Zebrafish Models of Rare Hereditary Pediatric Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Inherited Metabolic Disorders News
The Inherited Metabolic Disorders News Summer 2011 Volume 8 Issue 2 From the Editor I hope everyone is enjoying their summer thus far! Our 8th annual Metabolic Family Day and 7th annual Low In this Issue Protein Cooking Demonstration were once again a huge success. See the section ”What’s New” on page 9 for a full report of the events, as well as pictures. ♦ From the Editor…1 As always, your suggestions and stories are welcome. Please contact me by email: [email protected] or telephone 519-685-8453 if you wish to contribute to the ♦ From Dr. Chitra Prasad…1 newsletter. I hope everyone has a safe and happy summer! ♦ Personal Stories… 2 Janice Little ♦ Featured This Issue … 4 From Dr Chitra Prasad ♦ Suzanne’s Corner… 6 Dear Friends, ♦ What’s New… 8 Hope you all are having a wonderful summer. We had a great metabolic family workshop with around 198 registrants this year. This was truly phenomenal. Thanks to all the team members and ♦ Research & Presentations … 13 the families in the planning committee for doing such a fantastic job. I was really touched when one of our young metabolic patients told her parents that she would like to attend the ♦ How to Make a Donation… 14 metabolic family workshop! Please see some of the highlights of the metabolic workshop in the newsletter for those who could not make it. The speeches by our youth (Sadiq, Leanna and Laura) ♦ Contact Information … 15 were appreciated by everyone. Big thanks to Jill Tosswill (our previous social worker) who coordinated their talks. -
Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression. -
Menkes Disease in 5 Siblings
Cu(e) the balancing act: Copper homeostasis explored in 5 siblings Poster with variable clinical course 595 Sonia A Varghese MD MPH MBA and Yael Shiloh-Malawsky MD Objective Methods Case Presentation Discussion v Present a unique variation of v Review literature describing v The graph below depicts the phenotypic spectrum seen in the 5 brothers v ATP7A mutations produce a clinical spectrum phenotype and course in siblings copper transport disorders v Mom is a known carrier of ATP7A mutation v Siblings 1, 2, and 5 follow a more classic with Menkes Disease (MD) v Apply findings to our case of five v There is limited information on the siblings who were not seen at UNC Menke’s course, while siblings 3 and 4 exhibit affected siblings v The 6th sibling is the youngest and is a healthy female infant (not included here) a phenotypic variation Sibling: v This variation is suggestive of a milder form of Background Treatment birth Presentation Exam Diagnostic testing Outcomes Copper Histidine Menkes such as occipital horn syndrome with v Mutations in ATP7A: copper deficiency order D: 16mos residual copper transport function (Menkes disease) O/AD: 1 Infancy/12mos N/A N/A No Brain v Siblings 3 and 4 had improvement with copper v Mutations in ATP7B: copper overload FTT, Seizures, DD hemorrhage supplementation, however declined when off (Wilson disease) O/AD: Infancy/NA D: 13mos supplementation -suggesting residual ATP7A v The amount of residual functioning 2 N/A N/A No FTT, FTT copper transport function copper transport influences disease Meningitis -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter
New Developments Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter Niccolo` Bacchi,1 Simona Casarosa,1,2 and Michela A. Denti1,3 1Centre for Integrative Biology (CIBIO) - University of Trento, Trento, Italy 2Neuroscience Institute - National Research Council (CNR), Pisa, Italy 3Neuroscience Institute - National Research Council (CNR), Padova, Italy Correspondence: Simona Casarosa, Splicing is an important and highly regulated step in gene expression. The ability to modulate Centre for Integrative Biology it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing- (CIBIO) - University of Trento, Via correction approaches have recently been successfully exploited for some genetic diseases, Sommarive 9, 38123 Trento, Italy; and are currently demonstrating safety and efficacy in different clinical trials. Their [email protected]. application for the treatment of retinal dystrophies could potentially solve a vast panel of Michela A. Denti, Centre for Inte- grative