ANALYTIC PROOF of the PRIME NUMBER THEOREM a Thesis Submitted to Kent State University in Partial Fulfillment of the Requirement

Total Page:16

File Type:pdf, Size:1020Kb

ANALYTIC PROOF of the PRIME NUMBER THEOREM a Thesis Submitted to Kent State University in Partial Fulfillment of the Requirement ANALYTIC PROOF OF THE PRIME NUMBER THEOREM A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Maha Mosaad Alghamdi May, 2019 © Copyright All rights reserved Except for previously published materials Thesis written by Maha Mosaad Alghamdi B.S., Dammam University, 2011 M.S., Kent State University, 2019 Approved by Gang Yu , Advisor Andrew Tonge , Chair, Department of Mathematical Sciences James L. Blank , Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS ......................................................................................................... III LIST OF FIGURES ............................................................................................................................................. V ACKNOWLEDGMENTS................................................................................................................................. VI CHAPTERS 1. INTRODUCTION ................................................................................................................................. 1 2. SUMMATION FORMULAS............................................................................................................... 6 2.1 Abelian Summation Formula ............................................................................................... 6 2.2 Euler-Maclaurin Summation Formula ............................................................................. 8 3. DIRICHLET SERIES AND EULER PRODUCTS ...................................................................... 10 3.1 The Half-Plane of Absolute Convergence of a Dirichlet Series ............................. 11 3.2 The Function Defined by a Dirichlet Series ................................................................. 12 3.3 Multiplication of the Dirichlet Series ............................................................................. 13 3.4 Euler Product .......................................................................................................................... 16 4. BASIC PROPERTIES OF ζ(s) ....................................................................................................... 17 4.1 Definition and Basic Properties of the Euler Gamma Function .......................... 17 4.2 Stirlig’s Formula ..................................................................................................................... 19 4.3 Analytic Continuation of ζ(s) ............................................................................................ 20 4.4 A Zero-Free Region of ζ(s) ................................................................................................. 30 5. PRIME NUMBER THEOREM ....................................................................................................... 34 5.1 Truncated Form of Perron’s Formula ........................................................................... 36 5.2 Proof of the Prime Number Theorem ............................................................................ 40 5.3 An Explicit Formula of ......................................................................................................... 42 iii BIBLIOGRAPHY ............................................................................................................................................. 46 iv LIST OF FIGURES Figure 5.1. Rectangular contour with vertices (푏 ± 푖푇, −푈 ± 푖푇) oriented counterclockwise ........................................................................................................................... 36 Figure 5.2. Rectangular contour with vertices (푏 ± 푖푇, −푈 ± 푖푇) oriented clockwise ........................................................................................................................................... 37 Figure 5.3. The integral 퐽 around the contour defined by Γ where 퐽 is defined by 1 휁′ 푥푠 퐽 = ∫ (− (푠)) 푑푠 ............................................................................................................... 41 2휋푖 Γ 휁 푠 Figure 5.4. The integral 퐽 around the contour Γ where 퐽 is defined by 1 휁′ 푥푠 퐽 = ∫ (− (푠)) 푑푠 ............................................................................................................... 