Improving Hypernymy Extraction with Distributional Semantic Classes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Semantic ComputingSEMANTIC COMPUTING Lecture 7: Introduction to Distributional and Distributed Semantics Dagmar Gromann International Center For Computational Logic TU Dresden, 30 November 2018 Overview • Distributional Semantics • Distributed Semantics – Word Embeddings Dagmar Gromann, 30 November 2018 Semantic Computing 2 Distributional Semantics Dagmar Gromann, 30 November 2018 Semantic Computing 3 Distributional Semantics Definition • meaning of a word is the set of contexts in which it occurs • no other information is used than the corpus-derived information about word distribution in contexts (co-occurrence information of words) • semantic similarity can be inferred from proximity in contexts • At the very core: Distributional Hypothesis Distributional Hypothesis “similarity of meaning correlates with similarity of distribution” - Harris Z. S. (1954) “Distributional structure". Word, Vol. 10, No. 2-3, pp. 146-162 meaning = use = distribution in context => semantic distance Dagmar Gromann, 30 November 2018 Semantic Computing 4 Remember Lecture 1? Types of Word Meaning • Encyclopaedic meaning: words provide access to a large inventory of structured knowledge (world knowledge) • Denotational meaning: reference of a word to object/concept or its “dictionary definition” (signifier <-> signified) • Connotative meaning: word meaning is understood by its cultural or emotional association (positive, negative, neutral conntation; e.g. “She’s a dragon” in Chinese and English) • Conceptual meaning: word meaning is associated with the mental concepts it gives access to (e.g. prototype theory) • Distributional meaning: “You shall know a word by the company it keeps” (J.R. Firth 1957: 11) John Rupert Firth (1957). "A synopsis of linguistic theory 1930-1955." In Special Volume of the Philological Society. Oxford: Oxford University Press. Dagmar Gromann, 30 November 2018 Semantic Computing 5 Distributional Hypothesis in Practice Study by McDonald and Ramscar (2001): • The man poured from a balack into a handleless cup.
- 
												  The Case for Word Sense Induction and DisambiguationUnsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction and Disambiguation Alexander Panchenko‡, Eugen Ruppert‡, Stefano Faralli†, Simone Paolo Ponzetto† and Chris Biemann‡ ‡Language Technology Group, Computer Science Dept., University of Hamburg, Germany †Web and Data Science Group, Computer Science Dept., University of Mannheim, Germany panchenko,ruppert,biemann @informatik.uni-hamburg.de { faralli,simone @informatik.uni-mannheim.de} { } Abstract Word sense induction from domain-specific cor- pora is a supposed to solve this problem. How- The current trend in NLP is the use of ever, most approaches to word sense induction and highly opaque models, e.g. neural net- disambiguation, e.g. (Schutze,¨ 1998; Li and Juraf- works and word embeddings. While sky, 2015; Bartunov et al., 2016), rely on cluster- these models yield state-of-the-art results ing methods and dense vector representations that on a range of tasks, their drawback is make a WSD model uninterpretable as compared poor interpretability. On the example to knowledge-based WSD methods. of word sense induction and disambigua- Interpretability of a statistical model is impor- tion (WSID), we show that it is possi- tant as it lets us understand the reasons behind its ble to develop an interpretable model that predictions (Vellido et al., 2011; Freitas, 2014; Li matches the state-of-the-art models in ac- et al., 2016). Interpretability of WSD models (1) curacy. Namely, we present an unsuper- lets a user understand why in the given context one vised, knowledge-free WSID approach, observed a given sense (e.g., for educational appli- which is interpretable at three levels: word cations); (2) performs a comprehensive analysis of sense inventory, sense feature representa- correct and erroneous predictions, giving rise to tions, and disambiguation procedure.
- 
												  A Comparison of Word Embeddings and N-Gram Models for Dbpedia Type and Invalid Entity Detection †information Article A Comparison of Word Embeddings and N-gram Models for DBpedia Type and Invalid Entity Detection † Hanqing Zhou *, Amal Zouaq and Diana Inkpen School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada; [email protected] (A.Z.); [email protected] (D.I.) * Correspondence: [email protected]; Tel.: +1-613-562-5800 † This paper is an extended version of our conference paper: Hanqing Zhou, Amal Zouaq, and Diana Inkpen. DBpedia Entity Type Detection using Entity Embeddings and N-Gram Models. In Proceedings of the International Conference on Knowledge Engineering and Semantic Web (KESW 2017), Szczecin, Poland, 8–10 November 2017, pp. 309–322. Received: 6 November 2018; Accepted: 20 December 2018; Published: 25 December 2018 Abstract: This article presents and evaluates a method for the detection of DBpedia types and entities that can be used for knowledge base completion and maintenance. This method compares entity embeddings with traditional N-gram models coupled with clustering and classification. We tackle two challenges: (a) the detection of entity types, which can be used to detect invalid DBpedia types and assign DBpedia types for type-less entities; and (b) the detection of invalid entities in the resource description of a DBpedia entity. Our results show that entity embeddings outperform n-gram models for type and entity detection and can contribute to the improvement of DBpedia’s quality, maintenance, and evolution. Keywords: semantic web; DBpedia; entity embedding; n-grams; type identification; entity identification; data mining; machine learning 1. Introduction The Semantic Web is defined by Berners-Lee et al.