Biology (CIBIO) - University cases, as illustrated by the abundance of mutations that could be targeted and the versatility of ofTrento,ViaSommarive9,38123 the technique. In this review, we will give an insight of the different therapeutic strategies, Trento, Italy; focusing on the current status of their application for retinal dystrophies. [email protected]. Keywords: splicing correction, antisense oligonucleotides, retinal dystrophy, gene therapy SC and MAD contributed equally to the work presented here and should therefore be regarded as equivalent authors. Submitted: April 8, 2014 Accepted: April 11, 2014 Citation: Bacchi N, Casarosa S, Denti MA. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Invest Oph- thalmol Vis Sci. -
Menkes Disease Submitted By: Alice Ho, Jean Mah, Robin Casey, Penney Gaul
Neuroimaging Highlight Editors: William Hu, Mark Hudon, Richard Farb “From Sheep to Babe” – Menkes Disease Submitted by: Alice Ho, Jean Mah, Robin Casey, Penney Gaul Can. J. Neurol. Sci. 2003; 30: 358-360 A four-month-old boy presented with a new onset focal On examination, his length (66 cm) and head circumference seizure lasting 18 minutes. During the seizure, his head and eyes (43 cm) were at the 50th percentile, and his weight (6.6 kg) was were deviated to the left, and he assumed a fencing posture to the at the 75th percentile. He had short bristly pale hair, and a left with pursing of his lips. He had been unwell for one week, cherubic appearance with full cheeks. His skin was velvety and with episodes of poor feeding, during which he would become lax. He was hypotonic with significant head lag and slip-through unresponsive, limp and stare for a few seconds. Developmentally on vertical suspension. His cranial nerves were intact. He moved he was delayed. He was not yet rolling, and he had only just all limbs equally well with normal strength. His deep tendon begun to lift his head in prone position. He could grasp but was reflexes were 3+ at patellar and brachioradialis, and 2+ not reaching or bringing his hands together at the midline. He elsewhere. Plantar responses were upgoing. was cooing but not laughing. His past medical history was Laboratory investigations showed increased lactate (7.7 significant for term delivery with fetal distress and meconium mmol/L) and alkaline phosphatase (505 U/L), with normal CBC, staining. -
Ciliopathies Gene Panel
Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases. -
Menkes Disease: Report of Two Cases
Iran J Pediatr Case Report Dec 2007; Vol 17 ( No 3), Pp:388-392 Menkes Disease: Report of Two Cases Mohammad Barzegar*1, MD; Afshin Fayyazie1, MD; Bobollah Gasemie2, MD; Mohammad ali Mohajel Shoja3, MD 1. Pediatric Neurologist, Department of Pediatrics, Tabriz University of Medical Sciences, IR Iran 2. Pathologist, Department of Pathology, Tabriz University of Medical Sciences, IR Iran 3. General Physician, Tabriz University of Medical Sciences, IR Iran Received: 14/05/07; Revised: 20/08/07; Accepted: 10/10/07 Abstract Introduction: Menkes disease is a rare X-linked recessive disorder of copper metabolism. It is characterized by progressive cerebral degeneration with psychomotor deterioration, hypothermia, seizures and characteristic facial appearance with hair abnormalities. Case Presentation: We report on two cases of classical Menkes disease with typical history, (progressive psychomotor deterioration and seizures}, clinical manifestations (cherubic appearance, with brittle, scattered and hypopigmented scalp hairs), and progression. Light microscopic examination of the hair demonstrated the pili torti pattern. The low serum copper content and ceruloplasmin confirmed the diagnosis. Conclusion: Menkes disease is an under-diagnosed entity, being familiar with its manifestation and maintaining high index of suspicion are necessary for early diagnosis. Key Words: Menkes disease, Copper metabolism, Epilepsy, Pili torti, Cerebral degeneration Introduction colorless. Examination under microscope reveals Menkes disease (MD), also referred to as kinky a variety of abnormalities, most often pili torti hair disease, trichopoliodystrophy, and steely hair (twisted hair), monilethrix (varying diameter of disease, is a rare X-linked recessive disorder of hair shafts) and trichorrhexis nodosa (fractures of copper metabolism.[1,2] It is characterized by the hair shaft at regular intervals)[4]. -
