molecules Review Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry Franz Steppeler 1 , Dominika Iwan 1, El˙zbietaWojaczy ´nska 1,* and Jacek Wojaczy ´nski 2 1 Faculty of Chemistry, Wrocław University of Science and Technology, Wybrze˙zeWyspia´nskiego 27, 50 370 Wrocław, Poland;
[email protected] (F.S.);
[email protected] (D.I.) 2 Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383 Wrocław, Poland;
[email protected] * Correspondence:
[email protected]; Tel.: +48-71-320-2410 Academic Editors: Zbigniew Czarnocki and Joanna Szawkało Received: 29 December 2019; Accepted: 16 January 2020; Published: 18 January 2020 Abstract: For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development. Keywords: asymmetric synthesis; chirality; isothiocyanates; organocatalysis; stereoselectivity; thioureas 1. Introduction The replacement of the electronegative oxygen atom of urea by sulfur (with electronegativity comparable to carbon) results in a significant change of properties. Thioureas (thiocarbamides) exhibit higher acidity and are stronger hydrogen bond donors [1–3]. This ability to participate in hydrogen bonding, which can be further modified by the appropriate substitution of nitrogen atoms, is essential for numerous applications of this class of organic compounds, mainly in organocatalysis and molecular recognition.