The World of Brettanomyces

Total Page:16

File Type:pdf, Size:1020Kb

The World of Brettanomyces THE WORLD OF BRETTANOMYCES By Peter Perrecone WHAT IS BRETTANOMYCES? • Brettanomyces is a non-spore forming genus of yeast in the family Saccharomycetaceae, and is often called "Brett". The genus name Dekkera is used interchangeably with Brettanomyces, as it describes the spore forming form of the yeasts.. Brettanomyces is important to both the brewing and wine industries due to the sensory compounds it produces. • In the wild, Brettanomyces lives on the skins of fruit. The strain Brettanomyces claussenii was discovered at the Carlsberg brewery in 1904 by N. Hjelte Claussen, who was investigating it as a cause of spoilage in English ales. The term Brettanomyces comes from the Greek word "British fungus." SENSORY COMPOUNDS The compounds responsible for contributing certain sensory characters to wine/beer are; 4-ethylphenol: Band-aids, barnyard, horse stable, antiseptic 4-ethylguaiacol: Bacon, spice, cloves, smoky isovaleric acid: Sweaty saddle, cheese, rancidity BRETTANOMYCES AND BEER In most beer styles Brettanomyces is viewed as a contaminant and the characteristics it imparts are considered unwelcome "off-flavours." However, in some styles, particularly certain traditional Belgian ales, it is appreciated and encouraged. Lambic and gueuze owe their unique flavour profiles to Brettanomyces, as do wild yeast saison or farmhouse styles; and it is also found in Oud Bruin and Flanders red ale. COMMERCIAL EXAMPLES Commercial examples of these styles include Cantillon Rosé de Gambrinus, Liefmans Brown Ale, Rodenbach Grand Cru, and Duchesse de Bourgogne. The Orval Trappist monastery is unique in crafting the only Trappist beer with Brettanomyces characteristics. In Orval's case, the brewers add the yeast to the beer at bottling. 3 FONTEINEN OUDE GEUZE LAMBIC Lambic is a type of beer brewed traditionally in the Pajottenland region of Belgium (southwest of Brussels) and in Brussels itself at the Cantillon Brewery and museum. Lambic is now mainly consumed after refermentation, resulting in derived beers such as Gueuze or Kriek lambic. LAMBIC Unlike conventional ales and lagers, which are fermented by carefully cultivated strains of brewer's yeasts, lambic beer is produced by spontaneous fermentation: it is exposed to the wild yeasts and bacteria that are said to be native to the Senne valley, in which Brussels lies. It is this unusual process which gives the beer its distinctive flavor: dry, vinous, and cidery, usually with a sour aftertaste. GEUZE A true Geuze - a blend of 1, 2, and 3 year-old lambic,is unfiltered and unpasteurized, and aged in the bottle for at least a year after blending. Refermentation in the bottle gives this Geuze its famous champagne-like spritziness. The lambic that goes into it is brewed only with 60% barley malt, 40% unmalted wheat, aged hops, and water, spontaneously fermented by wild yeasts, and matured in oak casks. ORVAL Orval The flagship brett beer, so to speak. It is a 6.9% abv beer. It was first made in 1931, and has a complex and unusual flavor and aroma produced by a unique strain of yeast. The beer is light in color, slightly cloudy, and has a large, foamy head. There is a complex aroma of