OFD1 and Flotillins Are Integral Components of a Ciliary Signaling Protein Complex Organized by Polycystins in Renal Epithelia and Odontoblasts
OFD1 and Flotillins Are Integral Components of a Ciliary Signaling Protein Complex Organized by Polycystins in Renal Epithelia and Odontoblasts Stephanie Jerman1, Heather H. Ward2, Rebecca Lee1, Carla A. M. Lopes3, Andrew M. Fry3, Mary MacDougall4, Angela Wandinger-Ness1* 1 Department of Pathology MSC08-4640 and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America, 2 Department of Internal Medicine, Division of Nephrology MSC10-5550, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America, 3 Department of Biochemistry, University of Leicester, Leicester, United Kingdom, 4 Institute of Oral Health Research & Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham, Alabama, United States of America Abstract Mutation of the X-linked oral-facial-digital syndrome type 1 (OFD1) gene is embryonic lethal in males and results in craniofacial malformations and adult onset polycystic kidney disease in females. While the OFD1 protein localizes to centriolar satellites, centrosomes and basal bodies, its cellular function and how it relates to cystic kidney disease is largely unknown. Here, we demonstrate that OFD1 is assembled into a protein complex that is localized to the primary cilium and contains the epidermal growth factor receptor (EGFR) and domain organizing flotillin proteins. This protein complex, which has similarity to a basolateral adhesion domain formed during cell polarization, also contains the polycystin proteins that when mutant cause autosomal dominant polycystic kidney disease (ADPKD). Importantly, in human ADPKD cells where mutant polycystin-1 fails to localize to cilia, there is a concomitant loss of localization of polycystin-2, OFD1, EGFR and flotillin-1 to cilia. -
Multipoint Linkage Analysis in Menkes Disease T
Am. J. Hum. Genet. 50:1012-1017, 1992 Multipoint Linkage Analysis in Menkes Disease T. T0nnesen,* A. Petterson,* T. A. KruseT A.-M. Gerdest and N. Horn* *John F. Kennedy Institute, Glostrup, Denmark; TInstitute of Human Genetics, University of Aarhus, Aarhus, Denmark; and *Department of Clinical Chemistry, Odense Sygehus, Odense, Denmark Summary Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [0] = .0), for DXS1 (p-8; maximal lod score 3.44 at 0 = .0), for PGK1 (maximal lod score 2.48 at 0 = .0), and for DXS3 (p19-2; maximal lod score 2.90 at 0 = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYSlX(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, be- tween DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombi- nant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSYlX(pDP34) and located in the region Xql2 to Xql3.3. -
Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research. -
BMC Cell Biology Biomed Central
BMC Cell Biology BioMed Central Research article Open Access MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1 Danila Baldessari†1, Aurora Badaloni†1,2, Renato Longhi4, Vincenzo Zappavigna3 and G Giacomo Consalez*1,2 Address: 1Dept. Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy, 2Stem Cell Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy, 3Dept. Molecular Biology and Functional Genomics, San Raffaele Scientific Institute, 20132 Milan, Italy and 4National Research Center, Institute of Chemistry of Molecular Recognition, 20131 Milan, Italy Email: Danila Baldessari - [email protected]; Aurora Badaloni - [email protected]; Renato Longhi - [email protected]; Vincenzo Zappavigna - [email protected]; G Giacomo Consalez* - [email protected] * Corresponding author †Equal contributors Published: 21 December 2004 Received: 28 August 2004 Accepted: 21 December 2004 BMC Cell Biology 2004, 5:48 doi:10.1186/1471-2121-5-48 This article is available from: http://www.biomedcentral.com/1471-2121/5/48 © 2004 Baldessari et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Through in vivo loss-of-function studies, vertebrate members of the Male abnormal 21 (mab-21) gene family have been implicated in gastrulation, neural tube formation and eye morphogenesis. Despite mounting evidence of their considerable importance in development, the biochemical properties and nature of MAB-21 proteins have remained strikingly elusive.