An Autoregressive Conditional Poisson Model

Total Page:16

File Type:pdf, Size:1020Kb

An Autoregressive Conditional Poisson Model Mo deling Time Series Count Data: An Autoregressive Conditional Poisson Mo del Andr eas Heinen Department of Economics University of California, San Diego 9500 Gilman Drive La Jolla CA 92037 [email protected] November 2000 Abstract This pap er intro duces new mo dels for time series count data. The Autoregressive Conditional Poisson mo del ACP makes it p ossible to deal with issues of discrete- ness, overdisp ersion variance greater than the mean and serial correlation. A fully parametric approachis taken and a marginal distribution for the counts is sp eci ed, where conditional on past observations the mean is autoregressive. This enables to attain improved inference on co ecients of exogenous regressors relative to static Pois- son regression, which is the main concern of the existing literature, while mo deling the serial correlation in a exible way. Avariety of mo dels, based on the double Poisson distribution of Efron 1986 is intro duced, which in a rst step intro duce an additional disp ersion parameter and in a second step make this disp ersion parameter time-varying. All mo dels are estimated using maximum likeliho o d which makes the usual tests avail- able. In this framework auto correlation can b e tested with a straightforward likeliho o d ratio test, whose simplicity is in sharp contrast with test pro cedures in the latentvari- able time series count mo del of Zeger 1988. The mo dels are applied to the time series of monthly p olio cases in the U.S b etween 1970 and 1983 as well as to the daily number of price change durations of :75$ on the IBM sto ck. A :75$ price-change duration is de ned as the time it takes the sto ck price to moveby at least :75$. The variable of interest is the daily numb er of such durations, which is a measure of intradaily volatil- ity, since the more volatile the sto ck price is within a day, the larger the counts will b e. The ACP mo dels provide go o d density forecasts of this measure of volatility. 1 1 Intro duction Many interesting empirical questions can b e addressed by mo deling a time series of count data. Examples can be found in a great variety of contexts. In the area of accident prevention, Johansson 1996 used time series counts to assess the e ect of lowered sp eed limits on the numb er of road casualties. In epidemiology, time series counts arise naturally in the study of the incidence of a disease. A prominent example is the time series of monthly cases of p olio in the U.S. which has b een studied extensively by Zeger 1988 and Brannas and Johansson 1994. In the area of nance, b esides the applications mentioned in Cameron and Trivedi 1996, counts arise in market microstructure as so on as one starts lo oking at tick-by-tick data. The price pro cess for a sto ck can b e viewed as a sum of discrete price changes. The daily numb er of these price changes constitutes a time series of counts whose prop erties are of interest. Most of these applications involve relatively rare events which makes the use of the normal distribution questionable. Thus, mo deling this typ e of series requires one to deal explicitly with the discreteness of the data as well as its time series prop erties. Neglect- ing either of these two characteristics would lead to p otentially serious missp eci cation. A typical issue with time series data is auto correlation and a common feature of count data is overdisp ersion the variance is larger than the mean. Both of these problems are addressed simultaneously by using an autoregressive conditional Poisson mo del ACP. In the simplest mo del counts haveaPoisson distribution and their mean, conditional on past observations, is autoregressive. Whereas, conditional on past observations, the mo del is equidisp ersed the variance is equal to the mean, it is unconditionally overdisp ersed. A fully parametric approach and cho ose to mo del the conditional distribution explicitly and make sp eci c assumptions ab out the nature of the auto correlation in the series. A simi- lar mo deling strategy has b een explored indep endently by Rydb erg and Shephard 1998, Rydb erg and Shephard 1999b, and Rydb erg and Shephard 1999a. Two generalisations of their framework are intro duced in this pap er. The rst consists of replacing the Pois- son by the double Poisson distribution of Efron 1986, which allows for either under- or overdisp ersion in the marginal distribution. In this context, two common variance functions will b e explored. Finally, an extended version of the mo del is prop osed, which allows for separate mo dels of mean and of variance. It is shown that this mo del p erforms well in a nancial application and that it delivers very good density forecasts, which are tested by using the techniques prop osed by Dieb old and Tay 1997. The main advantages of this mo del are that it is exible, parsimomious and easy to estimate using maximum likeliho o d. Results are easy to interpret and standard hyp othesis test are available. In addition, given that the auto correlation and the density are mo deled explicitly, the mo del is well suited for b oth p oint and density forecasts, which can be of interest in many applications. Finally, due to its similarity with the autoregressive conditional heteroskedasticity ARCH mo del of Engle 1982, the present framework can be extended to most of the mo dels in the ARCH class; for a review see Bollerslev, Engle, and Nelson 1994. The pap er is organised as follows. A great numb er of mo dels of time series count data have b een prop osed, which will b e reviewed in section 2. In section 3 the basic autoregressive Poisson mo del is intro duced and some of its prop erties are discussed. Section 4 intro duces 2 twoversions of the Double Autoregressive Conditional Poisson DACP mo del, along with their prop erties. In section 5 the mo del is generalised to allow for time-varying variance, applications to the daily numb er of price changes on IBM and to the numb er of new p olio cases are presented is section 6; section 7 concludes. 