leather, spice, and many other earthy components. BRETTANOMYCES IN AMERICA Several American craft breweries use Brettanomyces in their beers. This use began with a renewed interest in Belgian style ales and later formed new styles altogether (Brewers Association, 2007 Great American Beer Festival Style Guidelines, section 13a, 16). BRETTANOMYCES IN AMERICA CONT. • Some breweries use 100% Brettanomyces for the fermentation of some of their beers, and omit Saccharomyces from the recipe. It is common for American brewers that use Brettanomyces to also include lactic acid producing bacteria such as Lactobacillus, and Pediococcus in order to provide sourness to the beer. • While Brett is sometimes pitched into the fermenter, aging in wood barrels previously infected with Brettanomyces is another method used to impart the complexity and sourness contributed by these strains of yeast. MATILDA Wild in character, with a slightly fruity aroma and a spicy yeast flavor that is as unique as it is satisfying – Matilda is an intriguing choice for beer and wine lovers alike. Dry and quenching, its the perfect accompaniment at the dining table or for casual socializing at the bar. Recipe Information: Style: Belgian Style Pale Ale Alcohol by Volume: 7.0% International Bitterness Units: 26 Color: Golden Sunrise Hops: Super Styrian, Styrian Golding, Saaz Malts: 2-Row, Caramel, Candy Sugar STRAINS Common Name Species Name Synonym (Strain) Name Lab/Package Flavor/Aroma Source Note strong ester profile with some light funk and beer - Adelaide, Anomala Dekkera anomala B. intermedius ECY-04 acidity Australia bottled stout - Burton Anomalus Dekkera anomala B. anomalus Wyeast on Trent, England Bruxellensis Dekkera bruxellensis B. bruxellensis BSI Pro-Brewers only. Not the same as WY's Bruxellensis Dekkera bruxellensis B. bruxellensis WLP650 Same as White Labs Brux Not the same as WL's Bruxellensis Dekkera bruxellensis B. bruxellensis Wyeast 5112 Barnyard Brux isolated from Belgian Bruxellensis Dekkera bruxellensis B. bruxellensis ECY-05 sweaty horse blanket stout quite funky with barnyard notes accompanied by some Claussenii Dekkera anomala B. claussenii BSI fruit Pro-Brewers only. Claussenii Dekkera anomala B. claussenii WLP645 Same as White Labs Chad Yakobson's CMY1 Dekkera bruxellensis B. bruxellensis CMY1 BSI Fruity, pineapple mutation of BSI Drie Synony CommSpeci m Lab/PFlavor Sourc on es (Strain) ackag /Aro e Name Name Name e ma Note strong ester profile with some light beer - Dekke funk Adelai ra B. and de, anom interme ECY- acidit Austr Anola ala dius 04 y alia bottle d stout - Burto Dekke n on ra B. Trent, Anom anom anomalu Wyeas Engla alus ala s t nd Dekke Pro- ra B. Brewe Bruxelbruxel bruxelle rs lensis lensis nsis BSI only. Not the Dekke Same same ra B. as as Bruxelbruxel bruxelle WLP6 White WY's lensis lensis nsis 50 Labs Brux Not the Dekke same ra B. as Bruxelbruxel bruxelle WyeasBarny WL's lensis lensis nsis t 5112 ard Brux isolat sweat ed Dekke y from ra B. horse Belgia Bruxelbruxel bruxelle ECY- blanken lensis lensis nsis 05 t stout quite funky with barny ard notes acco Dekke mpani Pro- ra B. ed by Brewe Claus anom clausse some rs senii ala nii BSI fruit only. Dekke Same ra B. as Claus anom clausse WLP6 White senii ala nii 