Basic Properties of Groups Generated by Lam Phong
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Wielandt Length of Finite Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OFALGEBRA 15, 142-148 (1970) The Wielandt Length of Finite Groups University of East Anglia, School of Mathematics and Physics, ~Vorwich, Br~gland Communicated by B. Huppert Received July 5, 1969 I. ISTHODUCTION In [9] Wielandt introduced a subgroup of a group G defined as the inter- section of the normalizers of all subnormal subgroups of G. I will call this subgroup the Wielandt subgroup E’(G). We can then define ?Vn(G) recursively by W,(G) = 1 and W,(G)/TJJ+,(G) = W[G/LV~/,,+,(G)]. If for some n, W,,(G) = : G and II is the least integer for which this happens, we say that G has Wielandt length n. LVielandt proved [9] that such an integer 11 always exists for finite groups. The main purpose of this paper is to investigate the relation between the Wielandt length of a group and various other invariants. The main result in this direction is Theorem I as follows: ‘I’w:ownf I. If G is a Jinite soluble group zcith Wielandt length II, fitting length m, then G has derived length at most m 4 n 1 if m -;- n :- 2. The proof of this theorem occupies Section 3 of the paper. The theory of 7’ groups, i.e., groups in which normality is a transitive relation, is well-developed [4], [7] and these results are of importance in this paper. Section 4 investigates the properties of groups with Wielandt length 2 and the main result in this section is: Tmomn~ 5. -
Determining Group Structure from the Sets of Character Degrees
DETERMINING GROUP STRUCTURE FROM THE SETS OF CHARACTER DEGREES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kamal Aziziheris May 2011 Dissertation written by Kamal Aziziheris B.S., University Of Tabriz, 1999 M.A., University of Tehran, 2001 Ph.D., Kent State University, 2011 Approved by M. L. Lewis, Chair, Doctoral Dissertation Committee Stephen M. Gagola, Jr., Member, Doctoral Dissertation Committee Donald White, Member, Doctoral Dissertation Committee Brett D. Ellman, Member, Doctoral Dissertation Committee Anne Reynolds, Member, Doctoral Dissertation Committee Accepted by Andrew Tonge, Chair, Department of Mathematical Sciences Timothy S. Moerland, Dean, College of Arts and Sciences ii . To the Loving Memory of My Father, Mohammad Aziziheris iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . v INTRODUCTION . 1 1 BACKGROUND RESULTS AND FACTS . 12 2 DIRECT PRODUCTS WHEN cd(Oπ(G)) = f1; n; mg . 22 3 OBTAINING THE CHARACTER DEGREES OF Oπ(G) . 42 4 PROOFS OF THEOREMS D AND E . 53 5 PROOFS OF THEOREMS F AND G . 62 6 EXAMPLES . 70 BIBLIOGRAPHY . 76 iv ACKNOWLEDGEMENTS This dissertation is due to many whom I owe a huge debt of gratitude. I would especially like to thank the following individuals for their support, encouragement, and inspiration along this long and often difficult journey. First and foremost, I offer thanks to my advisor Prof. Mark Lewis. This dissertation would not have been possible without your countless hours of advice and support. Thank you for modeling the actions and behaviors of an accomplished mathematician, an excellent teacher, and a remarkable person. -
Exercises and Solutions in Groups Rings and Fields
EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets. -
A Generalization of the Hughes Subgroup
A Generalization of the Hughes Subgroup Mark L. Lewis and Mario Sracic Abstract Let G be a finite group, π be a set of primes, and define Hπ G to be the subgroup generated ( ) by all elements of G which do not have prime order for every prime in π. In this paper, we investigate some basic properties of Hπ G and its relationship to the Hughes subgroup. We ( ) show that for most groups, only one of three possibilities occur: Hπ G 1, Hπ G G, or ( ) = ( ) = Hπ G Hp G for some prime p π. There is only one other possibility: G is a Frobenius ( ) = ( ) ∈ group whose Frobenius complement has prime order p, and whose Frobenius kernel, F , is a nonabelian q-group such that Hπ G arises as the proper and nontrivial Hughes subgroup of F . ( ) We investigate a few restrictions on the possible choices of the primes p and q. Mathematics Subject Classification. 20D25. Keywords. Hughes subgroup, Frobenius groups, elements of prime order. 1. Introduction In 1957, D. R. Hughes posed the following problem: Let G be any group and p be a prime. Consider the following subgroup, p Hp G x G x 1 , ( ) ∶= ⟨ ∈ ∶ ≠ ⟩ or Hp when G is clear from the context, which we call the Hughes subgroup of G relative to p. Hughes asked, “is the following conjecture true: either Hp 1,Hp G, or G Hp p?” [7]. = = S ∶ S = Hughes had proved this conjecture for p 2 two years prior [6], and shortly thereafter, Straus and = Szekeres [14] answered in the affirmative for p 3. -
1 Useful English/German Vocabulary 2 Isomorphism Theorems Continued
