Statistical Inference in Games
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Inferences Hypothesis Tests
STATISTICAL INFERENCES HYPOTHESIS TESTS Maªgorzata Murat BASIC IDEAS Suppose we have collected a representative sample that gives some information concerning a mean or other statistical quantity. There are two main questions for which statistical inference may provide answers. 1. Are the sample quantity and a corresponding population quantity close enough together so that it is reasonable to say that the sample might have come from the population? Or are they far enough apart so that they likely represent dierent populations? 2. For what interval of values can we have a specic level of condence that the interval contains the true value of the parameter of interest? STATISTICAL INFERENCES FOR THE MEAN We can divide statistical inferences for the mean into two main categories. In one category, we already know the variance or standard deviation of the population, usually from previous measurements, and the normal distribution can be used for calculations. In the other category, we nd an estimate of the variance or standard deviation of the population from the sample itself. The normal distribution is assumed to apply to the underlying population, but another distribution related to it will usually be required for calculations. TEST OF HYPOTHESIS We are testing the hypothesis that a sample is similar enough to a particular population so that it might have come from that population. Hence we make the null hypothesis that the sample came from a population having the stated value of the population characteristic (the mean or the variation). Then we do calculations to see how reasonable such a hypothesis is. We have to keep in mind the alternative if the null hypothesis is not true, as the alternative will aect the calculations. -
The Focused Information Criterion in Logistic Regression to Predict Repair of Dental Restorations
THE FOCUSED INFORMATION CRITERION IN LOGISTIC REGRESSION TO PREDICT REPAIR OF DENTAL RESTORATIONS Cecilia CANDOLO1 ABSTRACT: Statistical data analysis typically has several stages: exploration of the data set; deciding on a class or classes of models to be considered; selecting the best of them according to some criterion and making inferences based on the selected model. The cycle is usually iterative and will involve subject-matter considerations as well as statistical insights. The conclusion reached after such a process depends on the model(s) selected, but the consequent uncertainty is not usually incorporated into the inference. This may lead to underestimation of the uncertainty about quantities of interest and overoptimistic and biased inferences. This framework has been the aim of research under the terminology of model uncertainty and model averanging in both, frequentist and Bayesian approaches. The former usually uses the Akaike´s information criterion (AIC), the Bayesian information criterion (BIC) and the bootstrap method. The last weigths the models using the posterior model probabilities. This work consider model selection uncertainty in logistic regression under frequentist and Bayesian approaches, incorporating the use of the focused information criterion (FIC) (CLAESKENS and HJORT, 2003) to predict repair of dental restorations. The FIC takes the view that a best model should depend on the parameter under focus, such as the mean, or the variance, or the particular covariate values. In this study, the repair or not of dental restorations in a period of eighteen months depends on several covariates measured in teenagers. The data were kindly provided by Juliana Feltrin de Souza, a doctorate student at the Faculty of Dentistry of Araraquara - UNESP. -
Introduction to Game Theory
Introduction to Game Theory June 8, 2021 In this chapter, we review some of the central concepts of Game Theory. These include the celebrated theorem of John Nash which gives us an insight into equilibrium behaviour of interactions between multiple individuals. We will also develop some of the mathematical machinery which will prove useful in our understanding of learning algorithms. Finally, we will discuss why learning is a useful concept and the real world successes that multi-agent learning has achieved in the past few years. We provide many of the important proofs in the Appendix for those readers who are interested. However, these are by no means required to understand the subsequent chapters. 1 What is a Game? What is the first image that comes to mind when you think of a game? For most people, it would be something like chess, hide and seek or perhaps even a video game. In fact, all of these can be studied under Game Theoretical terms, but we can extend our domain of interest much further. We do this by understanding what all of our above examples have in common I There are multiple players II All players want to win the game III There are rules which dictate who wins the game IV Each player's behaviour will depend on the behaviour of the others With these in place, we can extend our analysis to almost any interaction between mul- tiple players. Let us look at some examples, noticing in each, that components of a game that we discussed above show up in each of the following. -
What Is Statistic?
