On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation

Total Page:16

File Type:pdf, Size:1020Kb

On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation energies Article On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation Dario Barsi , Matteo Luzzi *, Francesca Satta and Pietro Zunino Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy; [email protected] (D.B.); [email protected] (F.S.); [email protected] (P.Z.) * Correspondence: [email protected] Abstract: The recent coming in force of MARPOL 2020 restrictions on shipping pollutant emissions highlights a growing interest in current times towards cleaner means of transport. One way to achieve more sustainable vessels is represented by updating onboard engines to suit current regulations and needs: Gas Turbines are not a novelty in the field and, despite the few applications in commercial shipping so far, this technology is again under evaluation for different reasons. Indeed, it is still a preferred choice in navy, where swift maneuvering is a key factor; it is employed by fast ferries and hydrofoils for its high power/weight ratio; it has been recently applied to LNG carriers to burn boil-off gas in a more efficient way and several studies in literature suggest its possible introduction on large Cruise Ships. Since there seems to be a lack of research concerning small size units, the present work attempts to evaluate the possible usages of Mini Gas Turbine Cycles in the range of 1 to 10 MW of electric output for heat and power generation onboard commercial vessels dedicated to passenger transport. For this purpose, a statistical analysis on existing operating vessels up to 2020 was made, to eplore main engine sizes; a literature review was carried out to find representative onboard heat demands. Once the main vessel electrical and thermal requirements were evaluated, Mini Cogenerative plants based on Gas Turbines were designed within the identified boundaries Citation: Barsi, D.; Luzzi, M.; and compared with state-of-the-art Marine Diesel Engines and Gas Turbines on estimated global Satta, F.; Zunino, P. On the Possible Introduction of Mini Gas Turbine performance, dimensions and weights. Cycles Onboard Ships for Heat and Power Generation. Energies 2021, 14, Keywords: COGES; mini gas turbines; turbo-generators and steam turbines; marine propulsion 568. https://doi.org/10.3390/en plant; cruise ships; statistical analysis 14030568 Academic Editor: Andrzej Teodorczyk 1. Introduction Received: 11 December 2020 A worldwide attention is focusing nowadays on transport systems, looking for more Accepted: 18 January 2021 energy efficient and sustainable means of transportation [1]: in the field of navigation, Published: 22 January 2021 January 2020 saw MARPOL Annex VI [2] convention coming in force, with the aim to significantly reduce pollutant emissions of Nitrogen and Sulphur oxides (NO and SO ) Publisher’s Note: MDPI stays neu- X X onboard ships [2,3]. Such goals can be achieved by installing more efficient power plants: tral with regard to jurisdictional clai- ms in published maps and institutio- among the possible solutions, gas turbines represent a promising choice, as these machines nal affiliations. need to run on clean fuels, such as Sulphur-free liquified natural gas (LNG), and allow for better combustion temperatures control-compared to current internal combustion engines (ICE)—to reduce NOX pollutants. Already tested for commercial applications in the early 2000s [4], gas turbine onboard plants have shown performances comparable Copyright: © 2021 by the authors. Li- to current marine engines [4–8], reaching 50% electrical efficiency with a combined cycle censee MDPI, Basel, Switzerland. for electric-drive propulsion. Applications of gas turbines (GT) as prime movers can be This article is an open access article found mainly in navy [5,7,9] and LNG carriers [8,10–12]: the former ones are justified by distributed under the terms and con- the need for swift maneuvering, thanks to the limited transient times associated to GTs ditions of the Creative Commons At- [5,7]; the latter rely on the possible usage of boil-off gas (BOG) in the main engine, instead tribution (CC BY) license (https:// of re-compressing it, along with some savings in onboard space-allowing for more cargo creativecommons.org/licenses/by/ capacity [8,10,11]. Multiple studies in the field suggest that the introduction of such plants 4.0/). Energies 2021, 14, 568. https://doi.org/10.3390/en14030568 https://www.mdpi.com/journal/energies Energies 2021, 14, 568 2 of 12 on ferries and large cruise ships [9,11,13,14] would allow for competitive efficiencies with space savings-depending on several design choises: a thoughtful selection in Heat Recovery Steam Generator (HRSG) type and layout could improve space [5], engine comparisons could be made to find the best combination of components and reduce weight [15], while vessel emissions are mainly subjected to fuel type and engine efficiency [16], to avoid introducing further components for exhaust gas