43 2휋푖 Γ 휁 푠 v ACKNOWLEDGMENTS I owe my thanks and appreciation to my thesis advisor, Dr. Gang Yu, for his patience, advice, guidance, and assistance throughout the time of my thesis research. He was always available and willing to help me and explain any difficulties I faced. I am really proud to have a professor like him who is full of knowledge and experience, which makes someone learn a lot from him on both the scientific and the personal sides. I wish to express my sincere thanks to both Dr. Ulrike Vorhauer and Dr. Morley Davidson for agreeing to be the members of my defense committee. Also, I am thankful for our graduate coordinator, Dr. Artem Zvavitch, for his help and guidance. I would love to thank Kent State University and especially the Department of Mathematical Sciences, for providing me an opportunity to study for a master’s degree in pure mathematics. I also would like to thank Imam Abdulrahman Bin Faisal University for its support and for giving me the opportunity to complete the master’s degree. Thanks as well to officials at the Saudi Arabian Cultural Mission in the United States for their efforts and cooperation while I was studying for my master’s degree and for their support of my family. I would like to thank for the blessing of my life my dear mother for her patience and for letting me find a way forward. Thank you, my dear mother, for sowing the ambition in my heart until what I am now. Thank you, my dear mother, for your support and sincere prayers, which makes me very happy. Thank you, for your patience and waiting for me in the days and years until I return home. Thank you, my brothers and sisters, for your support, encouragement, and motivation, and especially for your trust and belief in me. vi I could not achieve success easily without the support of my beloved husband and my daughters, Malak, Jumanh, Sadeem, my wonderful child Abdullah, and my little angel Ward. A ton of thanks to my husband and children for their sacrifices and patience as I worked to achieve my goal. They supported and helped me unconditionally in my success. They share the most accurate details who rejoice to my joy and sadness for my sorrow. vii CHAPTER 1 INTRODUCTION A prime number is a positive integer that has exactly two positive integer divisors: 1 and itself. In other words, a number is prime if it is greater than 1 and cannot be written as a product of two natural numbers that are both less than it. The most important property of prime numbers is the Fundamental Theorem of Arithmetic (FTA), which describes the relationship between prime numbers and natural numbers. Every natural number n can be uniquely written as 푎1 푎푘 푛 = 푝1 … 푝푘 , where 푎1, … , 푎푘 are natural numbers, and 푝1 < 푝2 < ⋯ < 푝푘 are prime numbers. This theorem shows that prime numbers are the multiplicative building blocks of natural numbers. Based on the FTA, there is an infinite number of prime numbers. Proof of the infinitude of prime numbers based on the FTA has a long history. Euclid was the first to do so in roughly 300 BC. In the 18th century, Leonhard Euler offered a different proof, though it, too, was based on the FTA. Euler proved a factorization formula, which said that for any fixed real number s > 1, the following is true when the product is taken over all prime numbers: −1 ∞ 1 1 ∑ = ∏ (1 − ) (1.1) 푛=1 푛푠 푝 푝푠 1 This formula is essentially the analytic equivalence of the FTA. Euler’s formula represents an important discovery because it does much more than merely the infinitude of prime numbers. The formula also relates prime numbers to the more familiar natural numbers. While a simple formula does not exist to distinguish prime numbers from composite numbers, the quantitative distribution of prime numbers within the natural numbers becomes extremely important. For a positive real number 푥, let 휋(푥) = ∑ 1, 푝≤푥 where 푝 runs over prime numbers up to 푥. Thus, 휋(푥) serves as the “counting function” of prime numbers. While the unboundedness of 휋(푥) had long been known, a natural question is: Does 휋(푥) have an asymptotic formula as 푥 → ∞? The Prime Number Theorem (PNT), which serves as the focus of this thesis, gives an affirmative answer to the question posed. In 1798, based on the existing numerical evidence, Adrien-Marie Legendre made the following very accurate conjecture: 푥 휋(푥)~ as 푥 → ∞. (1.2) 푙표푔 푥−1.08366 In 1849, Johann Carl Friedrich Gauss wrote about his own findings in a letter to German astronomer Johann Franz Encke, saying in 1792 or 1793, when he was still a boy, that he had noticed that the average density of prime numbers up to 푥 should be 1 . In other words, log 푥 푥 휋(푥)~ as 푥 → ∞. (1.3) log 푥 2 As 푥 → ∞, Equation 1.2 and Equation 1.3 are equivalent; however, Equation 1.3 is the weakest form of the PNT and often is referred to as the PNT without an error term. For the next few years, the PNT attracted the attention of mathematicians but remained unproved. In 1852 or so, Pafnuty Lvovich Chebyshev identified the existence of two positive constants: 퐶1 and 퐶2, such that 푥 푥 퐶 < 휋(푥) < 퐶 (푥 > 2) 1 log 푥 2 log 푥 Chebyshev also introduced two functions, which now are referred to as Chebyshev’s functions: 휃(푥) = ∑ log 푝 푝≤푥 and 휓(푥) = ∑ Λ(푛), 푛≤푥 where Λ(푛) is the von Mangoldt function and is defined, for every
