III. BACTERIOPHAGES OR BACTERIAL VIRUSES 1.Introduction and Properties of Phages Viruses Are Obligate Intracellular Parasites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Entry of the Membrane-Containing Bacteriophages Into Their Hosts
Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host. -
Evaluation of the Genomic Diversity of Viruses Infecting Bacteria, Archaea and Eukaryotes Using a Common Bioinformatic Platform: Steps Towards a Unified Taxonomy
RESEARCH ARTICLE Aiewsakun et al., Journal of General Virology 2018;99:1331–1343 DOI 10.1099/jgv.0.001110 Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy Pakorn Aiewsakun,1,2 Evelien M. Adriaenssens,3 Rob Lavigne,4 Andrew M. Kropinski5 and Peter Simmonds1,* Abstract Genome Relationship Applied to Virus Taxonomy (GRAViTy) is a genetics-based tool that computes sequence relatedness between viruses. Composite generalized Jaccard (CGJ) distances combine measures of homology between encoded viral genes and similarities in genome organizational features (gene orders and orientations). This scoring framework effectively recapitulates the current, largely morphology and phenotypic-based, family-level classification of eukaryotic viruses. Eukaryotic virus families typically formed monophyletic groups with consistent CGJ distance cut-off dividing between and within family divergence ranges. In the current study, a parallel analysis of prokaryotic virus families revealed quite different sequence relationships, particularly those of tailed phage families (Siphoviridae, Myoviridae and Podoviridae), where members of the same family were generally far more divergent and often not detectably homologous to each other. Analysis of the 20 currently classified prokaryotic virus families indeed split them into 70 separate clusters of tailed phages genetically equivalent to family-level assignments of eukaryotic viruses. It further divided several bacterial (Sphaerolipoviridae, Tectiviridae) and archaeal (Lipothrixviridae) families. We also found that the subfamily-level groupings of tailed phages were generally more consistent with the family assignments of eukaryotic viruses, and this supports ongoing reclassifications, including Spounavirinae and Vi1virus taxa as new virus families. The current study applied a common benchmark with which to compare taxonomies of eukaryotic and prokaryotic viruses. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Modeling Viruses' Isoelectric Points As a Milestone in Intensifying The
Open Access Library Journal 2021, Volume 8, e7166 ISSN Online: 2333-9721 ISSN Print: 2333-9705 Modeling Viruses’ Isoelectric Points as a Milestone in Intensifying the Electrocoagulation Process for Their Elimination Djamel Ghernaout1,2*, Noureddine Elboughdiri1,3 1Chemical Engineering Department, College of Engineering, University of Ha’il, Ha’il, Saudi Arabia 2Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida, Algeria 3Chemical Engineering Process Department, National School of Engineering, University of Gabes, Gabes, Tunisia How to cite this paper: Ghernaout, D. and Abstract Elboughdiri, N. (2021) Modeling Viruses’ Isoelectric Points as a Milestone in Inten- In both nature and physicochemical treatment, virus end depends on electros- sifying the Electrocoagulation Process for tatic interplays. Suggesting an exact method of predicting virion isoelectric Their Elimination. Open Access Library Jour- nal, 8: e7166. point (IEP) would assist to comprehend and predict virus end. To predict https://doi.org/10.4236/oalib.1107166 IEP, an easy method evaluates the pH at which the total of charges from io- nizable amino acids in capsid proteins reaches zero. Founded on capsid charges, Received: January 20, 2021 Accepted: February 4, 2021 however, predicted IEPs usually diverge by some pH units from experimen- Published: February 7, 2021 tally measured IEPs. Such disparity between experimental and predicted IEP was ascribed to the electrostatic neutralization of predictable polynucleotide- Copyright © 2021 by author(s) and Open binding regions (PBRs) of the capsid interior. In the first part of this work, Access Library Inc. This work is licensed under the Creative models assuming the 1) impact of the viral polynucleotide on the surface charge, Commons Attribution International or 2) contribution of only exterior residues to surface charge are discussed. -
MED25670735 Am.Pdf
1 “Big Things in Small Packages: The genetics of filamentous phage and effects on fitness of 2 their host” 3 4 Anne Mai-Prochnow1,#, Janice Gee Kay Hui1, Staffan Kjelleberg1,2, Jasna Rakonjac3, Diane 5 McDougald1,2 and Scott A. Rice1,2* 6 7 1 The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular 8 Sciences, The University of New South Wales Australia 9 2 The Singapore Centre on Environmental Life Sciences Engineering and The School of Biological 10 Sciences, Nanyang Technological University Singapore 11 3 Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 12 # Present address: CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070, 13 Australia 14 15 Running head: Filamentous phage and effects on fitness of their host 16 17 Key words: Inoviridae, Inovirus, filamentous phage, M13, Ff, CTX phage, bacteriophage, E. coli, 18 Pseudomonas, Vibrio cholerae, Biotechnology 19 20 One sentence summary: It is becoming increasingly apparent that the genus Inovirus, or 21 filamentous phage, significantly influence bacterial behaviours including virulence, stress 22 adaptation and biofilm formation, demonstrating that these phage exert a significant influence on 23 their bacterial host despite their relatively simple genomes. 24 1 25 Abstract 26 This review synthesises recent and past observations on filamentous phage and describes how these 27 phage contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae, encodes 28 the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage 29 can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the 30 emergence of new pathogenic strains. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