treatment. However, while there are examples of studies concerning the feasibility of gas and steam turbines (ST) as main or auxiliary engines [13–15] and possible improvements to waste heat recovery through such machines [17,18] on large ships with high energy and power requirements, there seems to be a lack of similar work on smaller size GT units. Usually, compact turbomachines are mainly considered for ICE turbocharging, with niche applications for power generation [19]. We call Mini Gas Turbine Cycles [20] the GT-based energy generation systems, which are suited for ratings in the order of magnitude of 1 or a few electric MW (MWel). Thus, the present paper attempts to define the possible applications, advantages and limits of Mini Gas Turbine Cycles for heat and power generation onboard commercial and passenger ships. To assess this topic, a review of currently operating worldwide vessels is made, in order to define a suitable engine size; a literature review concerning energy and heat requirements onboard cruise ships is performed, with the aim to investigate the magnitudes of onboard heat and electric demands; finally, different plant architectures for Combined Gas and Steam Cycles are compared within the boundaries defined by the previous analysis, to determine the best options in terms of performance, size and weight. A comparison with current naval prime movers - both Diesel engines and marine Gas Turbines at state of the art - is made, to show the possible advantages of the proposed solutions. 2. Analysis Methodology and Modeling 2.1. Worldwide Ships Statistics With the aim to perform statistics on a representative sample of actual operating ships, data from SeaWeb Database [21] were extracted on worldwide vessels registered from 1980 to 2020 for Cruise, Ro-Pax and Passenger ship types. Restrictions on total installed power and passenger number were chosen, to select main engines of relatively small size, but still with non negligible heat requirements. Database characteristics and filter limits are summarized in Table1: here, Gross Tonnage (GT) indicate a conventional measure of ship size, being related to the internal volume of vessels. The acquired data were checked, in order to remove all non-operating vessels, missing information or mistakes. Table 1. Database characteristics. Vessel Type Cruise Passenger Ro-Pax Trip description leisure transport, short distances leisure, transport Cargo people people, vehicles, goods people, vehicles, goods Vessel Nr. 111 464 917 Installed Nominal Power (MW) <30 <30 <30 Pax Nr. ≥30 ≥30 ≥30 GT range 100 to 75,000 100 to 15,000 100 to 70,000 Figure1 describes the two variables chosen for statistical analysis: total installed main engine power and an average engine size, defined respectively as the sum of the nominal power of all engines onboard and the arithmetic average based on the number of main engines. Statistical analysis was performed by the program R, described in [22]; significance level was set to p < 0.05. Since none of the data arrays was normally distributed (Lilliefors; p < 0.001), non parametric Pairwise Wilcoxon test was performed for comparison between ship types. Passenger vessels were found to be significantly different to both Cruise and Ro-Pax (Wicoxon; p < 0.001), while no significative differences were found between Cruise and Ro-Pax vessels. From these findings, it was chosen to focus only on Cruise and Ro-Pax ships, in the following steps. The graphical outliers in Figure1 were further checked, to avoid data inconsistency: the Cruise ones represent vessels from a Energies 2021, 14, 568 3 of 12 specific company, Marella Cruises (Luton, UK), which have slightly larger engines installed compared to the rest of the database; Ro-Pax graphical outliers represent the fleet of MOL Ferry Co. (Tokyo, JP), a japanese ferry company which delivers high-speed travel through the islands of Japan, thus needing power to reach speeds up to 35 knots; finally, Passenger vessels graphical outliers were also checked, but no mistaken or missing data were found. For this last ship type, it was concluded that the scattering of the distribution is related to how different design solutions can be chosen for varying transport needs. (a) (b) Figure 1. Boxplots of (a) Total nominal power installed (Wicoxon; p < 0.001 for Pax vs. Cruise and Pax vs. Ro-Pax) and (b) Average engine size (Wicoxon; p < 0.001 for Pax vs. Cruise and Pax vs. Ro-Pax). *** for p < 0.001 vs Cruise and vs Ro-Pax. Statistics are summarized in Table2: medians were chosen as representative values for both variables, being more robust for non-normal distributions; a confidence interval with 95% accuracy was also defined, based on the distribution quantiles calculated in the program R [22]. Table 2. Database statistics for (a) Total installed power and (b) Average engine size. Quartiles Q1 and Q3 correspond to the lower and upper boundaries of the boxplot in Figure1;Q 2 is the median of the distribution and LCV and UCV are the lower and upper extremes of its 95% confidence interval.