45 Labs Chad Yakob son's Dekke B. mutati ra bruxelle Fruity, on of bruxel nsis pinea BSI CMY1 lensis CMY1 BSI pple Drie Bantu beer Dekke light brewe Custe ra B. fruit ry, rsianu custercustersi ECY- and South s siana anus 19 hay Africa Isolat e from Drie Fontei nen; Dekke Pro- ra highly Brewe bruxel aroma rs Drie lensis B. drei BSI tic only. Isolat e from Fanto B. Fanto me ? fantome ECY me Dekke Same Pro- ra B. as Brewe Lambi bruxel lambicu White rs cus lensis s BSI Labs only. Differ Horse ent Dekke y, from ra B. Smok WY's Lambi bruxel lambicu WLP6 y, "lambi cus lensis s 53 Spicy cus" Differ ent Dekke from ra B. Pie- WL's Lambi bruxel lambicu Wyeascherr "lambi cus lensis s t 5526 y cus" straw berry, honey , ripe fruit with a tart, citrus y acidit Isolat Dekke y ed ra after from Naard naard B. 6 mo Dr. enensienensinaarden ECY- of Peppe s s ensis 30 aging r bottle d beer - spicy, Kalma Eeniel saison r, la ECY- -like Swed Nanus nana B. nanus 24 profile en Isolat e Dekke Mang from ra o, Drie bruxel WLP6 Pinea Fontei Trois lensis B. trois 44 pple nen STRAINS Species Name Synonym (Strain) Name Lab/Package Flavor/Aroma Source Note Bantu beer brewery, South Dekkera custersiana B. custersianus ECY-19 light fruit and hay Africa Isolate from Drie Fonteinen; Dekkera bruxellensis B. drei BSI highly aromatic Pro-Brewers only. ? B. fantome ECY Isolate from Fantome Dekkera bruxellensis B. lambicus BSI Same as White Labs Pro-Brewers only. Different from WY's Dekkera bruxellensis B. lambicus WLP653 Horsey, Smoky, Spicy "lambicus" Different from WL's Dekkera bruxellensis B. lambicus Wyeast 5526 Pie-cherry "lambicus" strawberry, honey, ripe fruit with a tart, citrusy acidity Dekkera naardenensis B. naardenensis ECY-30 after 6 mo of aging Isolated from Dr. Pepper bottled beer - Kalmar, Eeniella nana B. nanus ECY-24 spicy, saison-like profile Sweden Dekkera bruxellensis B. trois WLP644 Mango, Pineapple Isolate from Drie Fonteinen LOGSDON SEIZOEN BRETTA LOGSDON SEIZOEN BRETTA: 8% ABV This organic farmhouse ale is brewed in small batches on a traditional farm brewery as it has historically been made for hundreds of years. This unfiltered bottle of seizoen, with its beeswax seal, is naturally re-fermented and carbonated with select yeast strains producing fruity and spicy flavors that are balanced by hops and a soft malt character. Special Brettanomyces yeast provides added dryness and crisp complexity. 100% FERMENTED BRETTANOMYCES BEERS • The breweries using brett are very few. Crooked Stave in Colorado is doing it well with sour, funky and clean beers. Another brewery is Modern Times in San Diego with a 100% brett IPA and its clean not funky at all. The last example is Anchorage Brewing Co. All their beer is fermented in oak foudres. These beers are more of what you think of brett beer. MY 100% BELGIAN PALE 10 GAL • 90% Pilsner malt • 1 oz Pacific Jade, Citra and Amarillo 0 min • 5% 6 Row • O.G. 1.061 • 5% Rye • F.G. 1.006 • .25 oz Pacific Jade 60 min • ABV 7.2% • 1 oz Pacific Jade, Citra and Amarillo 10 min • I.B.U. 31 THE KEY TO THE STYLE The key to brewing this style beer is to keep the bitterness low because brett dries out the beer and accentuates the hop bitterness.
Recommended publications
  • Brettanomyces Spoilage: Friend Or Foe?