1 Useful English/German Vocabulary simple group -einfache Gruppe normal series - Normalreihe composition series - Kompositionsreihe refinement - Verfeinerung 2 Isomorphism theorems continued Theorem 2.1 (Lattice isomorphism theorem). Let G be a group and let N be a normal subgroup of G. If A is a subgroup of G containing N, let A := A=N.Let π : G ! G=N be the canonical projection. The map A 7! π(A) = A is a bijection between the set of subgroups of G containing N and the set of subgroups of G=N. Moreover, if A; B ≤ G with N ≤ A and N ≤ B then: 1. A ≤ B if and only if A ≤ B; and in this case [B : A] = [B : A] ∼ 2. A C B is and only if A C B; and in this case B=A = B=A 3. hA; Bi = hA; Bi 4. A \ B = A \ B Proof. UB9 Theorem 2.2 (Butterfly Lemma /Zassenhaus Lemma). Let aCA and b C B be subgroups of a group G. Then a(A \ b) is a normal in a(A \ B); b(B \ a) is normal in b(B \ A); (A \ b)(B \ a) is normal in (A \ B) and a(A \ B) (A \ B) b(B \ A) ∼= ∼= : a(A \ b) (A \ b)(B \ a) b(B \ a) Proof. Note first that since A ≤ NG(a) and B ≤ NG(b), we have that A \ b ≤ A \ B ≤ NG(a) and B \ a ≤ A \ B ≤ NG(b): Thus a(A \ b); a(A \ B); b(B \ a) and b(B \ A) are subgroups of G (see lecture 17 corollary 1.10). -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Isomorphic Groups and Group Rings
Pacific Journal of Mathematics ISOMORPHIC GROUPS AND GROUP RINGS DONALD STEVEN PASSMAN Vol. 15, No. 2 October 1965 PACIFIC JOURNAL OF MATHEMATICS Vol. 15, No. 2, 1965 ISOMORPHIC GROUPS AND GROUP RINGS D. S. PASSMAN Let © be a finite group, £ a commutative ring with one and S[@] the group ring of © over S. If ξ> is a group with © = £ then clearly S[(S] = S[£>] where the latter is an S-iso- morphism. We study here the converse question: For which groups © and rings S does £[©] ^ S[ξ>] imply that © is iso- morphic to £)? We consider first the case where S = K is a field. It is known that if © is abelian then Q[@] = Q[ξ>] implies that © = §> where Q is the field of rational numbers. We show here that this result does not extend to all groups ©. In fact by a simple counting argument we exhibit a large set of noniso- morphic p-groups with isomorphic group algebras over all noncharacteristic p fields. Thus for groups in general the only fields if interest are those whose characteristic divides the order of the group. We now let S = R be the ring of integers in some finite algebraic extension of the rationale. We show here that the group ring R[@>] determines the set of normal subgroups of © along with many of the natural operations defined on this set. For example, under the assumption that © is nilpotent, we show that given normal subgroups 3Dΐ and 9ΐ, the group ring determines the commutator subgroup (3JI, 91). Finally we consider several special cases. In particular we show that if © is nilpotent of class 2 then R[(g\ = β[§] implies © = €>. -
View This Volume's Front and Back Matter
http://dx.doi.org/10.1090/gsm/100 Algebr a A Graduat e Cours e I. Martin Isaacs Graduate Studies in Mathematics Volume 100 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 00A05; Secondary 12-01, 13-01, 16-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-100 Library of Congress Cataloging-in-Publication Data Isaacs, I. Martin, 1940- Algebra : a graduate course / I. Martin Isaacs. p. cm. — (Graduate studies in mathematics ; v. 100) Originally published: Pacific Grove, Calif. : Brooks/Cole, cl994. Includes bibliographical references and index. ISBN 978-0-8218-4799-2 (alk. paper) 1. Algebra—Textbooks. I. Title. QA154.2.I83 2009 512—dc22 2008047416 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 1994 held by the American Mathematical Society, All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. -
Composition Series of Arbitrary Cardinality in Abelian Categories
COMPOSITION SERIES OF ARBITRARY CARDINALITY IN ABELIAN CATEGORIES ERIC J. HANSON AND JOB D. ROCK Abstract. We extend the notion of a composition series in an abelian category to allow the mul- tiset of composition factors to have arbitrary cardinality. We then provide sufficient axioms for the existence of such composition series and the validity of “Jordan–Hölder–Schreier-like” theorems. We give several examples of objects which satisfy these axioms, including pointwise finite-dimensional persistence modules, Prüfer modules, and presheaves. Finally, we show that if an abelian category with a simple object has both arbitrary coproducts and arbitrary products, then it contains an ob- ject which both fails to satisfy our axioms and admits at least two composition series with distinct cardinalities. Contents 1. Introduction 1 2. Background 4 3. Subobject Chains 6 4. (Weakly) Jordan–Hölder–Schreier objects 12 5. Examples and Discussion 21 References 28 1. Introduction The Jordan–Hölder Theorem (sometimes called the Jordan–Hölder–Schreier Theorem) remains one of the foundational results in the theory