Recommended publications
  • Euler Product Asymptotics on Dirichlet L-Functions 3
    EULER PRODUCT ASYMPTOTICS ON DIRICHLET L-FUNCTIONS IKUYA KANEKO Abstract. We derive the asymptotic behaviour of partial Euler products for Dirichlet L-functions L(s,χ) in the critical strip upon assuming only the Generalised Riemann Hypothesis (GRH). Capturing the behaviour of the partial Euler products on the critical line is called the Deep Riemann Hypothesis (DRH) on the ground of its importance. Our result manifests the positional relation of the GRH and DRH. If χ is a non-principal character, we observe the √2 phenomenon, which asserts that the extra factor √2 emerges in the Euler product asymptotics on the central point s = 1/2. We also establish the connection between the behaviour of the partial Euler products and the size of the remainder term in the prime number theorem for arithmetic progressions. Contents 1. Introduction 1 2. Prelude to the asymptotics 5 3. Partial Euler products for Dirichlet L-functions 6 4. Logarithmical approach to Euler products 7 5. Observing the size of E(x; q,a) 8 6. Appendix 9 Acknowledgement 11 References 12 1. Introduction This paper was motivated by the beautiful and profound work of Ramanujan on asymptotics for the partial Euler product of the classical Riemann zeta function ζ(s). We handle the family of Dirichlet L-functions ∞ L(s,χ)= χ(n)n−s = (1 χ(p)p−s)−1 with s> 1, − ℜ 1 p X Y arXiv:1902.04203v1 [math.NT] 12 Feb 2019 and prove the asymptotic behaviour of partial Euler products (1.1) (1 χ(p)p−s)−1 − 6 pYx in the critical strip 0 < s < 1, assuming the Generalised Riemann Hypothesis (GRH) for this family.
    [Show full text]
  • Of the Riemann Hypothesis
    A Simple Counterexample to Havil's \Reformulation" of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 10025 [email protected] The Riemann Hypothesis (RH) is \the greatest mystery in mathematics" [3]. It is a conjecture about the Riemann zeta function. The zeta function allows us to pass from knowledge of the integers to knowledge of the primes. In his book Gamma: Exploring Euler's Constant [4, p. 207], Julian Havil claims that the following is \a tantalizingly simple reformulation of the Rie- mann Hypothesis." Havil's Conjecture. If 1 1 X (−1)n X (−1)n cos(b ln n) = 0 and sin(b ln n) = 0 na na n=1 n=1 for some pair of real numbers a and b, then a = 1=2. In this note, we first state the RH and explain its connection with Havil's Conjecture. Then we show that the pair of real numbers a = 1 and b = 2π=ln 2 is a counterexample to Havil's Conjecture, but not to the RH. Finally, we prove that Havil's Conjecture becomes a true reformulation of the RH if his conclusion \then a = 1=2" is weakened to \then a = 1=2 or a = 1." The Riemann Hypothesis In 1859 Riemann published a short paper On the number of primes less than a given quantity [6], his only one on number theory. Writing s for a complex variable, he assumes initially that its real 1 part <(s) is greater than 1, and he begins with Euler's product-sum formula 1 Y 1 X 1 = (<(s) > 1): 1 ns p 1 − n=1 ps Here the product is over all primes p.
    [Show full text]
  • The Mobius Function and Mobius Inversion
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Number Theory Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 The Mobius Function and Mobius Inversion Carl Lienert Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_number Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Number Theory Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Lienert, Carl, "The Mobius Function and Mobius Inversion" (2020). Number Theory. 12. https://digitalcommons.ursinus.edu/triumphs_number/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Number Theory by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Möbius Function and Möbius Inversion Carl Lienert∗ January 16, 2021 August Ferdinand Möbius (1790–1868) is perhaps most well known for the one-sided Möbius strip and, in geometry and complex analysis, for the Möbius transformation. In number theory, Möbius’ name can be seen in the important technique of Möbius inversion, which utilizes the important Möbius function. In this PSP we’ll study the problem that led Möbius to consider and analyze the Möbius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell, used the Möbius function to solve a different inversion problem.1 Finally, we’ll use Möbius inversion to solve a problem concerning Euler’s totient function.