    Microbial Faults Trevor Phister, PhD Assistant Professor Overview • Wine microbiology • Microbial faults – Brettanomyces – Lactic acid bacteria – Cork Taint • Controlling microbial faults – Sanitation – Quality programs Saccharomyces cerevisiae Saccharomyces cerevisiae (Piskur et al 2006) Does Not Always Work The Wine Fermentation OD ETOH Yeasts Bacteria • Metschnikowia sp. • acetic acid bacteria • Pichia sp. • lactic acid bacteria • Candida sp. • Kluveromyces sp. Molds • Hanseniaspora sp. Sugar • Botrytis & others • Saccharomyces Time Three common microbial contaminants • Brettanomyces • Lactobacilli • Cork taint Brettanomyces Brettanomyces bruxellensis 45000 0.8 Slow40000 growing soft drink and wine spoilage yeast 0.7 35000 0.6 30000 0.5 25000 Produces 4-ethylphenol or “wet dog”taint cfu 0.4 4EP CFU/ml 20000 0.3 45000 0.8 15000 4-Ethylphenol (mg/ml) 40000 0.7 35000 0.6 30000 0.5 0.2 25000 cfu 0.4 10000 4EP CFU/ml 20000 0.3 15000 4-Ethylphenol (mg/ml) 0.2 10000 4-ethylphenol produced in absence of platable population 0.1 0.1 5000 5000 0 0 1 20 34 45 64 81 99 115 137 158 184 202 217 230 244 265 307 351 391 434 473 712 Days 0 0 1 20 34 45 64 81 99 115 137 158 184 202 217 230 244 265 307 351 391 434 473 712 Days Am J. Enol Vitic 54:294-300 Brettanomyces bruxellensis Isolated by Dr. Clausen in 1904 Provides missing element of traditional beers The brewing industry just started using yeast Friend or Foe? For Now Brett On Your Table 4 - Ethylguaiacol (4-EG): ~175 ppb 4 - Ethylphenol (4-EP): 600 - 800 ppb Diacetyl: 2-4 ppm Geraniol: 0.5 – 1
    [Show full text]
  • Perfil Fermentativo De Uma Linhagem De Dekkera Bruxellensis Van Der Walt (1964)
    Reis, Alexandre Libanio – Perfil Fermentativo de uma linhagem de Dekkera bruxellensis van der Walt (1964)... PERFIL FERMENTATIVO DE UMA LINHAGEM DE Dekkera bruxellensis van der Walt (1964) A PARTIR DE HIDROLISADOS LIGNOCELULÓSICOS E SUAS IMPLICAÇÕES NA PRODUÇÃO DE ETANOL DE SEGUNDA GERAÇÃO ALEXANDRE LIBANIO SILVA REIS RECIFE Março/2014 Reis, Alexandre Libanio – Perfil Fermentativo de uma linhagem de Dekkera bruxellensis van der Walt (1964)... UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE MICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE FUNGOS PERFIL FERMENTATIVO DE UMA LINHAGEM DE Dekkera bruxellensis van der Walt (1964) A PARTIR DE HIDROLISADOS LIGNOCELULÓSICOS E SUAS IMPLICAÇÕES NA PRODUÇÃO DE ETANOL DE SEGUNDA GERAÇÃO Tese apresentada ao Programa de Pós-Graduação em Biologia de Fungos do Departamento de Micologia do Centro de Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos para a obtenção do título de Doutor em Biologia de Fungos. Micologia Aplicada Alexandre Libanio Silva Reis Orientador: Marcos Antônio de Morais Júnior, Dr. RECIFE Março/2014 Reis, Alexandre Libanio – Perfil Fermentativo de uma linhagem de Dekkera bruxellensis van der Walt (1964)... Reis, Alexandre Libanio – Perfil Fermentativo de uma linhagem de Dekkera bruxellensis van der Walt (1964)... PERFIL FERMENTATIVO DE UMA LINHAGEM DE Dekkera bruxellensis van der Walt (1964) A PARTIR DE HIDROLISADOS LIGNOCELULÓSICOS E SUAS IMPLICAÇÕES NA PRODUÇÃO DE ETANOL DE SEGUNDA GERAÇÃO ALEXANDRE LIBANIO SILVA REIS Data da defesa: 14 de Março de 2014 COMISSÃO EXAMINADORA MEMBROS TITULARES Dr. Marcos Antônio de Morais Júnior – (Orientador) Universidade Federal de Pernambuco – Departamento de Genética Dra. Cristina Maria de Souza Motta – Examinadora Interna Universidade Federal de Pernambuco – Departamento de Micologia Dr.