2 A review of mo dels for count data in time series Many di erent approaches have b een prop osed to mo del time series count data. Good reviews can be found b oth in Cameron and Trivedi 1979, Chapter 7 and in MacDonald and Zucchini 1997, Chapter 1. Markov chains are one way of dealing with count data in time series. The metho d consists of de ning transition probabilities between all the p ossible values that the dep endent variable can take and determining, in the same way as in usual time series analysis, the appropriate order for the series. This metho d is only reasonable, though, when there are very few p ossible values that the observations can take. A prominent area of application for Markovchains is binary data. As so on as the number of values that the dep endentvariable takes gets to o large, these mo dels lose tractability. Discrete Autoregressive Moving Average DARMA mo dels are mo dels for time series count data with prop erties similar to those of ARMA pro cesses found in traditional time series analysis. They are probabilistic mixtures of discrete i.i.d. random variables with suitably chosen marginal distribution. One of the problems asso ciated with these mo d- els seems to be the diculty of estimating them. An application to the study of daily precipitation can be found in Chang and Delleur 1984. The daily level of precipitation is transformed into a discrete variable based on its magnitude. The metho d of moments is used to estimate the parameters of the mo del by tting the theoretical auto correlation function of each mo del to their sample counterpart. Estimation of the mo del seems quite cumb ersome and the mo del is only applied to a time series which can take at most three values. McKenzie 1985 surveys various mo dels based on "binomial thinning". In those mo d- els, the dep endentvariable y is assumed to b e equal to the sum of an error term with some t presp eci ed distribution and the result of y draws from a Bernoulli which takes value t1 1 with some probability and 0 otherwise. This guarantees that the dep endent variable takes only integer values. The parameter in that mo del is analogous to the co ecient on the lagged value in an AR1 mo del. This mo del, called INAR1, has the same au- to correlations as the AR1 mo del of traditional time series analysis, which makes it its discrete counterpart. This family of mo dels has b een generalised to include integer valued ARMA pro cesses a well as to incorp orate exogenous regressors. The problem with this typ e of mo dels is the diculty in estimating them. Many mo dels have b een prop osed and the emphasis was put more on their sto chastic prop erties than on how to estimate them. Hidden Markovchains, advo cated by MacDonald and Zucchini 1997 are an extension of the basic Markov chains mo dels, in which various regimes characterising the p ossible values of the mean are identi ed. It is then assumed that the transition from one to another of these regimes is governed by a Markov chain.
Recommended publications
  • An Introduction to Poisson Regression Russ Lavery, K&L Consulting Services, King of Prussia, PA, U.S.A
    NESUG 2010 Statistics and Analysis An Animated Guide: An Introduction To Poisson Regression Russ Lavery, K&L Consulting Services, King of Prussia, PA, U.S.A. ABSTRACT: This paper will be a brief introduction to Poisson regression (theory, steps to be followed, complications and interpretation) via a worked example. It is hoped that this will increase motivation towards learning this useful statistical technique. INTRODUCTION: Poisson regression is available in SAS through the GENMOD procedure (generalized modeling). It is appropriate when: 1) the process that generates the conditional Y distributions would, theoretically, be expected to be a Poisson random process and 2) when there is no evidence of overdispersion and 3) when the mean of the marginal distribution is less than ten (preferably less than five and ideally close to one). THE POISSON DISTRIBUTION: The Poison distribution is a discrete Percent of observations where the random variable X is expected distribution and is appropriate for to have the value x, given that the Poisson distribution has a mean modeling counts of observations. of λ= P(X=x, λ ) = (e - λ * λ X) / X! Counts are observed cases, like the 0.4 count of measles cases in cities. You λ can simply model counts if all data 0.35 were collected in the same measuring 0.3 unit (e.g. the same number of days or 0.3 0.5 0.8 same number of square feet). 0.25 λ 1 0.2 3 You can use the Poisson Distribution = 5 for modeling rates (rates are counts 0.15 20 per unit) if the units of collection were 8 different.
