Kinetics of Different Methods of Polymerization

Total Page:16

File Type:pdf, Size:1020Kb

Kinetics of Different Methods of Polymerization Technische Universität Berlin Institut für Chemie Polymerization Technology Karl-Heinz Reichert Reinhard Schomäcker Third Edition SS 2017 Preface This teaching booklet has been written for students attending the Master Program of Polymer Science, established as a joint program by four universities in the cities of Berlin and Potsdam. This text book focuses on fundamental aspects of polymerization reaction engineering. In the development of a polymerization process the type of reactor and its mode of operation are key factors, which not only affect reactor performance and safety, but also to a large extend the quality of the polymeric product. This is due to the fact that polymers are non uniform materials and the degree of non uniformity is affected by chemistry and reaction engineering conditions as well. I hope that the contents of this text book will be of help to those students who will be envolved in large scale synthesis of polymers in times to come. I would like to thank my secretary Veronika Schott for writing the manuscript of this booklet and especially for her patience with respect to numerous changes of the text, which I have made all the time. Thanks also go out to Monika Klein, who drew all the figures presented in this book and Scott Kibride who improved the English language. Finally we would like to thank all my former PhD students and many of our colleagues for some of their scientific results, which we have used in this text book. Karl Heinz Reichert Berlin in October 2002 Reinhard Schomäcker Berlin in April 2017 TABLE OF CONTENTS 1. Introduction 1 1.1 Classification of Polymers 1 1.2 Types of Polymerization Reactions 2 1.3 Methods of Polymerization 3 1.4 Types of Polymerization Reactors 4 1.5 General References 4 1.6 Tables and Figures 6 2. Kinetics of Polymerization and Molecular Weight of Polymers 9 2.1 Free Radical Polymerization in Solution 9 2.1 Free Radical Polymerization in Emulsion 16 2.3 Free Radical Copolymerization in Solution 23 2.4 Coordination Polymerization in Gas Phase 24 2.5 Coordination Polymerization in Liquid Phase 32 2.6 List of Symbols 34 2.7 References 35 2.8 Tables and Figures 37 3. Viscosity of Reaction Mixture 55 3.1 Introduction 55 3.2 Viscosity of Homogeneous Systems 55 3.3 Viscosity of Heterogeneous Systems 58 3.4 List of Symbols 59 3.5 References 60 3.6 Figures 61 4. Data Acquisition of Polymerization Reactions 66 4.1 Introduction 66 4.2 Reaction Calorimetry/Kinetic and Caloric Data 66 4.3 Reaction Viscosimetry/Rheological Data 70 4.4 Solubility and Diffusivity of Monomer in Polymer 71 4.5 List of Symbols 73 4.6 References 74 4.7 Figures 75 5. Polymerization in Stirred Tank Reactors 83 5.1 Mode of Operation 83 5.2 Mixing of Reaction Mixture 84 5.3 Heat Removal and Safety Aspects 92 5.4 Residence Time Distribution 98 5.5 Reactor Performance 101 5.6 Reactor Selectivity 105 5.7 Reactor Scale-up 109 5.8 List of Symbols 111 5.9 References 113 5.10 Tables and Figures 114 6. Polymerization Processes 139 6.1 General Aspects 139 6.2 Processes for Chain-Growth Polymerization 140 Solution Polymerization/High Density Polyethylene Suspension Polymerization/Poly(vinyl chloride) Emulsion Polymerization/Styrene-Butadiene-Copolymer Slurry Polymerization/High Density Polyethylene Gas Phase Polymerization/High Density Polyethylene 6.3 Processes for Step-Growth Polymerization 146 Condensation Polymerization in Solution/Phenolic Resins Condensation Polymerization in Melt and Solid State/Poly- (ethylene terephthalate) Addition Polymerization in Liquid Phase/Polyurethanes 6.4 References 149 6.5 Tables and Figures 150 1. INTRODUCTION 1.1 Classification of Synthetic Polymers Synthetic polymers can be classified according to their specific properties into thermoplastics, thermosets and elastomers. Examples of major polymers of each kind are listed in Tab. 1.1. Thermoplastic polymers are organic materials, which consist of linear or branched macromolecules having molecular weights on the order of 100 000 gram per mole. On heating above melting point thermoplastic polymers melt and form highly viscous liquids with a typical flow pattern. On cooling the melt solidifies again. In this way thermoplastic polymers can easily be processed into materials of different shapes. According to the physical structure and chemical composition of the polymers they can be partially crystalline or amorphous materials in the solid state. Amorphous polymers like polyvinyl chloride, poly- styrene, and polyesters are transparent materials. Partially crystalline polymers like high density polyethylene and polypropylene are not transparent in the solid state due to their heterophasic structure. Thermosets are organic materials, which are formed by higly crosslinked macro- molecules with extremely high molecular weights. On heating they can not be molten but they do decompose and lose their original properties. Therefore thermosets have to be processed in such a way that synthesis and processing of the polymer material is done at the same time in a given cavity