    [Show full text]
  • 2014 ASBC Annual Meeting
    2014 ASBC Annual Meeting 76th ASBC Annual Meeting June 4–6, 2014 57 Analyzing the sugar and flavor profile of Brettanomyes wild yeast Palmer House, a Hilton Hotel Chicago, IL during primary versus secondary fermentation (Tiffany Andres, White Labs, Inc.) Abstract Brewing with Brettanomyces yeast has been rising in popularity as such yeast can create different flavors and aromas to increase the unique character of a particular beer. Recent research on Brettanomyces strains available in the brewing industry focused on strain-specific fermentations and have attempted to identify the major compounds produced during fermentation. This study attempts to investigate the differences in flavor compounds after experimenting in primary and secondary fermentation with various Brettanomyces strains. The concept of primary versus secondary fermentation relates to different sugars being available for Brettanomyces to metabolize since Saccharomyces yeast will readily consume most of the fermentable sugars. By analyzing the performance of various Brettanomyces strains during primary versus secondary fermentation, it will be essential to measure the carbohydrate sugar profile before and after fermentation, as well as look at attenuation. The focus of this research will be to explore the flavor compounds produced when Brettanomyces has fermentable sugars available in contrast to which flavor compounds are produced from dextrins after secondary fermentation. The Brettanomyces strains that will be able to metabolize different sugars resulting in differences on a sensory level will be evaluated. Introduction Results Brettanomyces create different flavors and aromas that can contribute to the unique character of the finished beer. The type and quantity of sugars present will affect the fermentation flavors.
    [Show full text]
  • Brettanomyces Bruxellensis
    Annals of Microbiology (2019) 69:1217–1225 https://doi.org/10.1007/s13213-019-01503-5 ORIGINAL ARTICLE Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis Maria Dimopoulou1 & Margareth Renault2 & Marguerite Dols-Lafargue1,3 & Warren Albertin1,3 & Jean-Marie Herry2 & Marie-Noëlle Bellon-Fontaine2 & Isabelle Masneuf-Pomarede1,4 Received: 9 April 2019 /Accepted: 25 July 2019 /Published online: 3 September 2019 # Università degli studi di Milano 2019 Abstract Purpose Brettanomyces bruxellensis is a serious source of concern for winemakers. The production of volatile phenols by the yeast species confers to wine unpleasant sensory characteristics which are unacceptable by the consumers and inevitably provoke economic loss for the wine industry. This ubiquitous yeast is able to adapt to all winemaking steps and to withstand various environmental conditions. Moreover, the ability of B. bruxellensis to adhere and colonize inert materials can be the cause of the yeast persistence in the cellars and thus recurrent wine spoilage. We therefore investigated the surface properties, biofilm formation capacity, and the factors which may affect the attachment of the yeast cells to surfaces with eight strains representative of the genetic diversity of the species. Methods The eight strains of B. bruxellensis were isolated from different geographical and industrial fermentation origins. The cells were grown in synthetic YPD medium containing 1% (w/v) yeast extract (Difco Laboratories, Detroit), 2% (w/v)bacto peptone (Difco), and 1% (w/v) glucose. Surface physicochemical properties as electrophoretic mobility and adhesion to hydro- carbon of the cells were studied. The ability of the strains to form biofilm was quantified using a colorimetric microtiter 96-well polystyrene plate.
    [Show full text]
  • Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine
    242 Implications of nitrogen nutrition Australian Journal of Grape and Wine Research 11, 242–295, 2005 Implications of nitrogen nutrition for grapes, fermentation and wine SALLY-JEAN BELL and PAUL A. HENSCHKE The Australian Wine Research Institute, PO Box 197, Glen Osmond,Adelaide, SA 5064,Australia Corresponding authors: Sally-Jean Bell, facsimile: +61 8 8303 6601, email [email protected]; Paul A. Henschke, facsimile: +61 8 8303 6601, email [email protected] Abstract This review discusses the impacts of nitrogen addition in the vineyard and winery, and establishes the effects that nitrogen has on grape berry and wine composition and the sensory attributes of wine. Nitrogen is the most abundant soil-derived macronutrient in a grapevine, and plays a major role in many of the biological functions and processes of both grapevine and fermentative microorganisms. Manipulation of grapevine nitrogen nutrition has the potential to influence quality components in the grape and, ultimately, the wine. In addition, fermentation kinetics and formation of flavour-active metabolites are also affected by the nitrogen status of the must, which can be further manipulated by addition of nitrogen in the winery. The only consistent effect of nitrogen application in the vineyard on grape berry quality components is an increase in the concentration of the major nitrogenous compounds, such as total nitrogen, total amino acids, arginine, proline and ammonium, and consequently yeast- assimilable nitrogen (YAN). Both the form and amount of YAN have significant implications for wine quality. Low must YAN leads to low yeast populations and poor fermentation vigour, increased risk of sluggish/stuck/slow fermentations, increased production of undesirable thiols (e.g.