    [Show full text]
  • Prime Factorization, Zeta Function, Euler Product
    Analytic Number Theory, undergrad, Courant Institute, Spring 2017 http://www.math.nyu.edu/faculty/goodman/teaching/NumberTheory2017/index.html Section 2, Euler products version 1.2 (latest revision February 8, 2017) 1 Introduction. This section serves two purposes. One is to cover the Euler product formula for the zeta function and prove the fact that X p−1 = 1 : (1) p The other is to develop skill and tricks that justify the calculations involved. The zeta function is the sum 1 X ζ(s) = n−s : (2) 1 We will show that the sum converges as long as s > 1. The Euler product formula is Y −1 ζ(s) = 1 − p−s : (3) p This formula expresses the fact that every positive integers has a unique rep- resentation as a product of primes. We will define the infinite product, prove that this one converges for s > 1, and prove that the infinite sum is equal to the infinite product if s > 1. The derivative of the zeta function is 1 X ζ0(s) = − log(n) n−s : (4) 1 This formula is derived by differentiating each term in (2), as you would do for a finite sum. We will prove that this calculation is valid for the zeta sum, for s > 1. We also can differentiate the product (3) using the Leibnitz rule as 1 though it were a finite product. In the following calculation, r is another prime: 8 9 X < d −1 X −1= ζ0(s) = 1 − p−s 1 − r−s ds p : r6=p ; 8 9 X <h −2i X −1= = − log(p)p−s 1 − p−s 1 − r−s p : r6=p ; ( ) X −1 = − log(p) p−s 1 − p−s ζ(s) p ( 1 !) X X ζ0(s) = − log(p) p−ks ζ(s) : (5) p 1 If we divide by ζ(s), the sum on the right is a sum over prime powers (numbers n that have a single p in their prime factorization).
    [Show full text]
  • 4 L-Functions
    Further Number Theory G13FNT cw ’11 4 L-functions In this chapter, we will use analytic tools to study prime numbers. We first start by giving a new proof that there are infinitely many primes and explain what one can say about exactly “how many primes there are”. Then we will use the same tools to proof Dirichlet’s theorem on primes in arithmetic progressions. 4.1 Riemann’s zeta-function and its behaviour at s = 1 Definition. The Riemann zeta function ζ(s) is defined by X 1 1 1 1 1 ζ(s) = = + + + + ··· . ns 1s 2s 3s 4s n>1 The series converges (absolutely) for all s > 1. Remark. The series also converges for complex s provided that Re(s) > 1. 2 4 P 1 Example. From the last chapter, ζ(2) = π /6, ζ(4) = π /90. But ζ(1) is not defined since n diverges. However we can still describe the behaviour of ζ(s) as s & 1 (which is my notation for s → 1+, i.e. s > 1 and s → 1). Proposition 4.1. lim (s − 1) · ζ(s) = 1. s&1 −s R n+1 1 −s Proof. Summing the inequality (n + 1) < n xs dx < n for n > 1 gives Z ∞ 1 1 ζ(s) − 1 < s dx = < ζ(s) 1 x s − 1 and hence 1 < (s − 1)ζ(s) < s; now let s & 1. Corollary 4.2. log ζ(s) lim = 1. s&1 1 log s−1 Proof. Write log ζ(s) log(s − 1)ζ(s) 1 = 1 + 1 log s−1 log s−1 and let s & 1.
    [Show full text]
  • Riemann Hypothesis and Random Walks: the Zeta Case
    Riemann Hypothesis and Random Walks: the Zeta case Andr´e LeClaira Cornell University, Physics Department, Ithaca, NY 14850 Abstract In previous work it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for 1 its L-function is valid to the right of the critical line <(s) > 2 , and the Riemann Hypothesis for this class of L-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a 1-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far beyond what is currently known. arXiv:1601.00914v3 [math.NT] 23 May 2017 a [email protected] 1 I. INTRODUCTION There are many generalizations of Riemann's zeta function to other Dirichlet series, which are also believed to satisfy a Riemann Hypothesis. A common opinion, based largely on counterexamples, is that the L-functions for which the Riemann Hypothesis is true enjoy both an Euler product formula and a functional equation. However a direct connection between these properties and the Riemann Hypothesis has not been formulated in a precise manner.
    [Show full text]
  • Riemann's Contribution to Differential Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.