    [Show full text]
  • Generalized Linear Models (Glms)
    San Jos´eState University Math 261A: Regression Theory & Methods Generalized Linear Models (GLMs) Dr. Guangliang Chen This lecture is based on the following textbook sections: • Chapter 13: 13.1 – 13.3 Outline of this presentation: • What is a GLM? • Logistic regression • Poisson regression Generalized Linear Models (GLMs) What is a GLM? In ordinary linear regression, we assume that the response is a linear function of the regressors plus Gaussian noise: 0 2 y = β0 + β1x1 + ··· + βkxk + ∼ N(x β, σ ) | {z } |{z} linear form x0β N(0,σ2) noise The model can be reformulate in terms of • distribution of the response: y | x ∼ N(µ, σ2), and • dependence of the mean on the predictors: µ = E(y | x) = x0β Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University3/24 Generalized Linear Models (GLMs) beta=(1,2) 5 4 3 β0 + β1x b y 2 y 1 0 −1 0.0 0.2 0.4 0.6 0.8 1.0 x x Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University4/24 Generalized Linear Models (GLMs) Generalized linear models (GLM) extend linear regression by allowing the response variable to have • a general distribution (with mean µ = E(y | x)) and • a mean that depends on the predictors through a link function g: That is, g(µ) = β0x or equivalently, µ = g−1(β0x) Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University5/24 Generalized Linear Models (GLMs) In GLM, the response is typically assumed to have a distribution in the exponential family, which is a large class of probability distributions that have pdfs of the form f(x | θ) = a(x)b(θ) exp(c(θ) · T (x)), including • Normal - ordinary linear regression • Bernoulli - Logistic regression, modeling binary data • Binomial - Multinomial logistic regression, modeling general cate- gorical data • Poisson - Poisson regression, modeling count data • Exponential, Gamma - survival analysis Dr.
    [Show full text]
  • Parameters Estimation for Asymmetric Bifurcating Autoregressive Processes with Missing Data
    Electronic Journal of Statistics ISSN: 1935-7524 Parameters estimation for asymmetric bifurcating autoregressive processes with missing data Benoîte de Saporta Université de Bordeaux, GREThA CNRS UMR 5113, IMB CNRS UMR 5251 and INRIA Bordeaux Sud Ouest team CQFD, France e-mail: [email protected] and Anne Gégout-Petit Université de Bordeaux, IMB, CNRS UMR 525 and INRIA Bordeaux Sud Ouest team CQFD, France e-mail: [email protected] and Laurence Marsalle Université de Lille 1, Laboratoire Paul Painlevé, CNRS UMR 8524, France e-mail: [email protected] Abstract: We estimate the unknown parameters of an asymmetric bi- furcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson pro- cess consistent with the binary Bee structure of the data. Under indepen- dence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong con- sistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality. AMS 2000 subject classifications: Primary 62F12, 62M09; secondary 60J80, 92D25, 60G42. Keywords and phrases: least squares estimation, bifurcating autoregres- sive process, missing data, Galton-Watson process, joint model, martin- gales, limit theorems. arXiv:1012.2012v3 [math.PR] 27 Sep 2011 1. Introduction Bifurcating autoregressive processes (BAR) generalize autoregressive (AR) pro- cesses, when the data have a binary tree structure. Typically, they are involved in modeling cell lineage data, since each cell in one generation gives birth to two offspring in the next one.
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via Sussex
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA Mailan Trinh A thesis submitted for the degree of Doctor of Philosophy University of Sussex March 2018 UNIVERSITY OF SUSSEX MAILAN TRINH A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA SUMMARY The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We character- ize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular vari- ation properties and Anscombe's theorem.