of modules. More generally, abelian length categories (in which the Jordan–Hölder Theorem holds for every object) date back to Gabriel [G73] and remain an important object of study to this day. See e.g. [K14, KV18, LL21]. The importance of the Jordan–Hölder Theorem in the study of groups, modules, and abelian categories has also motivated a large volume work devoted to establishing when a “Jordan–Hölder- like theorem” will hold in different contexts. Some recent examples include exact categories [BHT21, E19+] and semimodular lattices [Ro19, P19+]. In both of these examples, the “composition series” arXiv:2106.01868v1 [math.CT] 3 Jun 2021 in question are assumed to be of finite length, as is the case for the classical Jordan-Hölder Theorem. -
The Cardinality of the Center of a Pi Ring
Canad. Math. Bull. Vol. 41 (1), 1998 pp. 81±85 THE CARDINALITY OF THE CENTER OF A PI RING CHARLES LANSKI ABSTRACT. The main result shows that if R is a semiprime ring satisfying a poly- nomial identity, and if Z(R) is the center of R, then card R Ä 2cardZ(R). Examples show that this bound can be achieved, and that the inequality fails to hold for rings which are not semiprime. The purpose of this note is to compare the cardinality of a ring satisfying a polynomial identity (a PI ring) with the cardinality of its center. Before proceeding, we recall the def- inition of a central identity, a notion crucial for us, and a basic result about polynomial f g≥ f g identities. Let C be a commutative ring with 1, F X Cn x1,...,xn the free algebra f g ≥ 2 f gj over C in noncommuting indeterminateso xi ,andsetG f(x1,...,xn) F X some coef®cient of f is a unit in C .IfRis an algebra over C,thenf(x1,...,xn)2Gis a polyno- 2 ≥ mial identity (PI) for RPif for all ri R, f (r1,...,rn) 0. The standard identity of degree sgõ n is Sn(x1,...,xn) ≥ õ(1) xõ(1) ÐÐÐxõ(n) where õ ranges over the symmetric group on n letters. The Amitsur-Levitzki theorem is an important result about Sn and shows that Mk(C) satis®es Sn exactly for n ½ 2k [5; Lemma 2, p. 18 and Theorem, p. 21]. Call f 2 G a central identity for R if f (r1,...,rn) 2Z(R), the center of R,forallri 2R, but f is not a polynomial identity. -
PRONORMALITY in INFINITE GROUPS by F G
PRONORMALITY IN INFINITE GROUPS By F G Dipartimento di Matematica e Applicazioni, Universita' di Napoli ‘Federico II’ and G V Dipartimento di Matematica e Informatica, Universita' di Salerno [Received 16 March 1999. Read 13 December 1999. Published 29 December 2000.] A A subgroup H of a group G is said to be pronormal if H and Hx are conjugate in fH, Hxg for each element x of G. In this paper properties of pronormal subgroups of infinite groups are investigated, and the connection between pronormal subgroups and groups in which normality is a transitive relation is studied. Moreover, we consider the pronorm of a group G, i.e. the set of all elements x of G such that H and Hx are conjugate in fH, Hxg for every subgroup H of G; although the pronorm is not in general a subgroup, we prove that this property holds for certain natural classes of (locally soluble) groups. 1. Introduction A subgroup H of a group G is said to be pronormal if for every element x of G the subgroups H and Hx are conjugate in fH, Hxg. Obvious examples of pronormal subgroups are normal subgroups and maximal subgroups of arbitrary groups; moreover, Sylow subgroups of finite groups and Hall subgroups of finite soluble groups are always pronormal. The concept of a pronormal subgroup was introduced by P. Hall, and the first results about pronormality appeared in a paper by Rose [13]. More recently, several authors have investigated the behaviour of pronormal subgroups, mostly dealing with properties of pronormal subgroups of finite soluble groups and with groups which are rich in pronormal subgroups. -
On the Fitting Length of Hn(G) Rendiconti Del Seminario Matematico Della Università Di Padova, Tome 89 (1993), P
RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA GÜLIN ERCAN I˙SMAIL ¸S. GÜLOGLU˘ On the Fitting length of Hn(G) Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 171-175 <http://www.numdam.org/item?id=RSMUP_1993__89__171_0> © Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ On the Fitting Length of Hn(G). GÜLIN ERCAN - ISMAIL 015E. GÜLO011FLU(*) For a finite group G and n e N the generalized Hughes subgroup Hn (G ) of G is defined as Hn (G ) _ (x E G11;z! Recently, there has been some research in the direction of finding a bound for the Fitting length of Hn (G ) in a solvable group G with a proper generalized Hugh- es subgroup in terms of n. In this paper we want to present a proof for the following THEOREM 1. Let G be a finite solvable group, Pl, P2, ..., pm pair- wise distinct primes and n = p1 ’ p2 ’ · · · ’ pm · If Hn (G ) ~ G, then the Fit- ting length of Hn (G) is at most m + 3. This result is an immediate consequence of THEOREM 2.