Recommended publications
  • MARINE ENGINES Power &Propulsion Solutions Index
    MARINE ENGINES Power & propulsion solutions Ed. 2018/05 Ed. Index Power range ............................................ 3 Engine range ........................................... 5 Power generation ................................... 8 Marine solutions ..................................... 9 Hybrid systems ..................................... 11 References ............................................ 15 Overall data....... .................................... 18 Anglo Belgian Corporation (ABC) is one of Europe’s leading medium speed engine manufacturers. The company offers more than a century of expertise in ship propulsion. ABC was originally established in 1912 by a group of industri- alists, with participation of the inventor of the diesel engine, Rudolf Diesel himself. An important step in ABC’s history was the acquisition by OGEPAR (1985), a strong fi nancial holding with a large base in metal industry and engineering. Today, ABC has risen far above the standard of engine manufacturer. The company is constantly evolving, developing new solutions in the fi eld of marine propulsion, power generation and locomotive traction. Through innovative thinking, ABC aims to increase sustainability and supply reliable and effi cient products within a framework of ecological development. All engines are designed for heavy duty and continuous operation, straightforward applications and easy maintenance. ABC headquarters and production facility in Ghent, Belgium ABC engines, your * Polar cruise vessel equipped with: 2 x 12DZC @ 750 rpm partner at sea 2 x 6DZC @ 750 rpm For more than 100 years ABC has been supplying power The best quality indicators of our work and engines are solutions to all those who know that the engine is the heart those clients who have trusted us, since 4 generations, of their vessels. ABC engines stand for reliability and good with the installation of our engines in their ships, performance under the hardest and most demanding condi- showing this trust from father to son.
    [Show full text]
  • The ABB ETB (Electric Towboat) the US Inland River Market Is Ready For
    — WHITEPAPER The ABB ETB (Electric Towboat) The U.S. inland river market is ready for electric propulsion — The ABB ETB The U.S. inland river market 2 ABB ETB THE U.S. INLAND RIVER MARKET IS READY FOR ELECTRIC PROPULSION — Abstract ABB’s electric propulsion systems are available to help long- established towboat owners in the U.S. inland waterway market to solve some very modern challenges. Electric propulsion has proven itself among own- Authors: Edward Schwarz, Vice President, Sales, ers of many different vessel types. Now ABB’s New Build Sales; Richard Rozok, Technical Man- electric propulsion systems are available to help ager, Sales, New Build Sales. long-established towboat owners in the U.S. in- land waterway market to solve some very modern Edward Schwarz is responsible for business de- challenges. With regulators re-stricting emissions velopment and the development of new sales pro- from ships to EPA Tier 4 standards, diesel electric grams for ABB’s marine and ports business unit in propulsion offers owners a way to build compli- North America. With his long experience in the ant vessels operating on easier to meet Tier 3 marine propulsion market, Ed brings new con- main engines. cepts to unique vessel applications. ABB has taken the time to understand the de- Richard Rozok is responsible for developing new mands of this unique sector, creating solutions technical solutions for the North American new whose flexibility addresses new regulations, in- sales program. He brings proven technical exper- creasing CAPEX costs for new builds, the impera- tise and the ability to find practical and creative tive for lower OPEX costs and demand for greater solutions to solve vessel owner’s problems.
