture devices will forgo batteries and harvest energy from just your laptop or smart phone, but are integral parts their environment. Harvested energy, with its frequent your clothing [47], home [9], or even groceries [4]. power cycles, is at odds with current models of long- Unfortunately, while the smaller size and lower cost of running computation. microcontrollers enables new applications, their ubiqui- To enable the correct execution of long-running appli- tous adoption is limited by the form factor and expense of cations on harvested energy—without requiring special- batteries. Batteries take up an increasing amount of space purpose hardware or programmer intervention—we pro- and weight in an embedded system and require special pose Ratchet. -
Agile Methods: Where Did “Agile Thinking” Come From?
Historical Roots of Agile Methods: Where did “Agile Thinking” Come from? Noura Abbas, Andrew M Gravell, Gary B Wills School of Electronics and Computer Science, University of Southampton Southampton, SO17 1BJ, United Kingdom {na06r, amg, gbw}@ecs.soton.ac.uk Abstract. The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from history. Keywords: Agile Methods, Software Development, Foundations and Conceptual Studies of Agile Methods. 1 Introduction Many reviews, studies and surveys have been conducted on Agile methods [1, 20, 15, 23, 38, 27, 22]. -
Alignment of Business and Application Layers of Archimate
Alignment of Business and Application Layers of ArchiMate Oleg Svatoš1, Václav Řepa1 1Department of Information Technologies, Faculty of Informatics and Statistics, University of Economics, Prague [email protected], [email protected] Abstract. ArchiMate is widely used standard for modelling enterprise architec- ture and organizes the model in separate yet interconnected layers. Unfortunate- ly the ArchiMate specification provides us with rather brief detail on the rela- tions between the individual layers and the guidelines how to have them aligned. In this paper we focus on the alignment between business and applica- tion layers especially alignment of business processes and application functions, which we see as crucial condition for proper and consistent enterprise architec- ture. For this alignment we propose an extension for ArchiMate based on the development done in Methodology for Modelling and Analysis of Business Process (MMABP). Application of the proposed extension is illustrated on an example and its benefits discussed. Keywords: business process model·Enterprise Architec- ture·ArchiMate·TOGAF·MMABP·functional model·object life cycle 1 Introduction The enterprise architecture plays an important role in current corporate management. Enterprises realized that after the initial spontaneous growth and accumulation of dif- ferent legacy systems over the years, it is necessary to create the living organism forming an enterprise under some kind of control in order to allow managing it. The enterprise architecture is one of the tools which help them to do it. There are different frameworks for capturing the enterprise architectures like FEAF [20], DoDAF [21], ISO 19439 [22], etc. out of which the most popular standard is the TOGAF [14] accompanied by ArchiMate as the modelling language [1].