corresponding to the shape of the material which is to be produced. In general, thermosets are filled with glass fibre to improve the mechanical strengh of the materials. Elastomers are linear or branched macromolecules which are very flexible. The molecules contain double bonds, which can easily react with added crosslinker at elevated temperatures, forming a crosslinked material with rubber-like properties. Typical properties of organic polymers are low specific weight, low heat and electrical conductivity, and good resistant to corrosion. Feedstocks for major polymers are crude oil, natural gas, salt, air, and water. Organic polymers are produced by a relatively small number of large chemical companies. Approxi- mately seventy percent of all polymers produced are thermoplastics, twenty percent are thermosets, and ten percent are elastomers. 1 1.2 Types of Polymerization Reactions Polymerization reactions can be very complex chemical reactions with many different side reactions. One way of classification of polymerization reactions is to look at the polymer growth reaction, which is essential for polymer formation. By looking at the polymer growth reaction, chainwise and stepwise poly- merization reactions can be distinguished. See Tab. 1.2. In chainwise polymerization reactions the propagation of a molecule happens by the consecutive addition of bifunctional monomer molecules (M) to an active * site ( Pn ) of chain length n. Once the active sites are formed they start a chain of monomer addition reactions until the chain is terminated by a termination reaction. The active sites can be free radicals, organo metallic complexes or anionic or cationic species of very different kinds. Depending on the nature of active sites polymerization reactions can be classified into free radical polymerization, coordination polymerization, and ionic polymerization. If these polymerization reactions do not have any chain termination or chain transfer reaction they are called living polymerization. In case of a living polymerization the life time of active sites are long (at least on the order of total reaction time). The life time of free radicals is in general on the order of seconds. Active sites of organo metallic catalysts can have very different life times. In general they are on the order of seconds or minutes. The concentration of active sites of chainwise polymerization reactions is in general very low and it can be constant or non-constant with conversion of monomer in batchwise reaction. As mentioned before, chainwise polymerization reactions are complex reactions consisting of initiation, propagation, termination and transfer reactions. All of the reactions are running simultaneously. The molecular weight of polymers formed during chainwise polymerization can remain constant or decrease or increse with conversion of monomer. This depends on the contribution of each single reaction. In case of a free radical polymerization run in a batch reactor at constant temperature the molecular weight remains constant with conversion if chain transfer reactions play a dominant role. If not, it will fall with conversion due to decreasing concentration of monomer. The same is true for coordination polymerization. In case of living polymerization the molecular weight of polymer formed is increasing with conversion in any case since no termination and transfer reactions are present in the reacting system. The molar concentration of polymer molecules of chainwise polymerization reactions also depends on the kind of polymerization. It remains constant with conversion for a living polymerization and is increasing for free radical and coordination polymerization since at any time new polymer molecules are formed. The situation can be quite different in the case of stepwise polymerization reactions. Here the polymer growth reaction takes place by stepwise reactions of bifunctional molecules (Pn and Pm in Tab 1.2). The molecules can be monomers, 2 oligomers, or polymers depending on the degree of conversion. At the beginning of reaction only monomer molecules are present in the reaction mixture. With increasing conversion monomer concentration is rapidly falling and oligomers are formed. High molecular weight polymers are only formed at very high conversion of functional groups (above 99 %). The polymer growth reaction is a typical condensation reaction like the reaction of carboxylic groups with hydroxylic groups; forming ester groups and water. This kind of polycon- densation reactions are in general reversible reactions, which have to be shifted to the right side of the equilibrium for high conversions. The active sites are the functional groups of the reacting molecules, with an infinite life time on its own. The concentration of functional groups is decreasing with increasing conversion. In an ideal case there are no other side reactions in stepwise polymerization reactions beside growth reaction. The avarage molecular weight of the condensation products increases with conversion of functional groups. First there is a very slow increase, then at high conversion there is a very strong increase in molecular weight.