    [Show full text]
  • The Future in Warship Propulsion
    ELECTRICAL PROPULSION: THE FUTURE IN WARSHIP PROPULSION LCdr R.R.A. Sauvé JCSP 42 PCEMI 42 Service Paper Étude militaire Disclaimer Avertissement Opinions expressed remain those of the author and Les opinons exprimées n’engagent que leurs auteurs do not represent Department of National Defence or et ne reflètent aucunement des politiques du Canadian Forces policy. This paper may not be used Ministère de la Défense nationale ou des Forces without written permission. canadiennes. Ce papier ne peut être reproduit sans autorisation écrite. © Her Majesty the Queen in Right of Canada, as © Sa Majesté la Reine du Chef du Canada, représentée par represented by the Minister of National Defence, 2016. le ministre de la Défense nationale, 2016. CANADIAN FORCES COLLEGE – COLLÈGE DES FORCES CANADIENNES JCSP 42 – PCEMI 42 2015 – 2016 JCSP SERVICE PAPER – PCEMI ÉTUDE MILITAIRE ELECTRICAL PROPULSION: THE FUTURE IN WARSHIP PROPULSION LCdr R.R.A. Sauvé “This paper was written by a student “La présente étude a été rédigée par un attending the Canadian Forces College stagiaire du Collège des Forces in fulfilment of one of the requirements canadiennes pour satisfaire à l'une des of the Course of Studies. The paper is a exigences du cours. L'étude est un scholastic document, and thus contains document qui se rapporte au cours et facts and opinions, which the author contient donc des faits et des opinions alone considered appropriate and que seul l'auteur considère appropriés et correct for the subject. It does not convenables au sujet. Elle ne reflète pas necessarily reflect the policy or the nécessairement la politique ou l'opinion opinion of any agency, including the d'un organisme quelconque, y compris le Government of Canada and the gouvernement du Canada et le ministère Canadian Department of National de la Défense nationale du Canada.
    [Show full text]
  • High-Tech Electric Propulsion
    TORQEEDO TORQEEDO High-tech electric propulsion A rigorous focus on cutting-edge technology, R&D and new production processes, as well as optimizing performance, comfort, safety and economic features, has made one German supplier a key player in electric and hybrid marine technology WORDS: DR CHRISTOPH BALLIN hen Torqeedo’s founders, Dr Christoph Ballin and Dr Friedrich WBoebel, looked at solutions for electric propulsion systems for boats in 2004, they noted that existing products did not reflect the then state of technology, with the solutions coming from low-volume, high- price manufacturing starting points. This gap in the market prompted the creation of Torqeedo, a new player in the marine industry, focusing only on high-tech propulsion, combined with industrial R&D and manufacturing, to realize competitive price points while also providing revolutionary benefits. Despite being founded less than a decade ago, Torqeedo has already gathered critical global acclaim by being first to market with key innovations. For example, the company was the first to introduce brushless motors into marine propulsion. It was also the first to introduce lithium batteries to the marine industry on a broad scale and the first to integrate them into electric outboard designs. These critical breakthroughs, and many other high-tech innovations, have made Torqeedo one of the best-known brands in the field of marine electric propulsion. Located in Starnberg, near Munich, with sales offices in the USA, the UK, France and Spain, Torqeedo offers propulsion systems from 0.5kW through to 110kW, all developed according to the same ethos – superior technology with revolutionary benefits.