    [Show full text]
  • Generalized Linear Models with Poisson Family: Applications in Ecology
    UNIVERSITY OF ABOMEY- CALAVI *********** FACULTY OF AGRONOMIC SCIENCES *************** **************** Master Program in Statistics, Major Biostatistics 1st batch Generalized linear models with Poisson family: applications in ecology A thesis submitted to the Faculty of Agronomic Sciences in partial fulfillment of the requirements for the degree of the Master of Sciences in Biostatistics Presented by: LOKONON Enagnon Bruno Supervisor: Pr Romain L. GLELE KAKAÏ, Professor of Biostatistics and Forest estimation Academic year: 2014-2015 UNIVERSITE D’ABOMEY- CALAVI *********** FACULTE DES SCIENCES AGRONOMIQUES *************** ************** Programme de Master en Biostatistiques 1ère Promotion Modèles linéaires généralisés de la famille de Poisson : applications en écologie Mémoire soumis à la Faculté des Sciences Agronomiques pour obtenir le Diplôme de Master recherche en Biostatistiques Présenté par: LOKONON Enagnon Bruno Superviseur: Pr Romain L. GLELE KAKAÏ, Professeur titulaire de Biostatistiques et estimation forestière Année académique: 2014-2015 Certification I certify that this work has been achieved by LOKONON E. Bruno under my entire supervision at the University of Abomey-Calavi (Benin) in order to obtain his Master of Science degree in Biostatistics. Pr Romain L. GLELE KAKAÏ Professor of Biostatistics and Forest estimation i Acknowledgements This research was supported by WAAPP/PPAAO-BENIN (West African Agricultural Productivity Program/ Programme de Productivité Agricole en Afrique de l‟Ouest). This dissertation could only have been possible through the generous contributions of many people. First and foremost, I am grateful to my supervisor Pr Romain L. GLELE KAKAÏ, Professor of Biostatistics and Forest estimation who tirelessly played key role in orientation, scientific writing and mentoring during this research. In particular, I thank him for his prompt availability whenever needed.
    [Show full text]
  • Network Traffic Modeling
    Chapter in The Handbook of Computer Networks, Hossein Bidgoli (ed.), Wiley, to appear 2007 Network Traffic Modeling Thomas M. Chen Southern Methodist University, Dallas, Texas OUTLINE: 1. Introduction 1.1. Packets, flows, and sessions 1.2. The modeling process 1.3. Uses of traffic models 2. Source Traffic Statistics 2.1. Simple statistics 2.2. Burstiness measures 2.3. Long range dependence and self similarity 2.4. Multiresolution timescale 2.5. Scaling 3. Continuous-Time Source Models 3.1. Traditional Poisson process 3.2. Simple on/off model 3.3. Markov modulated Poisson process (MMPP) 3.4. Stochastic fluid model 3.5. Fractional Brownian motion 4. Discrete-Time Source Models 4.1. Time series 4.2. Box-Jenkins methodology 5. Application-Specific Models 5.1. Web traffic 5.2. Peer-to-peer traffic 5.3. Video 6. Access Regulated Sources 6.1. Leaky bucket regulated sources 6.2. Bounding-interval-dependent (BIND) model 7. Congestion-Dependent Flows 7.1. TCP flows with congestion avoidance 7.2. TCP flows with active queue management 8. Conclusions 1 KEY WORDS: traffic model, burstiness, long range dependence, policing, self similarity, stochastic fluid, time series, Poisson process, Markov modulated process, transmission control protocol (TCP). ABSTRACT From the viewpoint of a service provider, demands on the network are not entirely predictable. Traffic modeling is the problem of representing our understanding of dynamic demands by stochastic processes. Accurate traffic models are necessary for service providers to properly maintain quality of service. Many traffic models have been developed based on traffic measurement data. This chapter gives an overview of a number of common continuous-time and discrete-time traffic models.