    [Show full text]
  • Brettanomyces – Solving a Wine Spoilage Problem Adoption Impact
    Wine Australia for Australian Wine Case study July 2020 Brettanomyces – solving a wine spoilage problem Adoption Impact Overview and summary of impact Brettanomyces (‘Brett’) is a yeast that is commonly found in wineries (and breweries). Molecular research by the Australian Wine Research Institute (AWRI) has shown that there are dozens of strains of Brett in Australia. It is found in wine and in barrels and persists through cross-contamination between the two. Two decades of research and extension by AWRI, with funding from Wine Australia, has substantially reduced the cost to the Australian wine sector of spoilage associated with the presence of the yeast Brettanomyces. The situation Brett produces a range of volatile phenol compounds, produced, which is in turn related to the grape variety. principally 4-ethylphenol (4EP) and 4-ethylguaiacol Brett is also associated with reduced fruit flavour (4EG). These compounds can impart undesirable intensity and a drying, metallic aftertaste. Consumer sensory characteristics on wine including ‘medicinal’, studies by AWRI indicate that the concentration of Brett ‘leather’, ‘smoky’, ‘spicy’, ‘Band-AidTM’ and ‘barnyard’. compounds in wine is strongly and negatively correlated These expressions depend on the ratio of compounds with consumer liking. Wine Australia case study Brettanomyces – solving a wine spoilage problem 2 The critical risk period for Brett spoilage is known as the character, involving collaborations with research groups ‘Brett zone’ – the period between the end of primary at the University of Adelaide, in Bordeaux, in Chile and and secondary fermentation, and before the addition elsewhere. of sulfur dioxide – especially when residual sugars are AWRI promotes a strategy comprising eight major available to the yeast.
    [Show full text]
  • Understanding Brettanomyces
    Understanding Brettanomyces By Tom Ostler Introduction In March 1994 the Cornell University Agricultural Research Station at Geneva NY. (N.Y.S.A.E.S.) hosted the 23rd annual New York Wine Industry Workshop. This two-day event is well attended by most New York wineries as well as by many representatives from Ontario wineries. In addition, there are usually a number of serious amateurs present, soaking up technical information to improve basement, or garage, production. The 1994 session was no different with members of A.W.O. representing Toronto, Ottawa and Niagara in attendance. You might not know what Brettanomyces is, nor why you need to understand it. I didn’t until I found myself in the midst of a mild, but enthusiastic, scientific debate about the merits of the beneficial effects this yeast strain has on a wine, as opposed to the potential damage it can do to a wine. The debate in the commercial wine industry seems to have evolved to differentiate ‘good Brett’ from ‘bad Brett’. It appears that the progress of Brettanomyces in a wine leads to an evolution in aromas, as opposed to an enhancement of one aroma indicator. The volatile phenols produced in red wine by Brettanomyces are characterized by descriptors ranging from “barnyard” and “leather”, to “clove” and “strong spice”, to “smoky – B.B.Q.”, to “phenolic”, “medicinal”, “band aid” and even “animal”. The presentation made by Erik Olsen of Chateau Ste. Michelle Winery, Washington was accompanied by a tasting of three wines with varying levels of 4-ethyl phenol, which is a byproduct of Brettanomyces.