    [Show full text]
  • First Year Progression Report
    First Year Progression Report Steven Charlton 12 June 2013 Contents 1 Introduction 1 2 Polylogarithms 2 2.1 Definitions . .2 2.2 Special Values, Functional Equations and Singled Valued Versions . .3 2.3 The Dedekind Zeta Function and Polylogarithms . .5 2.4 Iterated Integrals and Their Properties . .7 2.5 The Hopf algebra of (Motivic) Iterated Integrals . .8 2.6 The Polygon Algebra . .9 2.7 Algebraic Structures on Polygons . 11 2.7.1 Other Differentials on Polygons . 11 2.7.2 Operadic Structure of Polygons . 11 2.7.3 A VV-Differential on Polygons . 13 3 Multiple Zeta Values 16 3.1 Definitions . 16 3.2 Relations and Transcendence . 17 3.3 Algebraic Structure of MZVs and the Standard Relations . 19 3.4 Motivic Multiple Zeta Values . 21 3.5 Dimension of MZVs and the Hoffman Elements . 23 3.6 Results using Motivic MZVs . 24 3.7 Motivic DZVs and Eisenstein Series . 27 4 Conclusion 28 References 29 1 Introduction The polylogarithms Lis(z) are an important and frequently occurring class of functions, with applications throughout mathematics and physics. In this report I will give an overview of some of the theory surrounding them, and the questions and lines of research still open to investigation. I will introduce the polylogarithms as a generalisation of the logarithm function, by means of their Taylor series expansion, multiple polylogarithms will following by considering products. This will lead to the idea of functional equations for polylogarithms, capturing the symmetries of the function. I will give examples of such functional equations for the dilogarithm.
    [Show full text]
  • An Elementary Proof of the Prime Number Theorem
    AN ELEMENTARY PROOF OF THE PRIME NUMBER THEOREM ABHIMANYU CHOUDHARY Abstract. This paper presents an "elementary" proof of the prime number theorem, elementary in the sense that no complex analytic techniques are used. First proven by Hadamard and Valle-Poussin, the prime number the- orem states that the number of primes less than or equal to an integer x x asymptotically approaches the value ln x . Until 1949, the theorem was con- sidered too "deep" to be proven using elementary means, however Erdos and Selberg successfully proved the theorem without the use of complex analysis. My paper closely follows a modified version of their proof given by Norman Levinson in 1969. Contents 1. Arithmetic Functions 1 2. Elementary Results 2 3. Chebyshev's Functions and Asymptotic Formulae 4 4. Shapiro's Theorem 10 5. Selberg's Asymptotic Formula 12 6. Deriving the Prime Number Theory using Selberg's Identity 15 Acknowledgments 25 References 25 1. Arithmetic Functions Definition 1.1. The prime counting function denotes the number of primes not greater than x and is given by π(x), which can also be written as: X π(x) = 1 p≤x where the symbol p runs over the set of primes in increasing order. Using this notation, we state the prime number theorem, first conjectured by Legendre, as: Theorem 1.2. π(x) log x lim = 1 x!1 x Note that unless specified otherwise, log denotes the natural logarithm. 1 2 ABHIMANYU CHOUDHARY 2. Elementary Results Before proving the main result, we first introduce a number of foundational definitions and results.
    [Show full text]
  • Arxiv:1707.01315V3 [Math.NT]
    CORRELATIONS OF THE VON MANGOLDT AND HIGHER DIVISOR FUNCTIONS I. LONG SHIFT RANGES KAISA MATOMAKI,¨ MAKSYM RADZIWIL L, AND TERENCE TAO Abstract. We study asymptotics of sums of the form X<n≤2X Λ(n)Λ(n+h), d (n)d (n + h), Λ(n)d (n + h), and Λ(n)Λ(N n), X<n≤2X k l X<n≤2X k P n − where Λ is the von Mangoldt function, d is the kth divisor function, and N,X P P k P are large. Our main result is that the expected asymptotic for the first three sums holds for almost all h [ H,H], provided that Xσ+ε H X1−ε for 8 ∈ − ≤ ≤ some ε > 0, where σ := 33 =0.2424 ..., with an error term saving on average an arbitrary power of the logarithm over the trivial bound. This improves upon results of Mikawa, Perelli-Pintz, and Baier-Browning-Marasingha-Zhao, who ob- 1 tained statements of this form with σ replaced by 3 . We obtain an analogous result for the fourth sum for most N in an interval of the form [X,X + H] with Xσ+ε H X1−ε. Our≤ method≤ starts with a variant of an argument from a paper of Zhan, using the circle method and some oscillatory integral estimates to reduce matters to establishing some mean-value estimates for certain Dirichlet polynomials asso- ciated to “Type d3” and “Type d4” sums (as well as some other sums that are easier to treat). After applying H¨older’s inequality to the Type d3 sum, one is left with two expressions, one of which we can control using a short interval mean value theorem of Jutila, and the other we can control using exponential sum estimates of Robert and Sargos.