Recommended publications
  • Free-Radical Photopolymerization of Acrylonitrile Grafted Onto Epoxidized Natural Rubber
    polymers Article Free-Radical Photopolymerization of Acrylonitrile Grafted onto Epoxidized Natural Rubber Rawdah Whba 1,2, Mohd Sukor Su’ait 3, Lee Tian Khoon 1,* , Salmiah Ibrahim 4, Nor Sabirin Mohamed 4 and Azizan Ahmad 1,5,* 1 Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] 2 Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen 3 Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] 4 Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (S.I.); [email protected] (N.S.M.) 5 Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60286, Indonesia * Correspondence: [email protected] (L.T.K.); [email protected] (A.A.); Tel.: +60-12-7279286 (L.T.K.); +60-19-3666576 (A.A.) Abstract: The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure Citation: Whba, R.; Su’ait, M.S.; Tian and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the Khoon, L.; Ibrahim, S.; Mohamed, polymer was investigated. The existence of the –C≡N functional group at the end-product of ACN-g- N.S.; Ahmad, A.
    [Show full text]
  • Dispersity Control in Atom Transfer Radical Polymerizations Through Addition of Phenyl Hydrazine
    Polymer Chemistry Dispersity Control in Atom Transfer Radical Polymerizations through Addition of Phenyl Hydrazine Journal: Polymer Chemistry Manuscript ID PY-ART-01-2018-000033.R1 Article Type: Paper Date Submitted by the Author: 04-May-2018 Complete List of Authors: Yadav, Vivek; University of Houston Hashmi, Nairah; University of Houston Ding, Wenyue; University of Houston Li, Tzu-Han; University of Houston Mahanthappa, Mahesh; University of Minnesota, Department of Chemical Engineering & Materials Science; University of Wisconsin–Madison, Department of Chemistry Conrad, Jacinta; University of Houston, Robertson, Megan; University of Houston, Chemical and Biomolecular Engineering Page 1 of 32 Polymer Chemistry Dispersity Control in Atom Transfer Radical Polymerizations through Addition of Phenyl Hydrazine Vivek Yadav,a Nairah Hashmi,a Wenyue Ding,a Tzu-Han Li,c Mahesh K. Mahanthappa,d Jacinta C. Conrad,*a and Megan L. Robertson*a,b a Department of Chemical and Biomolecular Engineering University of Houston, Houston, TX 77204-4004 b Department of Chemistry University of Houston, Houston, TX 77204-4004 c Materials Engineering Program University of Houston, Houston, TX 77204-4004d Department of Chemical Engineering and Materials Science University of Minnesota, Minneapolis, MN 55455 *Email: [email protected], [email protected] †Electronic Supplementary Information available online. 1 Polymer Chemistry Page 2 of 32 Abstract Molar mass dispersity in polymers affects a wide range of important material properties, yet there are few synthetic methods that systematically generate unimodal distributions with specifically tailored dispersities. Here, we describe a general method for tuning the dispersity of polymers synthesized via atom transfer radical polymerization (ATRP). Addition of varying amounts of phenyl hydrazine (PH) to the ATRP of tert-butyl acrylate led to significant deviations in the reaction kinetics, yielding poly(tert-butyl acrylate) with dispersities Đ = 1.08 – 1.80.