    [Show full text]
  • Brettanomyces (Dekkera)
    Kvasny Prum. 198 62 / 2016 (7–8) Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera) DOI: 10.18832/kp2016024 Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera) Non-Saccharomyces Yeasts and Their Importance in the Brewing Industry Part I -Brettanomyces (Dekkera) Tatiana KOCHLÁŇOVÁ1, David KIJ1, Jana KOPECKÁ1, Petra KUBIZNIAKOVÁ2, Dagmar MATOULKOVÁ2 1Ústav experimentální biologie, Přírodovědecká fakulta, Masarykova Univerzita / Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, e-mail: [email protected], [email protected] 2Mikrobiologické oddělení, Výzkumný ústav pivovarský a sladařský, a.s., / Department of Microbiology, Research Institute of Brewing and Malting, PLC, Lípová 15, 120 44 Prague e-mail: [email protected], [email protected] Recenzovaný článek / Reviewed Paper Kochláňová, T., Kij, D., Kopecká, J., Kubizniaková, P., Matoulková, D., 2016: Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera). Kvasny Prum., 62(7–8), s. 198–205 Kvasinky jiných rodů než Saccharomyces se v historii výroby piva vyskytovaly jako součást spontánního kvašení. Nyní jsou považová- ny většinou za kontaminaci produkující nežádoucí senzoricky aktivní látky a CO2. Výjimkou jsou speciální pivní styly (např. lambik a gu- euze), kde je metabolická činnost non-Saccharomyces kvasinek (zejména rodů Brettanomyces a Dekkera) klíčovým prvkem. V článku je uvedena charakteristika a taxonomické zařazení kvasinek Brettanomyces a Dekkera a popsány jsou základní mikrobiologické aspekty výroby piva lambik a gueuze. Kochláňová, T., Kij, D., Kopecká, J., Kubizniaková, P., Matoulková, D., 2016: Non-Saccharomyces yeasts and their importance in the brewing industry. Part I – Brettanomyces (Dekkera).
    [Show full text]
  • Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
    University of Bath PHD Species-specific PCR primers for the rapid and reliable identification of yeast species Harrison, Elizabeth Award date: 2006 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 Species-specific PCR primers for the rapid and reliable identification of yeast species Volume 1 of 1 Elizabeth Harrison A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry June 2006 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Technical Overview on Cider Production 23 23
    TALLINN, ESTONIA TALLINN, ESTONIA APRIL 25, 2017 APRIL 25, 2017 TECHNICAL OVERVIEW ON CIDER PRODUCTION TECHNICAL OVERVIEW TECHNICAL OVERVIEW ON CIDER PRODUCTION 23 23 LALLEMAND OENOLOGY LALLEMAND OENOLOGY TALLINN, ESTONIA, APRIL 25, 2017 TECHNICAL OVERVIEW ON CIDER PRODUCTION PROCEEDINGS OF THE XXVIIes ENTRETIENS SCIENTIFIQUES LALLEMAND ISBN 978-2-9815255-8-1 (printed version) ISBN 978-2-9815255-9-8 (pdf version) Legal deposit Bibliothèque et Archives nationales du Québec 2018 Library and Archives Canada 2018 DISCLAIMER: Lallemand has compiled the information contained herein and, to the best of its knowledge, the information is true and accurate. Lallemand offers this publication for use by winemaking professionals world- wide as a compendium of existing knowledge, both scientific and anecdotal. It is the user’s sole responsibility to determine whether any of the information contained herein is of benefit. The information, techniques and procedures presented in this publication are not to be considered as any type of expressed or implied guarantee for any aspect of the winemaking process in any wine-producing country. Lallemand Inc. Montréal, Canada H1W 2N8 The reprint or digital publication of any part of this book without permission from Lallemand is prohibited and illegal. CONTENTS CIDER CIDER: AN ANCIENT ART CIDERMAKING VS. WINEMAKING - IS THERE A IN A MODERN WORLD ............................................5 DIFFERENCE? ...........................................................19 Rebecca Mussell Amanda Stewart A TECHNICAL OVERVIEW OF FRENCH CIDER: LOCAL IMPORTANCE OF CIDER PRODUCTION IN FROM SPOILAGE CONTROL TO AROMATIC PROFILE ESTONIA (LOCAL PRODUCER SIIDRIKODA AS A PILOT CHARACTERIZATION ................................................9 PLANT FOR SCALE-UP YEAST APPLICATION) .........25 H. Guichard, P. Poupard, Jean-Michel Le Quéré and Rain Kuldjärv R.