    [Show full text]
  • A Survey of Conventional and Unconventional Sub Marine Propulsion Systems
    UNCLASSIFIED AD NUMBER AD342338 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO: Approved for public release, distribution unlimited FROM: Distribution: Further dissemination only as directed by Office of Naval Research, Attn: Code 429, Arlington, VA, 30 APR 1963, or higher DoD authority. AUTHORITY 31 Dec 1972 per document marking; ONR itr, 4 may 1977 THIS PAGE IS UNCLASSIFIED GENER AL DECL SCHEDULEASSIFICAT]ri INACCORDANCE WITH 0D0 5200.1-R & EXECUTIVE ORDER 11652 THI S DOC UMENT 1 ,toultjec" to Generni Declassification Schedule of xu.cutive C-der 11652-Automatically Downgraded att intervals-SYeats 9ECLASSIFIEO ON DECEMBER 31,_7Ii• BY uttanst Documentation Center Weie,.-e Supply Agency r :ieron Station V',gi i 22314 ADL DEFENSE DOUiMENIAION CENTER SCIENTIFIC AND fECHNICA I ii'*O9MATION CAMERON SIAPbDN, Al XANDP1;A. ViRGlN IA MWI NOTICE: When &g,-zrwwv or other &~~speoi- fica~tions or othcr Utita are used fo i jutrpose other than in compc-tion vith a. dY4M'*tcly related. gosvernmemt prood-e3ment operatiar, the U. S. Government thereby incuxs no re~ap. -ibility, nor any obligeaion vhatsoever3- and the ':eq,-ttthe Govern- ment may have :Vormujlated, fudýeý or L,,a -- y vay supplied the said dmvidngs, spec ftcekons,, or other dUta is not to 'be regarded by tpi-tit~1ion )r other- vise as in Pny m~anner lictensixng ~b~hh~'or any other person nor c~orporwtion, ovr corvey-',Pg any rights or perzission to mainufeactula, u,ý- oý Oe4 &a-y pa~tented. inrvziation that may tr aw &,y be xvelated thereto. Kil-30T-11G Va,, MATONMJ DEF'SITB OF 'CID" U3M9TEDf SUM~tE W1Tý 1VT'"TMEAIN- ING OF Tffl3 ESPIONAGE ,At~l "TJ"Ml8 U.
    [Show full text]
  • GE Marine Gas Turbine Propulsion for Frigates
    GE Marine Gas Turbines for Frigates March 2018 GE’s Marine Solutions One Neumann Way MD S156 Cincinnati, Ohio USA 45215 www.ge.com/marine GE Marine Gas Turbines for Frigates Introduction The important role of a frigate is to escort and protect other high value fleet and merchant ships the world over. Frigates operate independently and possess sufficient capabilities (i.e. anti-submarine, anti-ship and anti-air) to provide missions in maritime and wartime environments. With GE being the market leader in the supply of marine propulsion gas turbines and seeing the proliferation in the demand for frigates, we wanted to know how our gas turbines and product roadmap compared to the needs of frigates. Before we could answer that question, we needed to answer the following two questions: 1. What are propulsion trends for frigates? 2. What are key attributes or requirements, and how do they translate to gas turbine propulsion characteristics? The key attributes of a frigate were taken from the July 2017 United States Navy Future Guided Missile Frigate (FFG(X)) Request for Information (RFI). It is anticipated the attributes would be common to many of the world’s frigates. Frigate Propulsion Trends and GE LM2500 Family Gas Turbine Suitability GE performed an analysis of all the frigates built since 1960 excluding certain countries such as Russia and China. Classification of a ship as a frigate is a gray area as there is blending of smaller corvettes and larger destroyers. For this analysis, we used the Wikipedia listing of frigates. All of the following ship data was obtained from public information such as Wikipedia and IHS Jane’s Fighting Ships.
    [Show full text]
  • Marine Propulsion
    MARINE PROPULSION Marine propulsion ......................................................................................................................................... 1 Propulsion systems .................................................................................................................................... 2 Types of energy source ......................................................................................................................... 2 Types of engines ................................................................................................................................... 3 Types of thrusters .................................................................................................................................. 6 Environmental effects ............................................................................................................................... 8 Matching engines and watercrafts. Ship resistance .................................................................................. 8 Skin resistance....................................................................................................................................... 9 Wave resistance ................................................................................................................................... 10 Underwater propulsion ............................................................................................................................ 11 Submarines .........................................................................................................................................