- 
												  Distributional SemanticsDistributional Semantics Computational Linguistics: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM YOAV GOLDBERG AND OMER LEVY Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 1 / 19 j j From Distributional to Distributed Semantics The new kid on the block Deep learning / neural networks “Distributed” word representations Feed text into neural-net. Get back “word embeddings”. Each word is represented as a low-dimensional vector. Vectors capture “semantics” word2vec (Mikolov et al) Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 2 / 19 j j From Distributional to Distributed Semantics This part of the talk word2vec as a black box a peek inside the black box relation between word-embeddings and the distributional representation tailoring word embeddings to your needs using word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 3 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 4 / 19 j j word2vec Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 5 / 19 j j word2vec dog cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig sheep cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock november october, december, april, june, february, july, september, january, august, march jerusalem tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed teva pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia Computational Linguistics: Jordan Boyd-Graber UMD Distributional Semantics 6 / 19 j j Working with Dense Vectors Word Similarity Similarity is calculated using cosine similarity: dog~ cat~ sim(dog~ ,cat~ ) = dog~ · cat~ jj jj jj jj For normalized vectors ( x = 1), this is equivalent to a dot product: jj jj sim(dog~ ,cat~ ) = dog~ cat~ · Normalize the vectors when loading them.
- 
												  Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graphmathematics Article Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph Tajana Ban Kirigin 1,* , Sanda Bujaˇci´cBabi´c 1 and Benedikt Perak 2 1 Department of Mathematics, University of Rijeka, R. Matejˇci´c2, 51000 Rijeka, Croatia; [email protected] 2 Faculty of Humanities and Social Sciences, University of Rijeka, SveuˇcilišnaAvenija 4, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Abstract: This paper describes a graph method for labeling word senses and identifying lexical sentiment potential by integrating the corpus-based syntactic-semantic dependency graph layer, lexical semantic and sentiment dictionaries. The method, implemented as ConGraCNet application on different languages and corpora, projects a semantic function onto a particular syntactical de- pendency layer and constructs a seed lexeme graph with collocates of high conceptual similarity. The seed lexeme graph is clustered into subgraphs that reveal the polysemous semantic nature of a lexeme in a corpus. The construction of the WordNet hypernym graph provides a set of synset labels that generalize the senses for each lexical cluster. By integrating sentiment dictionaries, we introduce graph propagation methods for sentiment analysis. Original dictionary sentiment values are integrated into ConGraCNet lexical graph to compute sentiment values of node lexemes and lexical clusters, and identify the sentiment potential of lexemes with respect to a corpus. The method can be used to resolve sparseness of sentiment dictionaries and enrich the sentiment evaluation of Citation: Ban Kirigin, T.; lexical structures in sentiment dictionaries by revealing the relative sentiment potential of polysemous Bujaˇci´cBabi´c,S.; Perak, B. Lexical Sense Labeling and Sentiment lexemes with respect to a specific corpus.
- 
												  Facing the Facts of Fake: a Distributional Semantics and Corpus Annotation Approach Bert Cappelle, Pascal Denis, Mikaela KellerFacing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis, Mikaela Keller To cite this version: Bert Cappelle, Pascal Denis, Mikaela Keller. Facing the facts of fake: a distributional semantics and corpus annotation approach. Yearbook of the German Cognitive Linguistics Association, De Gruyter, 2018, 6 (9-42). hal-01959609 HAL Id: hal-01959609 https://hal.archives-ouvertes.fr/hal-01959609 Submitted on 18 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Facing the facts of fake: a distributional semantics and corpus annotation approach Bert Cappelle, Pascal Denis and Mikaela Keller Université de Lille, Inria Lille Nord Europe Fake is often considered the textbook example of a so-called ‘privative’ adjective, one which, in other words, allows the proposition that ‘(a) fake x is not (an) x’. This study tests the hypothesis that the contexts of an adjective-noun combination are more different from the contexts of the noun when the adjective is such a ‘privative’ one than when it is an ordinary (subsective) one. We here use ‘embeddings’, that is, dense vector representations based on word co-occurrences in a large corpus, which in our study is the entire English Wikipedia as it was in 2013.