    [Show full text]
  • 1 050929 Quiz 1 Introduction to Polymers 1) in Class We Discussed
    050929 Quiz 1 Introduction to Polymers 1) In class we discussed a hierarchical categorization of the terms: macromolecule, polymer and plastics, in that plastics are polymers and macromolecules and polymers are macromolecules; but all macromolecules are not polymers and all polymers are not plastics. a) Give an example of a macromolecule that is not a polymer. b) Give an example of a polymer that is not a plastic. c) Define polymer. d) Define plastic. e) Define macromolecule. 2) In class we observed a simulation of a small polymer chain of 40 flexible steps. The chain was observed to explore configurational space. a) Explain what the phrase "explore configurational space" means. b) Consider the two ends of the chain to be tethered with a separation distance of about 6 extended steps. If temperature were increased would the chain ends push apart or pull together the tether points? Explain why. c) If one chain end is fixed in Cartesian space at x = 0, what are the limits on the x-axis for the other chain end as it explores configurational space? d) What is the average value of the position on the x-axis? dγ 3) Polymer melts are processed at high rates of strain, , in an extruder, injection molder, or dt calander. a) Sketch a typical plot of polymer viscosity versus rate of strain on a log-log plot showing the power-law region and the Newtonian plateau at low rates of strain. b) Explain using this plot why polymers are processed at high rates of strain. c) Using your own words propose a molecular model that could explain shear thinning in polymers.
    [Show full text]
  • Kinetics and Modeling of the Radical Polymerization of Acrylic Acid and of Methacrylic Acid in Aqueous Solution
    Kinetics and Modeling of the Radical Polymerization of Acrylic Acid and of Methacrylic Acid in Aqueous Solution Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Chemie der Georg-August University School of Science (GAUSS) vorgelegt von Nils Friedrich Gunter Wittenberg aus Hamburg Göttingen, 2013 Betreuungsausschuss Prof. Dr. M. Buback, Technische und Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. P. Vana, MBA, Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Mitglieder der Prüfungskommission Referent: Prof. Dr. M. Buback, Technische und Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Korreferent: Prof. Dr. P. Vana, MBA, Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Weitere Mitglieder der Prüfungskommission: Prof. Dr. G. Echold, Physikalische Chemie fester Körper, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. B. Geil, Biophysikalische Chemie, Institut für Physikalische Chemie, Georg-August- Universität Göttingen Jun.-Prof. Dr. R. Mata, Computerchemie und Biochemie,Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. A. Wodtke, Physikalische Chemie I / Humboldt-Professur, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Tag der mündlichen Prüfung:
    [Show full text]
  • Oct 15, Controlled Polymerizations by Ki-Young Yoon
    Wednesday Meeting Controlled Polymerizations 10/15/2014 Ki-Young Yoon Organometallics : A Friend of Total Synthesis Total Synthesis Organometallics e.g. Barry Trost Organometallics : A Friend of Polymer Synthesis Organometallics Polymer Synthesis e.g. Bob Grubbs Organometallics : Still Blue Ocean Area Total Synthesis Organometallics Polymer Synthesis In theory, every organometallic reaction can branch out into polymerization Organometallics : Still Blue Ocean Area Hydrolytic kinetic resolution E. Jacobson Science 1997, 277, 936 J. Coates J. Am. Chem. Soc 2008, 130, 17658 Enantioselective Polymerization of Epoxides: the first person who borrows Jacobson’s catalyst for the polymerization Enantioselective Polymerization of Epoxides: Catalyst which Jacobson should have used for the polymerization 10 years ago Contents 1. Polymerization Mechanism o Step-growth polymerization o Chain-growth polymerization o Step-growth vs. Chain-growth 2. Efforts to turn Step-growth polymerization into Chain-growth polymerization o GRIM polymerization o Pd-catalyzed chain-growth polymerization Polymer is a mixture Polymer is not a pure substance. It is a mixture Organic reaction Single pure product Polymerization mixture Molecular Weight Distribution Irresponsible polymer chemist Average Molecular Weight mixture - Mn, Mw, PDI (=Mw/Mn) Polymer molecular weight Number Average Molecular Weight, Mn Danny’s Credit Grade Credit*Gr ade PhysOrg 3 4.0 (A) 12 Calculus 2 3.0 (B) 6 Weight Average Molecular Weight, Mw History 1 2.0 (C) 2 Mn (4.0+3.0+2.0) =3 SEC/3 trace