What is Statistic? OPRE 6301 In today’s world. ...we are constantly being bombarded with statistics and statistical information. For example: Customer Surveys Medical News Demographics Political Polls Economic Predictions Marketing Information Sales Forecasts Stock Market Projections Consumer Price Index Sports Statistics How can we make sense out of all this data? How do we differentiate valid from flawed claims? 1 What is Statistics?! “Statistics is a way to get information from data.” Statistics Data Information Data: Facts, especially Information: Knowledge numerical facts, collected communicated concerning together for reference or some particular fact. information. Statistics is a tool for creating an understanding from a set of numbers. Humorous Definitions: The Science of drawing a precise line between an unwar- ranted assumption and a forgone conclusion. The Science of stating precisely what you don’t know. 2 An Example: Stats Anxiety. A business school student is anxious about their statistics course, since they’ve heard the course is difficult. The professor provides last term’s final exam marks to the student. What can be discerned from this list of numbers? Statistics Data Information List of last term’s marks. New information about the statistics class. 95 89 70 E.g. Class average, 65 Proportion of class receiving A’s 78 Most frequent mark, 57 Marks distribution, etc. : 3 Key Statistical Concepts. Population — a population is the group of all items of interest to a statistics practitioner. — frequently very large; sometimes infinite. E.g. All 5 million Florida voters (per Example 12.5). Sample — A sample is a set of data drawn from the population. -
Structured Statistical Models of Inductive Reasoning
CORRECTED FEBRUARY 25, 2009; SEE LAST PAGE Psychological Review © 2009 American Psychological Association 2009, Vol. 116, No. 1, 20–58 0033-295X/09/$12.00 DOI: 10.1037/a0014282 Structured Statistical Models of Inductive Reasoning Charles Kemp Joshua B. Tenenbaum Carnegie Mellon University Massachusetts Institute of Technology Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi- listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning. Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference Humans are adept at making inferences that take them beyond This article describes a formal approach to inductive inference the limits of their direct experience. -
Statistical Inference: Paradigms and Controversies in Historic Perspective
Jostein Lillestøl, NHH 2014 Statistical inference: Paradigms and controversies in historic perspective 1. Five paradigms We will cover the following five lines of thought: 1. Early Bayesian inference and its revival Inverse probability – Non-informative priors – “Objective” Bayes (1763), Laplace (1774), Jeffreys (1931), Bernardo (1975) 2. Fisherian inference Evidence oriented – Likelihood – Fisher information - Necessity Fisher (1921 and later) 3. Neyman- Pearson inference Action oriented – Frequentist/Sample space – Objective Neyman (1933, 1937), Pearson (1933), Wald (1939), Lehmann (1950 and later) 4. Neo - Bayesian inference Coherent decisions - Subjective/personal De Finetti (1937), Savage (1951), Lindley (1953) 5. Likelihood inference Evidence based – likelihood profiles – likelihood ratios Barnard (1949), Birnbaum (1962), Edwards (1972) Classical inference as it has been practiced since the 1950’s is really none of these in its pure form. It is more like a pragmatic mix of 2 and 3, in particular with respect to testing of significance, pretending to be both action and evidence oriented, which is hard to fulfill in a consistent manner. To keep our minds on track we do not single out this as a separate paradigm, but will discuss this at the end. A main concern through the history of statistical inference has been to establish a sound scientific framework for the analysis of sampled data. Concepts were initially often vague and disputed, but even after their clarification, various schools of thought have at times been in strong opposition to each other. When we try to describe the approaches here, we will use the notions of today. All five paradigms of statistical inference are based on modeling the observed data x given some parameter or “state of the world” , which essentially corresponds to stating the conditional distribution f(x|(or making some assumptions about it). -
Understanding Statistical Hypothesis Testing: the Logic of Statistical Inference
Review Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference Frank Emmert-Streib 1,2,* and Matthias Dehmer 3,4,5 1 Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland 2 Institute of Biosciences and Medical Technology, Tampere University, 33520 Tampere, Finland 3 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, 4040 Steyr, Austria 4 Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Tyrol, Austria 5 College of Computer and Control Engineering, Nankai University, Tianjin 300000, China * Correspondence: [email protected]; Tel.: +358-50-301-5353 Received: 27 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex interdependencies between its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis testing, the formal meaning of its components and their connections. Our presentation is applicable to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains in data science and artificial intelligence. Keywords: hypothesis testing; machine learning; statistics; data science; statistical inference 1. Introduction We are living in an era that is characterized by the availability of big data. In order to emphasize the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing with the challenges posed by such data, advanced analysis methods are needed. -
Introduction to Statistical Methods Lecture 1: Basic Concepts & Descriptive Statistics
Introduction to Statistical Methods Lecture 1: Basic Concepts & Descriptive Statistics Theophanis Tsandilas [email protected] !1 Course information Web site: https://www.lri.fr/~fanis/courses/Stats2019 My email: [email protected] Slack workspace: stats-2019.slack.com !2 Course calendar !3 Lecture overview Part I 1. Basic concepts: data, populations & samples 2. Why learning statistics? 3. Course overview & teaching approach Part II 4. Types of data 5. Basic descriptive statistics Part III 6. Introduction to R !4 Part I. Basic concepts !5 Data vs. numbers Numbers are abstract tokens or symbols used for counting or measuring1 Data can be numbers but represent « real world » entities 1Several definitions in these slides are borrowed from Baguley’s book on Serious Stats Example Take a look at this set of numbers: 8 10 8 12 14 13 12 13 Context is important in understanding what they represent ! The age in years of 8 children ! The grades (out of 20) of 8 students ! The number of errors made by 8 participants in an experiment from a series of 100 experimental trials ! A memorization score of the same individual over repeated tests !7 Sampling The context depends on the process that generated the data ! collecting a subset (sample) of observations from a larger set (population) of observations of interest The idea of taking a sample from a population is central to understanding statistics and the heart of most statistical procedures. !8 Statistics A sample, being a subset of the whole population, won’t necessarily resemble it. Thus, the information the sample provides about the population is uncertain. -