    [Show full text]
  • On Conditionally Heteroscedastic Ar Models with Thresholds
    Statistica Sinica 24 (2014), 625-652 doi:http://dx.doi.org/10.5705/ss.2012.185 ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS Kung-Sik Chan, Dong Li, Shiqing Ling and Howell Tong University of Iowa, Tsinghua University, Hong Kong University of Science & Technology and London School of Economics & Political Science Abstract: Conditional heteroscedasticity is prevalent in many time series. By view- ing conditional heteroscedasticity as the consequence of a dynamic mixture of in- dependent random variables, we develop a simple yet versatile observable mixing function, leading to the conditionally heteroscedastic AR model with thresholds, or a T-CHARM for short. We demonstrate its many attributes and provide com- prehensive theoretical underpinnings with efficient computational procedures and algorithms. We compare, via simulation, the performance of T-CHARM with the GARCH model. We report some experiences using data from economics, biology, and geoscience. Key words and phrases: Compound Poisson process, conditional variance, heavy tail, heteroscedasticity, limiting distribution, quasi-maximum likelihood estimation, random field, score test, T-CHARM, threshold model, volatility. 1. Introduction We can often model a time series as the sum of a conditional mean function, the drift or trend, and a conditional variance function, the diffusion. See, e.g., Tong (1990). The drift attracted attention from very early days, although the importance of the diffusion did not go entirely unnoticed, with an example in ecological populations as early as Moran (1953); a systematic modelling of the diffusion did not seem to attract serious attention before the 1980s. For discrete-time cases, our focus, as far as we are aware it is in the econo- metric and finance literature that the modelling of the conditional variance has been treated seriously, although Tong and Lim (1980) did include conditional heteroscedasticity.
    [Show full text]
  • Heteroscedastic Errors
    Heteroscedastic Errors ◮ Sometimes plots and/or tests show that the error variances 2 σi = Var(ǫi ) depend on i ◮ Several standard approaches to fixing the problem, depending on the nature of the dependence. ◮ Weighted Least Squares. ◮ Transformation of the response. ◮ Generalized Linear Models. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Weighted Least Squares ◮ Suppose variances are known except for a constant factor. 2 2 ◮ That is, σi = σ /wi . ◮ Use weighted least squares. (See Chapter 10 in the text.) ◮ This usually arises realistically in the following situations: ◮ Yi is an average of ni measurements where you know ni . Then wi = ni . 2 ◮ Plots suggest that σi might be proportional to some power of 2 γ γ some covariate: σi = kxi . Then wi = xi− . Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Variances depending on (mean of) Y ◮ Two standard approaches are available: ◮ Older approach is transformation. ◮ Newer approach is use of generalized linear model; see STAT 402. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Transformation ◮ Compute Yi∗ = g(Yi ) for some function g like logarithm or square root. ◮ Then regress Yi∗ on the covariates. ◮ This approach sometimes works for skewed response variables like income; ◮ after transformation we occasionally find the errors are more nearly normal, more homoscedastic and that the model is simpler. ◮ See page 130ff and check under transformations and Box-Cox in the index. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Generalized Linear Models ◮ Transformation uses the model T E(g(Yi )) = xi β while generalized linear models use T g(E(Yi )) = xi β ◮ Generally latter approach offers more flexibility.
    [Show full text]
  • Generalized Linear Models
    CHAPTER 6 Generalized linear models 6.1 Introduction Generalized linear modeling is a framework for statistical analysis that includes linear and logistic regression as special cases. Linear regression directly predicts continuous data y from a linear predictor Xβ = β0 + X1β1 + + Xkβk.Logistic regression predicts Pr(y =1)forbinarydatafromalinearpredictorwithaninverse-··· logit transformation. A generalized linear model involves: 1. A data vector y =(y1,...,yn) 2. Predictors X and coefficients β,formingalinearpredictorXβ 1 3. A link function g,yieldingavectoroftransformeddataˆy = g− (Xβ)thatare used to model the data 4. A data distribution, p(y yˆ) | 5. Possibly other parameters, such as variances, overdispersions, and cutpoints, involved in the predictors, link function, and data distribution. The options in a generalized linear model are the transformation g and the data distribution p. In linear regression,thetransformationistheidentity(thatis,g(u) u)and • the data distribution is normal, with standard deviation σ estimated from≡ data. 1 1 In logistic regression,thetransformationistheinverse-logit,g− (u)=logit− (u) • (see Figure 5.2a on page 80) and the data distribution is defined by the proba- bility for binary data: Pr(y =1)=y ˆ. This chapter discusses several other classes of generalized linear model, which we list here for convenience: The Poisson model (Section 6.2) is used for count data; that is, where each • data point yi can equal 0, 1, 2, ....Theusualtransformationg used here is the logarithmic, so that g(u)=exp(u)transformsacontinuouslinearpredictorXiβ to a positivey ˆi.ThedatadistributionisPoisson. It is usually a good idea to add a parameter to this model to capture overdis- persion,thatis,variationinthedatabeyondwhatwouldbepredictedfromthe Poisson distribution alone.