    [Show full text]
  • Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process
    processes Article Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process Hidetaka Tobita ID Department of Materials Science and Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; [email protected]; Tel.: +81-776-27-8767 Received: 28 December 2017; Accepted: 5 February 2018; Published: 7 February 2018 Abstract: Emulsion polymerization process provides a unique polymerization locus that has a confined tiny space with a higher polymer concentration, compared with the corresponding bulk polymerization, especially for the ab initio emulsion polymerization. Assuming the ideal polymerization kinetics and a constant polymer/monomer ratio, the effect of such a unique reaction environment is explored for both conventional and living free-radical polymerization (FRP), which involves chain transfer to the polymer, forming polymers with long-chain branches. Monte Carlo simulation is applied to investigate detailed branched polymer architecture, including 2 the mean-square radius of gyration of each polymer molecule, <s >0. The conventional FRP shows a very broad molecular weight distribution (MWD), with the high molecular weight region conforming to the power law distribution. The MWD is much broader than the random branched 2 polymers, having the same primary chain length distribution. The expected <s >0 for a given MW is much smaller than the random branched polymers. On the other hand, the living FRP shows a much narrower MWD compared with the corresponding random branched polymers. Interestingly, 2 the expected <s >0 for a given MW is essentially the same as that for the random branched polymers. Emulsion polymerization process affects branched polymer architecture quite differently for the conventional and living FRP.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,897.278 B2 Wilczek (45) Date of Patent: May 24, 2005
    USOO6897278B2 (12) United States Patent (10) Patent No.: US 6,897.278 B2 Wilczek (45) Date of Patent: May 24, 2005 (54) BRANCHED POLYOLEFIN SYNTHESIS K. Ishizu et al., Synthesis of AB Type Diblock Macromono mers, J. Poly. Sci. Polym. Chem., 29,923–927, 1991. (75) Inventor: Lech Wilczek, Wilmington, DE (US) J. J. Ma et al., Poly(ethylene-co-propylene)-g-polystyrene (73) Assignee: E. I. du Pont de Nemours and through Macomer Polymerization: Preparation, Morphol Company, Wilmington, DE (US) ogy, and Structure-Properties Relationships, J. Poly. Sci. Polym. Chem., 24, 2853–2866, 1986. (*) Notice: Subject to any disclaimer, the term of this P. Chaumont et al., Synthese Anionique de Polymeres Com patent is extended or adjusted under 35 portant Une Fonction Vinylsilane a Lune ou aux deux U.S.C. 154(b) by 184 days. extremites de la Chaine Macromoleculaire, Eur: Polym. J., 15, 537-540, 1979. (21) Appl. No.: 10/772,194 Y. Gnanou et al., The Ability of Macromonomers to Copo (22) Filed: Feb. 4, 2004 lymerize: A Critical Review with New Developments, Mak (65) Prior Publication Data romol. Chem., 190, 577–588, 1989. M. Arnold et al., On the Reactivity of Syryl-Terminated US 2004/0167305 A1 Aug. 26, 2004 Polystyrene Macromonomers in Anionic Copolymerization Related U.S. Application Data with Butadiene, Makromol. Chem., 192, 285–292, 1991. Slagowski et al., Upper Molecular Weight Limit for the (60) Division of application No. 10/316,454, filed on Dec. 11, 2002, now Pat. No. 6,740,723, which is a continuation-in Characterization of Polystyrene in Gel Permeation Chroma part of application No.