    [Show full text]
  • Review of All-Electric and Hybrid-Electric Propulsion Technology for Small Vessels
    Review of All-Electric and Hybrid-Electric Propulsion Technology for Small Vessels Nova Scotia Boatbuilders Association 57 Crane Lake Dr., Suite 1 Halifax, Nova Scotia B3S 1B5 Phone: (902) 423-2378 Fax: (902) 423-2379 [email protected] 27th March, 2015 Nova Scotia Boatbuilders Association Review of All-Electric and Hybrid-Electric Propulsion Technology for Small Vessels March 2015 EXECUTIVE SUMMARY Electric boats in one form or another have been around for over 100 years. The advantages of all-electric or partial-electric boats are the reductions in pollution, noise, vibration, and potentially, cost. The Nova Scotia marine community has a growing interest in the business opportunities offered by all-electric and hybrid-electric propulsion systems. The Nova Scotia Boatbuilders Association has therefore undertaken this review, which provides a snapshot of the current state of all-electric and hybrid-electric propulsion technology for small vessels – and takes a look at what developments we can expect in the near future. All-electric systems are comprised of an electric motor driven by a battery pack. Hybrid-electric systems include an internal combustion engine, generator, battery, and electric motor, typically allowing the diesel or gasoline engine to do the heavy work when needed, and charge the electric system and allow it to respond to lighter loads such as low-speed cruising or providing power for lights and electronics, and other “hotel” loads. There are many technical challenges associated with the proper design and engineering of all- electric and hybrid-electric propulsion systems, both in terms of current technical limitations such as battery life, charge rate, size, and weight and the larger issue of integrating and controlling the added complexity of hybrid systems and obtaining components that are properly designed and certified for use in a marine environment.
    [Show full text]
  • Multi-Criteria Decision-Making for Marine Propulsion: Hybrid, Diesel Electric and Diesel Mechanical Systems from Cost
    *RevisedView metadata, Manuscript citation and with similar No papers Changes at core.ac.uk Marked brought to you by CORE provided by University of Strathclyde Institutional Repository Multi-Criteria Decision-Making for Marine Propulsion: Hybrid, 1 2 3 4 Diesel Electric and Diesel Mechanical Systems from Cost- 5 6 7 Environment-Risk Perspectives 8 9 10 11 12 Byongug Jeong *, Elif Oguz, Haibin Wang, Peilin Zhou 13 14 15 16 17 18 Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, 100 19 20 Montrose Street, Glasgow, G4 0LZ, UK 21 22 23 *corresponding author; e-mail: [email protected] 24 25 26 27 28 29 Abstract 30 31 32 The paper introduces a new decision-making process which is used to compare the 33 34 performance of a ship with either diesel electric hybrid propulsion or conventional propulsion 35 36 systems. A case study was carried out to compare the performance of both propulsions from 37 38 39 cost, environmental and risk perspectives. This paper also overviews the modern approaches 40 41 of multi-criteria decision-making and highlights some of their shortcomings in particular the 42 43 44 fact that these approaches often rely on different criteria such as financial, environmental or 45 46 risk. This paper aims to overcome this shortcoming by enhancing the process of multi-criteria 47 48 49 decision analysis. The key process in this research was to convert all incomparable values 50 51 into monetary values, thereby enabling the impacts of each criterion to be compared and 52 53 integrated in a straightforward manner.
    [Show full text]
  • Marine Propulsion Or Steering
    B63H MARINE PROPULSION OR STEERING ([N: arrangement of propulsion or steering means on amphibious vehicles B60F3/0007;] propulsion of air-cushion vehicles B60V1/14; peculiar to submarines, other than nuclear propulsion, B63G; peculiar to torpedoes F42B19/00 ) Definition statement This subclass/group covers: Propulsive elements directly acting on water, e.g.: • Paddle wheels. • Voith-Schneider propellers. • Propellers and propeller blades. • Endless-track type propulsive elements. • Fishtail-type propulsive elements. • Propeller-blade pitch changing. • Arrangements of propulsive elements directly acting on water. Effecting propulsion by jets, e.g. using reaction principle. • Jet propulsion using ambient water as propulsive medium. • Jet propulsion using steam or gas as propulsive medium. • Arrangements of propulsive elements directly acting on air. Propulsive devices directly acted on by wind, e.g.: • Sails • Magnus-rotors • Arrangements of propulsive devices directly acted on by wind • Wind motors driving water-engaging propulsive elements. Effecting propulsion by use of vessel-mounted driving mechanisms co#operating with anchored chains or the like. Effecting propulsion by muscle power Effecting propulsion of vessels, not otherwise provided for, e.g. 1 • Using energy from ambient water. • By direct engagement of the ground. Outboard propulsion units and Z-drives. Use of propulsion power plant or units on vessels: • Use of e.g. steam, internal combustion, electric or nuclear power plants • Arrangements of power plant control exterior of the engine room • Mounting of propulsion plant or unit • Arrangements of propulsion-unit exhaust uptakes • Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like Transmitting power from propulsion power plant to propulsive elements, e.g.