- 
												  Sentiment, Stance and Applications of Distributional SemanticsSentiment, stance and applications of distributional semantics Maria Skeppstedt Sentiment, stance and applications of distributional semantics Sentiment analysis (opinion mining) • Aims at determining the attitude of the speaker/ writer * In a chunk of text (e.g., a document or sentence) * Towards a certain topic • Categories: * Positive, negative, (neutral) * More detailed Movie reviews • Excruciatingly unfunny and pitifully unromantic. • The picture emerges as a surprisingly anemic disappointment. • A sensitive, insightful and beautifully rendered film. • The spark of special anime magic here is unmistak- able and hard to resist. • Maybe you‘ll be lucky , and there‘ll be a power outage during your screening so you can get your money back. Methods for sentiment analysis • Train a machine learning classifier • Use lexicon and rules • (or combine the methods) Train a machine learning classifier Annotating text and training the model Excruciatingly Excruciatingly unfunny unfunny Applying the model pitifully unromantic. The model pitifully unromantic. Examples of machine learning Frameworks • Scikit-learn • NLTK (natural language toolkit) • CRF++ Methods for sentiment analysis • Train a machine learning classifier * See for instance Socher et al. (2013) that classified English movie review sentences into positive and negative sentiment. * Trained their classifier on 11,855 manually labelled sentences. (R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts, Recursive deep models for semantic composition- ality over a sentiment treebank) Methods based on lexicons and rules • Lexicons for different polarities • Sometimes with different strength on the words * Does not need the large amount of training data that is typically required for machine learning methods * More flexible (e.g, to add new sentiment poles and new languages) Commercial use of sentiment analysis I want to retrieve everything positive and negative that is said about the products I sell.
- 
												  Building Web-Interfaces for Vector Semantic Models with the Webvectors ToolkitBuilding Web-Interfaces for Vector Semantic Models with the WebVectors Toolkit Andrey Kutuzov Elizaveta Kuzmenko University of Oslo Higher School of Economics Oslo, Norway Moscow, Russia [email protected] eakuzmenko [email protected] Abstract approaches, which allowed to train distributional models with large amounts of raw linguistic data We present WebVectors, a toolkit that very fast. The most established word embedding facilitates using distributional semantic algorithms in the field are highly efficient Continu- models in everyday research. Our toolkit ous Skip-Gram and Continuous Bag-of-Words, im- has two main features: it allows to build plemented in the famous word2vec tool (Mikolov web interfaces to query models using a et al., 2013b; Baroni et al., 2014), and GloVe in- web browser, and it provides the API to troduced in (Pennington et al., 2014). query models automatically. Our system Word embeddings represent the meaning of is easy to use and can be tuned according words with dense real-valued vectors derived from to individual demands. This software can word co-occurrences in large text corpora. They be of use to those who need to work with can be of use in almost any linguistic task: named vector semantic models but do not want to entity recognition (Siencnik, 2015), sentiment develop their own interfaces, or to those analysis (Maas et al., 2011), machine translation who need to deliver their trained models to (Zou et al., 2013; Mikolov et al., 2013a), cor- a large audience. WebVectors features vi- pora comparison (Kutuzov and Kuzmenko, 2015), sualizations for various kinds of semantic word sense frequency estimation for lexicogra- queries.
- 
												  Distributional Semantics for Understanding Spoken Meal DescriptionsDISTRIBUTIONAL SEMANTICS FOR UNDERSTANDING SPOKEN MEAL DESCRIPTIONS Mandy Korpusik, Calvin Huang, Michael Price, and James Glass∗ MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA fkorpusik, calvinh, pricem, [email protected] ABSTRACT This paper presents ongoing language understanding experiments conducted as part of a larger effort to create a nutrition dialogue system that automatically extracts food concepts from a user’s spo- ken meal description. We first discuss the technical approaches to understanding, including three methods for incorporating word vec- tor features into conditional random field (CRF) models for seman- tic tagging, as well as classifiers for directly associating foods with properties. We report experiments on both text and spoken data from an in-domain speech recognizer. On text data, we show that the ad- dition of word vector features significantly improves performance, achieving an F1 test score of 90.8 for semantic tagging and 86.3 for food-property association. On speech, the best model achieves an F1 test score of 87.5 for semantic tagging and 86.0 for association. Fig. 1. A diagram of the flow of the nutrition system [4]. Finally, we conduct an end-to-end system evaluation through a user study with human ratings of 83% semantic tagging accuracy. Index Terms— CRF, Word vectors, Semantic tagging • We demonstrate a significant improvement in semantic tag- ging performance by adding word embedding features to a classifier. We explore features for both the raw vector values 1. INTRODUCTION and similarity to prototype words from each category. In ad- dition, improving semantic tagging performance benefits the For many patients with obesity, diet tracking is often time- subsequent task of associating foods with properties.