    [Show full text]
  • 1.1 Basic Polymer Chemistry 1.2 Polymer Nomenclature 1.3 Polymer
    1.1 Basic Polymer Chemistry 1.2 Polymer Nomenclature Polymers are the largest class of soft materials: over Polymer = 100 billion pounds of polymers made in US each year Monomer = Classification systems Polymer = Typical physical state? Mechanisms of chain growth Oligomer = Typical physical state? Polymerization = 1.3 Polymer Synthesis 1.4 Chain Growth Polymerization Two synthetic methods Addition polymerization Chain growth/addition polymerization One molecule adds to another with no net loss of atoms (high atom economy) Individual steps are typically rapid (msec, sec) Discrete steps Step growth polymerization Propagation rate >> termination rate What happens if the reaction runs longer? Do the chains get longer? Do you just get more chains? 1 1.5 Chain Growth Polymerization 1.6 Monomers for Chain Growth Addition polymerization Polymers form by… What’s in the polymerization mixture? Defining features Useful monomers for chain growth CH3 Cl CH2 CH CH CH Monomer Polymer H2C H2C H2C H2C ethylenepropylene styrene vinyl chloride nCH2 CH (CH2 CH)n X X O N X X C O O-CH3 CH2 O CH3 C HC C nCH2 CH (CH2 CH O)n CH C CH CH CH O H2C H2C 3 H2C H2C vinyl acetate methyl methacrylate butadiene acrylonitrile 1.7 Chain Growth Polymerization 2.1 Radical Polymerization Mechanisms to link monomers together Three steps to radical polymerization Radical Initiation Cationic (1) RO OR 2RO Anionic Transition metal catalysis (2) RO + H2C CH RO CH2 CH R R Propagation RO CH2 CH + H2C CH RO CH2 CH CH2 CH R R R R Termination 2 2.2 Radical
    [Show full text]
  • Lecture1541230922.Pdf
    MODULE-1 Introduction: -The macromolecules are divided between biological and non-biological materials. The biological polymers form the very foundation of life and intelligence, and provide much of the food on which man exists. The non-biological polymers are primarily the synthetic materials used for plastics, fibers and elastomers but a few naturally occurring polymers such as rubber wool and cellulose are included in this class. Today these substances are truly indispensable to mankind because these are essential to his clothing,shelter, transportation, communication as well as the conveniences of modern living. Polymer Biological Non- biological Proteins, starch, wool plastics, fibers easterners Note: Polymer is not said to be as macromolecule, because polymer is composedof repeating units whereas the macromolecules may not be composed of repeating units. Definition: A polymer is a large molecule built up by the repetition of small, simple chemical units known as repeating units which are held together by chemical covalent bonds. These repeating units are called monomer Polymer – ---- poly + meres Many parts In some cases, the repetition is linear but in other cases the chains are branched on interconnected to form three dimensional networks. The repeating units of the polymer are usually equivalent on nearly equivalent to the monomer on the starting material from which the polymer is formed. A higher polymer is one in which the number of repeating units is in excess of about 1000 Degree of polymerization (DP): - The no of repeating units or monomer units in the chain of a polymer is called degree of polymerization (DP) . The molecular weight of an addition polymer is the product of the molecular weight of the repeating unit and the degree of polymerization (DP).
    [Show full text]
  • Reassessment of Free-Radical Polymerization Mechanism of Allyl Acetate Based on End-Group Determination of Resulting Oligomers by MALDI-TOF-MS Spectrometry
    #2009 The Society of Polymer Science, Japan Reassessment of Free-Radical Polymerization Mechanism of Allyl Acetate Based on End-Group Determination of Resulting Oligomers by MALDI-TOF-MS Spectrometry By Akira MATSUMOTO,Ã Takeo KUMAGAI, Hiroyuki AOTA, Hideya KAWASAKI, and Ryuichi ARAKAWA Allyl monomers polymerize only with difficulty and yield polymers of medium-molecular-weight or oligomers. This is attributable to ‘‘degradative monomer chain transfer.’’ However, the well-known allyl polymerization mechanism is based on only the kinetic data but any structural identification is not given. Allyl acetate (AAc), a most typical allyl monomer, was polymerized radically and the resultant oligomeric poly(AAc)s were characterized using MALDI-TOF-MS spectrometry in order to reassess the AAc polymerization mechanism proposed by Litt and Eirich. The induced decomposition of benzoyl peroxide by both growing polymer radical and monomeric allyl radical was presumed but it was never of importance. Then, the fate of resonance-stabilized monomeric allyl radical generated via monomer chain transfer of growing polymer radical was pursued in terms of the competition between the initiation of a new polymer chain and the chain stopping reaction of a growing polymer radical providing monomeric allyl groups as the initial and terminal end-groups, respectively. The À2 monomer chain transfer constant was estimated to be 3:73 Â 10 from the Pn value of poly(AAc) obtained at a low initiator concentration where the coupling termination of growing polymer radical with
    [Show full text]
  • Glossary of Terms Related to Kinetics, Thermodynamics, and Mechanisms of Polymerization
    Pure Appl. Chem., Vol. 80, No. 10, pp. 2163–2193, 2008. doi:10.1351/pac200880102163 © 2008 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY POLYMER DIVISION COMMISSION ON MACROMOLECULAR NOMENCLATURE* SUBCOMMITTEE ON MACROMOLECULAR TERMINOLOGY** and SUBCOMMITTEE ON POLYMER TERMINOLOGY*** GLOSSARY OF TERMS RELATED TO KINETICS, THERMODYNAMICS, AND MECHANISMS OF POLYMERIZATION (IUPAC Recommendations 2008) Prepared for publication by STANISŁAW PENCZEK1,‡ AND GRAEME MOAD2,‡ 1Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363, Lódz, Poland; 2CSIRO Molecular and Health Technologies, Bag 10, Clayton South, Victoria 3169, Australia and a working group consisting of M. BARÓN (Argentina), K. HATADA (Japan), M. HESS (Germany), A. D. JENKINS (UK), R. G. JONES (UK), J. KAHOVEC (Czech Republic), P. KRATOCHVÍL (Czech Republic), P. KUBISA (Poland), E. MARÉCHAL (France), G. MOAD (Australia), S. PENCZEK (Poland), R. F. T. STEPTO (UK), J.-P. VAIRON (France), J. VOHLÍDAL (Czech Republic), and E. S. WILKS (USA) Membership of the Commission on Macromolecular Nomenclature (extant until 2002)*, the Subcommittee on Macromolecular Terminology (2003–2005)** and the Subcommittee on Polymer Terminology (2006–)*** during the preparation of this report (1996–2008) was as follows: G. Allegra (Italy); M. Barón (Argentina, Secretary 1998–2003); T. Chang (Korea); C. G. Dos Santos (Brazil); A. Fradet (France); K. Hatada (Japan); M. Hess (Germany, Chairman 2000–2004, Secretary 2005–2007); J. He (China); K-H Hellwich (Germany); R. C. Hiorns (France); P. Hodge (UK); K. Horie (Japan); A. D. Jenkins (UK); J.-Il. Jin (Korea); R. G. Jones (UK, Secretary 2003–2004, Chairman from 2005); J. Kahovec (Czech Republic); T. Kitayama (Japan, Secretary from 2008); P.
    [Show full text]
  • 1 Introduction to Synthetic Methods in Step-Growth Polymers
    1 Introduction to Synthetic Methods in Step-Growth Polymers Martin E. Rogers Luna Innovations, Blacksburg, Virginia 24060 Timothy E. Long Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 S. Richard Turner Eastman Chemical Company, Kingsport, Tennessee 37662 1.1 INTRODUCTION 1.1.1 Historical Perspective Some of the earliest useful polymeric materials, the Bakelite resins formed from the condensation of phenol and formaldehyde, are examples of step-growth processes.1 However, it was not until the pioneering work of Carothers and his group at DuPont that the fundamental principles of condensation (step-growth) processes were elucidated and specific step-growth structures were intentionally synthesized.2,3 Although it is generally thought that Carothers’ work was lim- ited to aliphatic polyesters, which did not possess high melting points and other properties for commercial application, this original paper does describe amor- phous polyesters using the aromatic diacid, phthalic acid, and ethylene glycol as the diol. As fundamental as this pioneering research by Carothers was, the major thrust of the work was to obtain practical commercial materials for DuPont. Thus, Carothers and DuPont turned to polyamides with high melting points and robust mechanical properties. The first polymer commercialized by DuPont, initiating the “polymer age,” was based on the step-growth polymer of adipic acid and hexamethylene diamine — nylon 6,6.4 It was not until the later work of Whin- field and Dickson in which terephthalic acid was used as the diacid moiety and the benefits of using a para-substituted aromatic diacid were discovered that polyesters became commercially viable.5 Synthetic Methods in Step-Growth Polymers.
    [Show full text]