    [Show full text]
  • Abs Advisory on Decarbonization Applications for Power Generation and Propulsion Systems
    ABS ADVISORY ON DECARBONIZATION APPLICATIONS FOR POWER GENERATION AND PROPULSION SYSTEMS ABS | ADVISORY ON DECARBONIZATION APPLICATIONS FOR POWER GENERATION AND PROPULSION SYSTEMS | 01 © Andrey Sharpilo/Shutterstock OUR MISSION The mission of ABS is to serve the public interest as well as the needs of our members and clients by promoting the security of life and property and preserving the natural environment. HEALTH, SAFETY, QUALITY & ENVIRONMENTAL POLICY We will respond to the needs of our members and clients and the public by delivering quality service in support of our Mission that provides for the safety of life and property and the preservation of the marine environment. We are committed to continually improving the effectiveness of our HSQE performance and management system with the goal of preventing injury, ill health and pollution. We will comply with all applicable legal requirements as well as any additional requirements ABS subscribes to which relate to HSQE aspects, objectives and targets. Disclaimer: While ABS uses reasonable efforts to accurately describe and update the information in this Advisory, ABS makes no warranties or representations as to its accuracy, currency or completeness. ABS assumes no liability or responsibility for any errors or omissions in the content of this Advisory. To the extent permitted by applicable law, everything in this Advisory is provided “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or noninfringement. In no event will ABS be liable for any damages whatsoever, including special, indirect, consequential or incidental damages or damages for loss of profits, revenue or use, whether brought in contract or tort, arising out of or connected with this Advisory or the use or reliance upon any of the content or any information contained herein.
    [Show full text]
  • Study of Water Jet Propulsion System Design for Fast Patrol Boat (Fpb-60)
    STUDY OF WATER JET PROPULSION SYSTEM DESIGN FOR FAST PATROL BOAT (FPB-60) Arica Dwi SUSANTO, U.B. PRIHANTO, AHMADI, Okol S SUHARYO, Adi BANDONO* *Indonesian Naval Technology College, STTAL, Bumimoro-Morokrembangan, Surabaya 60187, Indonesia FPB-60 is a type of patrol boat built by shipyard in Indonesia to strengthen the needs of water territorial. However, the 20 years age caused a decrease in performance of the vessel. The method used was the harvard guldammer method to calculate water jet system parameters at a maximum velocity of 35 knots such as inlet diameter and nossel diameter, pump power, pump type used and other parameters to obtain Overall Propulsive Coefficient at that speed. In the calculation of water jet propulsion system design, the amount of capacity generated water jet pump system obtained was 4.15 m3 / s with flow velocity on the nozzle/jet of 28.8 m/s. Based on the value of specific swabs of suction (Nss) of 6205.49, the pump for the water jet propulsion system had considered fulfilled the cavitation limit requirement so that it could be used for (FPB-60). Keywords: Vessel Resistance, Water Jet, Power, FPB. 1. INTRODUCTION compared to ships that use propellers so that with an increase FPB-60 is a type of patrol boat in thrust generated by the engine it built by a shipyard in Indonesia to will be able to produce higher strengthen the needs of water vessel speed (Herdzik 2013). territorial. However, the 20 years This paper have many age cause a decrease in supporting its research, for example performance of the vessel.
    [Show full text]