- 
												  Distributional Semantics Today Introduction to the Special Issue Cécile Fabre, Alessandro LenciDistributional Semantics Today Introduction to the special issue Cécile Fabre, Alessandro Lenci To cite this version: Cécile Fabre, Alessandro Lenci. Distributional Semantics Today Introduction to the special issue. Revue TAL, ATALA (Association pour le Traitement Automatique des Langues), 2015, Sémantique distributionnelle, 56 (2), pp.7-20. hal-01259695 HAL Id: hal-01259695 https://hal.archives-ouvertes.fr/hal-01259695 Submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributional Semantics Today Introduction to the special issue Cécile Fabre* — Alessandro Lenci** * University of Toulouse, CLLE-ERSS ** University of Pisa, Computational Linguistics Laboratory ABSTRACT. This introduction to the special issue of the TAL journal on distributional seman- tics provides an overview of the current topics of this field and gives a brief summary of the contributions. RÉSUMÉ. Cette introduction au numéro spécial de la revue TAL consacré à la sémantique dis- tributionnelle propose un panorama des thèmes de recherche actuels dans ce champ et fournit un résumé succinct des contributions acceptées. KEYWORDS: Distributional Semantic Models, vector-space models, corpus-based semantics, se- mantic proximity, semantic relations, evaluation of distributional ressources. MOTS-CLÉS : Sémantique distributionnelle, modèles vectoriels, proximité sémantique, relations sémantiques, évaluation de ressources distributionnelles.
- 
												  All-Words Word Sense Disambiguation Using Concept EmbeddingsAll-words Word Sense Disambiguation Using Concept Embeddings Rui Suzuki, Kanako Komiya, Masayuki Asahara, Minoru Sasaki, Hiroyuki Shinnou Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki JAPAN, National Institute for Japanese Language and Linguistics, 10-2 Midoricho, Tachikawa, Tokyo, JAPAN, [email protected], kanako.komiya.nlp, minoru.sasaki.01, hiroyuki.shinnou.0828g @vc.ibaraki.ac.jp, [email protected] Abstract All-words word sense disambiguation (all-words WSD) is the task of identifying the senses of all words in a document. Since the sense of a word depends on the context, such as the surrounding words, similar words are believed to have similar sets of surrounding words. We therefore predict the target word senses by calculating the distances between the surrounding word vectors of the target words and their synonyms using word embeddings. In addition, we introduce the new idea of concept embeddings, constructed from concept tag sequences created from the results of previous prediction steps. We predict the target word senses using the distances between surrounding word vectors constructed from word and concept embeddings, via a bootstrapped iterative process. Experimental results show that these concept embeddings were able to improve the performance of Japanese all-words WSD. Keywords: word sense disambiguation, all-words, unsupervised 1. Introduction many words have the same article numbers. Several words Word sense disambiguation (WSD) involves identifying the can have the same precise article number, even when the senses of words in documents. In particular, the WSD task semantic breaks are considered. where the senses of all the words in a document are disam- biguated is referred to as all-words WSD.
- 
												  Distributional SemanticsDistributional semantics Distributional semantics is a research area that devel- by populating the vectors with information on which text ops and studies theories and methods for quantifying regions the linguistic items occur in; paradigmatic sim- and categorizing semantic similarities between linguis- ilarities can be extracted by populating the vectors with tic items based on their distributional properties in large information on which other linguistic items the items co- samples of language data. The basic idea of distributional occur with. Note that the latter type of vectors can also semantics can be summed up in the so-called Distribu- be used to extract syntagmatic similarities by looking at tional hypothesis: linguistic items with similar distributions the individual vector components. have similar meanings. The basic idea of a correlation between distributional and semantic similarity can be operationalized in many dif- ferent ways. There is a rich variety of computational 1 Distributional hypothesis models implementing distributional semantics, includ- ing latent semantic analysis (LSA),[8] Hyperspace Ana- The distributional hypothesis in linguistics is derived logue to Language (HAL), syntax- or dependency-based from the semantic theory of language usage, i.e. words models,[9] random indexing, semantic folding[10] and var- that are used and occur in the same contexts tend to ious variants of the topic model. [1] purport similar meanings. The underlying idea that “a Distributional semantic models differ primarily with re- word is characterized by the company it keeps” was pop- spect to the following parameters: ularized by Firth.[2] The Distributional Hypothesis is the basis for statistical semantics. Although the Distribu- • tional Hypothesis originated in linguistics,[3] it is now re- Context type (text regions vs.