(12) United States Patent (10) Patent No.: US 6,852,907 B1 Padidam Et Al
USOO6852907B1 (12) United States Patent (10) Patent No.: US 6,852,907 B1 Padidam et al. (45) Date of Patent: Feb. 8, 2005 (54) RESISTANCE IN PLANTS TO INFECTION (56) References Cited BY SSDNAVIRUS USING INOVRIDAE PUBLICATIONS VIRUS SSDNA-BINDING PROTEIN, COMPOSITIONS AND METHODS OF USE (Plant Virology, Matthews, R.E.F. 3rd Ed., 1991, Academic Press, San Diego, Calif, p. 424).* (75) Inventors: Malla Padidam, Lansdale, PA (US); Padidam, et al., A phage single-stranded DNA (ssDNA) Roger N. Beachy, St. Louis, MO (US); binding protein complements SSDNA accumulation of a Claude M. Fauquet, Del Mar, CA (US) geminivirus and interferes with viral movement, 1999, J. Virol.., 73(2):1609–1616. 73) AssigSCC Thee Scripps RResearch h Institute,Insti LLa Padidam, et al., Tomato leaf curl geminivirus from India has Jolla, CA (US) a bipartite genome and coat protein is not essential for c: NotiOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi infectivity, 1995, J. Gen. Virol, 76:25-35. patent is extended or adjusted under 35 Horsch, et al., A Simple and general method for transferring genes into plants, 1985, Science, 227: 1229-1231. U.S.C. 154(b) by 0 days. Sanford, et al., Optimizing the biolistic process for different (21) Appl. No.: 09/622,500 biological applications, 1993, Meth. Enzymol., 217:483-509. (22) PCT Filed: Mar. 3, 1999 Bates, Electroporation of plant protoplasts and tissues, 1995, (86) PCT No.: PCT/US99/04716 Meth. Cell Biol., 50:363-373. Timmermans, et al., Geminiviruses and their uses as extra S371 (c)(1), chromosomal replicons, 1994, Annu. -
Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient
JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 3, huhtikuun 17. päivänä 2015 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, in building Agora, auditorium 3, on April 17, 2015 at 12 o’clock noon. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2015 Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2015 Editors Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Pekka Olsbo, Ville Korkiakangas Publishing Unit, University Library of Jyväskylä Jyväskylä Studies in Biological and Environmental Science Editorial Board Jari Haimi, Anssi Lensu, Timo Marjomäki, Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Cover picture: Thermus phage P23-77 (EM data bank entry 1525) above geysers steam boiling Yellowstone by Jon Sullivan / Public Domain. URN:ISBN:978-951-39-6154-1 ISBN 978-951-39-6154-1 (PDF) ISBN 978-951-39-6153-4 (nid.) ISSN 1456-9701 Copyright © 2015, by University of Jyväskylä Jyväskylä University Printing House, Jyväskylä 2015 Für Jan ABSTRACT Pawlowski, Alice Thermus bacteriophage P23-77: key member of a novel, but ancient family of viruses from extreme environments Jyväskylä: University of Jyväskylä, 2015, 70 p. -
Bringing New Concepts to Modern Virology
viruses Review Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology Sari Mäntynen 1,2, Lotta-Riina Sundberg 1, Hanna M. Oksanen 3,* and Minna M. Poranen 3,* 1 Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland; [email protected] (S.M.); lotta-riina.sundberg@jyu.fi (L.-R.S.) 2 Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA 3 Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland * Correspondence: hanna.oksanen@helsinki.fi (H.M.O.); minna.poranen@helsinki.fi (M.M.P.); Tel.: +358-2941-59104 (H.M.O.); +358-2941-59106 (M.M.P.) Received: 20 December 2018; Accepted: 16 January 2019; Published: 18 January 2019 Abstract: Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. -
The Isolation and Characterization of Tirotheta9, a Novel A4 Mycobacterium Phage
Western Kentucky University TopSCHOLAR® Honors College Capstone Experience/Thesis Honors College at WKU Projects Spring 5-16-2014 The solI ation and Characterization of TiroTheta9, a Novel A4 Mycobacterium Phage Sarah Schrader Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/stu_hon_theses Part of the Biology Commons Recommended Citation Schrader, Sarah, "The sI olation and Characterization of TiroTheta9, a Novel A4 Mycobacterium Phage" (2014). Honors College Capstone Experience/Thesis Projects. Paper 483. http://digitalcommons.wku.edu/stu_hon_theses/483 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Honors College Capstone Experience/ Thesis Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. THE ISOLATION AND CHARACTERIZATION OF TIROTHETA9, A NOVEL A4 MYCOBACTERIUM PHAGE A Capstone Experience/Thesis Project Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science with Honors College Graduate Distinction at Western Kentucky University By Sarah M. Schrader **** Western Kentucky University 2014 CE/T Committee: Approved by Dr. Rodney King, Advisor Dr. Claire Rinehart _____________________ Advisor Dr. Audra Jennings Department of Biology Copyright by Sarah M. Schrader 2014 ABSTRACT Bacteriophages are the most abundant biological entities on earth, yet relatively few have been characterized. In this project, a novel bacteriophage was isolated from the environment, characterized, and compared with others in the databases. Mycobacterium smegmatis, a harmless soil bacterium, served as the host and facilitated the enrichment and recovery of mycobacteriophages. A single phage type was purified to homogeneity and named TiroTheta9 (TT9).