    [Show full text]
  • EQUIDISTRIBUTION ESTIMATES for the K-FOLD DIVISOR FUNCTION to LARGE MODULI
    EQUIDISTRIBUTION ESTIMATES FOR THE k-FOLD DIVISOR FUNCTION TO LARGE MODULI DAVID T. NGUYEN Abstract. For each positive integer k, let τk(n) denote the k-fold divisor function, the coefficient −s k of n in the Dirichlet series for ζ(s) . For instance τ2(n) is the usual divisor function τ(n). The distribution of τk(n) in arithmetic progression is closely related to distribution of the primes. Aside from the trivial case k = 1 their distributions are only fairly well understood for k = 2 (Selberg, Linnik, Hooley) and k = 3 (Friedlander and Iwaniec; Heath-Brown; Fouvry, Kowalski, and Michel). In this note I'll survey and present some new distribution estimates for τk(n) in arithmetic progression to special moduli applicable for any k ≥ 4. This work is a refinement of the recent result of F. Wei, B. Xue, and Y. Zhang in 2016, in particular, leads to some effective estimates with power saving error terms. 1. Introduction and survey of known results Let n ≥ 1 and k ≥ 1 be integers. Let τk(n) denote the k-fold divisor function X τk(n) = 1; n1n2···nk=n where the sum runs over ordered k-tuples (n1; n2; : : : ; nk) of positive integers for which n1n2 ··· nk = −s n. Thus τk(n) is the coefficient of n in the Dirichlet series 1 k X −s ζ(s) = τk(n)n : n=1 This note is concerned with the distribution of τk(n) in arithmetic progressions to moduli d that exceed the square-root of length of the sum, in particular, provides a sharpening of the result in [53].
    [Show full text]
  • The Semi-Classical Sine-Gordon Equation, Universality at the Gradient Catastrophe and the Painlevé-I Equation
    The Semi-Classical Sine-Gordon Equation, Universality at the Gradient Catastrophe and the Painlevé-I Equation by Bingying Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in the University of Michigan 2018 Doctoral Committee: Professor Peter Miller, Chair Professor Jinho Baik Professor Charles Doering Professor Herbert Winful Professor Sijue Wu Bingying Lu [email protected] ORCID iD: 0000-0001-6918-7211 c Bingying Lu 2018 Dedication To Lemur1, Lexie, Leeway and Lu Wu 1https://en.wikipedia.org/wiki/Lemur. A clade of strepsirrhine primates endemic to the island of Mada- gascar. ii Acknowledgements I want to thank everyone who made this thesis possible, in particular, my cheerful best friends, especially Wei Li, for their moral support; my gloomy best friends for listening to my existential anguish (many of them overlap); my parents for their unquestioning support of my daydreams; people I met in graduate school who taught me maths and otherwise; Mathematica for usually reliably converging to one answer after four to ten tries; Christian Klein who generously provided a Matlab code to help us visualise the solutions and pointed out that I can dive into cab driving business if mathematics ever not work out for me; Liming Ling for teaching me to find and plot rogue wave solutions; Guilherme Silva for teaching me how to generate videos in TEX; Samantha Xu who gave me a beamer template with a lemur—I left beamer but the lemur stayed; Songdi Fan for proofreading and attempting to add 500 determiners to my thesis (and th-fronting the word thesis); Wei Li (again!) for helping me with formatting; the very patient committee members for their guidance; and my advisor Peter Miller: I was convinced from the very beginning that he had worked out my thesis in the back of his mind but just wouldn’t tell me the answer.
    [Show full text]