    [Show full text]
  • Brettanomyces Bruxellensis Occurrence, Growth, and Effect on Wine Flavor
    ARVIK, BRETT OCCURRENCE, 1 Reprinted with permission from Practical Winery & Vineyard, May/June 2002 BRETTANOMYCES BRUXELLENSIS OCCURRENCE, GROWTH, AND EFFECT ON WINE FLAVOR Torey Arvik1, Thomas Henick-Kling2 1 Doctoral Student, Cornell University Enology Group, Cornell University, Geneva, NY 2 Associate Professor for Enology, Cornell University,New York State Agricultural Experiment Station, Geneva, NY Brettanomyces bruxellensis can make some red wines smell like a horse blanket that has been stored in a metal Band-Aids® box. Any, or a combination of all of these flavors and aromas can be found in affected wines harboring this yeast. Dekkera/Brettanomyces has been known to inhabit many specialized environments including tree sap, dairies, breweries, and most notably the winery environment.1 There are currently five accepted species of Dekkera/Brettanomyces: D. (B.) bruxelllensis, B. custersianus, D. anomalus, B. naardenensis, and B. nanus.3 These genera were re-classified from multiple isolates after having been given various synonyms throughout the history of mycology. Conserved gene sequence analysis and traditional biochemical tests were recently used to re-classify this group.4 What is the difference between Brettanomyces and Dekkera? To answer this question, one should know a little about yeast sex. Dekkera, which makes spores when times get tough, is the “perfect” sexual form of Brettanomyces, mycologically speaking. Thus, the reader will often see the name “Dekkera/Brettanomyces” in the literature to describe this duality. Let’s just focus on the term Brettanomyces, since only a few fortunate people have been able to get the Dekkera form from a wine.7 Brettanomyces bruxellensis has supposedly been isolated from a 10-year-old wine! Not surprising if you are a microbiologist, but winemakers bristle at the thought.
    [Show full text]
  • The Origin of Brettanomyces Bruxellensis in Wines: a Review
    THE ORIGIN OF BRETTANOMYCES BRUXELLENSIS IN WINES: A REVIEW V. RENOUF1, Aline LONVAUD-FUNEL2 and Joana COULON3 1: UMR EGFV ISVV, ENITAB, 1 cours du Général de Gaulle, 33175 Gradignan cedex, France 2: UMR Œnologie-Ampélologie, ISVV, 351 cours de la Libération, 33405 Talence, France 3: Microflora, ISVV, 351 cours de la Libération 33405 Talence, France. Abstract Résumé Aims: This work reviews the latest knowledge concerning the role of Objectif : Ce travail propose un bilan des connaissances récemment acquises Brettanomyces bruxellensis in red wine alteration. sur l'altération des vins rouges par la levure Brettanomyces bruxellensis. Results and conclusion: The origin of this yeast species and its place in Résultats et conclusion : L'origine des souches Brettanomyces bruxellensis the wine microbial consortium are discussed as well as microbial présentes dans les vins et leur place au sein du consortium microbiologique equilibriums with the other species, notably Saccharomyces cerevisiae œnologique est discutée. L'accent est mis sur les interactions de and lactic acid bacteria. As a consequence, fermentations are described as B. bruxellensis avec la matière première, le raisin, mais aussi avec les autres key steps in Brettanomyces development management. Furthermore, the microorganismes du vin, et plus particulièrement, l'espèce Saccharomyces influence of ageing through the use of traditional winemaking practices is cerevisiae et les bactéries lactiques. Par conséquent, les fermentations se explained révèlent être des étapes décisives pour l'implantation des B. bruxellensis apportées par le raisin dans le vin. Ensuite, les influences de différentes Significance and impact of study: Finally, this paper emphases the need opérations œnotechniques durant l'élevage sont détaillées et révèlent for a better understanding of chemical and microbial analysis together in l'importance de la stabilisation microbiologique des vins durant cette order to better control this undesirable yeast and prevent the production of période.
    [Show full text]