    [Show full text]
  • Multivariate ARMA Processes
    LECTURE 10 Multivariate ARMA Processes A vector sequence y(t)ofn elements is said to follow an n-variate ARMA process of orders p and q if it satisfies the equation A0y(t)+A1y(t − 1) + ···+ Apy(t − p) (1) = M0ε(t)+M1ε(t − 1) + ···+ Mqε(t − q), wherein A0,A1,...,Ap,M0,M1,...,Mq are matrices of order n × n and ε(t)is a disturbance vector of n elements determined by serially-uncorrelated white- noise processes that may have some contemporaneous correlation. In order to signify that the ith element of the vector y(t) is the dependent variable of the ith equation, for every i, it is appropriate to have units for the diagonal elements of the matrix A0. These represent the so-called normalisation rules. Moreover, unless it is intended to explain the value of yi in terms of the remaining contemporaneous elements of y(t), then it is natural to set A0 = I. It is also usual to set M0 = I. Unless a contrary indication is given, it will be assumed that A0 = M0 = I. It is assumed that the disturbance vector ε(t) has E{ε(t)} = 0 for its expected value. On the assumption that M0 = I, the dispersion matrix, de- noted by D{ε(t)} = Σ, is an unrestricted positive-definite matrix of variances and of contemporaneous covariances. However, if restriction is imposed that D{ε(t)} = I, then it may be assumed that M0 = I and that D(M0εt)= M0M0 =Σ. The equations of (1) can be written in summary notation as (2) A(L)y(t)=M(L)ε(t), where L is the lag operator, which has the effect that Lx(t)=x(t − 1), and p q where A(z)=A0 + A1z + ···+ Apz and M(z)=M0 + M1z + ···+ Mqz are matrix-valued polynomials assumed to be of full rank.
    [Show full text]
  • AUTOREGRESSIVE MODEL with PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Kamil Dedecius, Radek Hofman
    AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Kamil Dedecius, Radek Hofman To cite this version: Kamil Dedecius, Radek Hofman. AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER. Communications in Statistics - Simulation and Computation, Taylor & Francis, 2011, 41 (05), pp.582-589. 10.1080/03610918.2011.598992. hal- 00768970 HAL Id: hal-00768970 https://hal.archives-ouvertes.fr/hal-00768970 Submitted on 27 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Communications in Statistics - Simulation and Computation For Peer Review Only AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Journal: Communications in Statistics - Simulation and Computation Manuscript ID: LSSP-2011-0055 Manuscript Type: Original Paper Date Submitted by the 09-Feb-2011 Author: Complete List of Authors: Dedecius, Kamil; Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Department of Adaptive Systems Hofman, Radek; Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Department of Adaptive Systems Keywords: particle filters, Bayesian methods, recursive estimation We are concerned with Bayesian identification and prediction of a nonlinear discrete stochastic process. The fact, that a nonlinear process can be approximated by a piecewise linear function advocates the use of adaptive linear models.
    [Show full text]
  • Uniform Noise Autoregressive Model Estimation
    Uniform Noise Autoregressive Model Estimation L. P. de Lima J. C. S. de Miranda Abstract In this work we present a methodology for the estimation of the coefficients of an au- toregressive model where the random component is assumed to be uniform white noise. The uniform noise hypothesis makes MLE become equivalent to a simple consistency requirement on the possible values of the coefficients given the data. In the case of the autoregressive model of order one, X(t + 1) = aX(t) + (t) with i.i.d (t) ∼ U[α; β]; the estimatora ^ of the coefficient a can be written down analytically. The performance of the estimator is assessed via simulation. Keywords: Autoregressive model, Estimation of parameters, Simulation, Uniform noise. 1 Introduction Autoregressive models have been extensively studied and one can find a vast literature on the subject. However, the the majority of these works deal with autoregressive models where the innovations are assumed to be normal random variables, or vectors. Very few works, in a comparative basis, are dedicated to these models for the case of uniform innovations. 2 Estimator construction Let us consider the real valued autoregressive model of order one: X(t + 1) = aX(t) + (t + 1); where (t) t 2 IN; are i.i.d real random variables. Our aim is to estimate the real valued coefficient a given an observation of the process, i.e., a sequence (X(t))t2[1:N]⊂IN: We will suppose a 2 A ⊂ IR: A standard way of accomplish this is maximum likelihood estimation. Let us assume that the noise probability law is such that it admits a probability density.
    [Show full text]