Exact Solution of a Modified El Farol's Bar Problem: Efficiency and the Role
Exact solution of a modified El Farol’s bar problem: Efficiency and the role of market impact Matteo Marsili Istituto Nazionale per la Fisica della Materia (INFM), Trieste-SISSA Unit, V. Beirut 2-4, Trieste I-34014 Damien Challet Institut de Physique Th´eorique, Universit´ede Fribourg, CH-1700 and Riccardo Zecchina The Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, P.O. Box 586, I-34014 Trieste Abstract We discuss a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game. As in markets, agents interact through a collective aggregate variable – which plays a role similar to price – whose value is fixed by all of them. Agents follow a simple reinforcement-learning dynamics where the reinforcement, for each of their available strategies, is related to the payoff delivered by that strategy. We derive the exact solution of the model in the “thermodynamic” limit of infinitely many agents using tools of statistical physics of disordered systems. Our results show that the impact of agents on the market price plays a key role: even though price has a weak dependence on the behavior of each individual agent, the collective behavior crucially depends on whether agents account for such dependence or not. Remarkably, if the adaptive behavior of agents accounts even “infinitesimally” for this dependence they can, in a whole range of parameters, reduce global fluctuations by a finite amount. Both global efficiency and individual utility improve with respect to a “price taker” behavior if agents arXiv:cond-mat/9908480v3 [cond-mat.stat-mech] 8 Dec 1999 account for their market impact. -
Living in a Natural World"
DISSERTATION Titel der Dissertation "Living in a Natural World" or "Keeping it Real" Verfasser Mag. iur. Bakk. techn. Günther Greindl angestrebter akademischer Grad Doktor der Philosophie Wien, 2010 Department of Philosophy University of Vienna A-1010 Austria [email protected] Studienkennzahl lt. A 092 296 Studienblatt: Dissertationsgebiet lt. Philosophy Studienblatt: Betreuer: Prof. Franz Martin Wimmer and Prof. Karl Svozil This Page Intentionally Left Blank When superior students hear of the Way They strive to practice it. When middling students hear of the Way They sometimes keep it and sometimes lose it. When inferior students hear of the Way They have a big laugh. But "not laughing" in itself is not sufficient to be called the Way, and therefore it is said: The sparkling Way seems dark Advancing in the Way seems like regression. Settling into the Way seems rough. True virtue is like a valley. The immaculate seems humble. Extensive virtue seems insufficient. Established virtue seems deceptive. The face of reality seems to change. The great square has no corners. Great ability takes a long time to perfect. Great sound is hard to hear. The great form has no shape. The Way is hidden and nameless. This is exactly why the Way is good at developing and perfecting. – Daode Jing, Verse 41i i Translated by Charles Muller (LaoziMuller 2004) This Page Intentionally Left Blank Table of Contents 1 Introduction..................................................................................................................................1 -
Principles of Statistical Inference
Principles of Statistical Inference In this important book, D. R. Cox develops the key concepts of the theory of statistical inference, in particular describing and comparing the main ideas and controversies over foundational issues that have rumbled on for more than 200 years. Continuing a 60-year career of contribution to statistical thought, Professor Cox is ideally placed to give the comprehensive, balanced account of the field that is now needed. The careful comparison of frequentist and Bayesian approaches to inference allows readers to form their own opinion of the advantages and disadvantages. Two appendices give a brief historical overview and the author’s more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The underlying mathematics is kept as elementary as feasible, though some previous knowledge of statistics is assumed. This book is for every serious user or student of statistics – in particular, for anyone wanting to understand the uncertainty inherent in conclusions from statistical analyses. Principles of Statistical Inference D.R. COX Nuffield College, Oxford CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521866736 © D. R. Cox 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. -
DRAFT Statistical Inference and Meta-Analysis
DRAFT Statistical Inference and Meta-Analysis Richard Berk Department of Statistics, UCLA May 16, 2006 1 Introduction Statistical inference is an important feature of meta-analysis. Estimation is often a central goal, with hypothesis tests and confidence intervals used to address uncertainty. Expositions of meta-analysis make statistical inference a major theme (Hedges and Olkin, 1985; Hedges, 1993; Raudenbush, 1983; Lipsey, 1992; 1997; Fleiss, 2003: chapter 10). Indeed, a significant motivation for meta-analysis can be improving the precision of the estimates produced and increasing the power of any hypothesis tests. In the pages ahead, the use of statistical inference in meta-analysis will be examined. The intent is to consider the statistical models employed and the data with which they are used. Building on some previous work (Wachter, 1988, Berk and Freedman, 2003, Briggs, 2005), a key issue will be whether the data were produced by the mechanisms that the models require. The paper begins by describing some popular meta-analysis models. An assessment of their use follows. 2 The Basic Meta-Analysis Model Statistical inference is a process by which information contained in a data set is used to drawn conclusions about unobservables. For meta-analysis, there is a model representing how the studies to be summarized came to be. This 1 model has unobservable parameters. Investigators use information from the studies on hand to estimate the values of these parameters. Consider the basic meta-analysis model. There are m = 1, 2,...,M stud- ies to be summarized. Within each study, there is a treatment group and a control group.