Warming Reverses Top-Down Effects of Predators on Belowground Ecosystem Function in Arctic Tundra

Total Page:16

File Type:pdf, Size:1020Kb

Warming Reverses Top-Down Effects of Predators on Belowground Ecosystem Function in Arctic Tundra Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra Amanda M. Koltza,b,1, Aimée T. Classenc,d, and Justin P. Wrightb aDepartment of Biology, Washington University in St. Louis, St. Louis, MO 63130; bDepartment of Biology, Duke University, Durham, NC 27708; cThe Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT 05405; and dThe Gund Institute for Environment, University of Vermont, Burlington, VT 05405 Edited by Alan Hastings, University of California, Davis, CA, and approved June 12, 2018 (received for review May 21, 2018) Predators can disproportionately impact the structure and func- the rate of global climate change (9). Prior studies have assessed tion of ecosystems relative to their biomass. These effects may be the feedbacks between the Arctic terrestrial ecosystem and cli- exacerbated under warming in ecosystems like the Arctic, where mate change by measuring the balance between plant community the number and diversity of predators are low and small shifts in and microbial responses to warmer temperatures (reviewed in community interactions can alter carbon cycle feedbacks. Here, we ref. 10). The extent to which these responses may be affected by show that warming alters the effects of wolf spiders, a dominant interactions with organisms at other trophic levels, which are also tundra predator, on belowground litter decomposition. Specifi- responding to warming (e.g., detritivores, herbivores, pollinators, cally, while high densities of wolf spiders result in faster litter predators), has been largely overlooked (but see refs. 11–13 for decomposition under ambient temperatures, they result, instead, discussion of effects of vertebrate herbivores on plant commu- in slower decomposition under warming. Higher spider densities nities under warming). In particular, there has been little con- are also associated with elevated levels of available soil nitrogen, sideration of how changes in trophic interactions between potentially benefiting plant production. Changes in decomposition belowground microbes and their associated consumers, which rates under increased wolf spider densities are accompanied by are both sensitive to warming (14–19), will affect ecosystem trends toward fewer fungivorous Collembola under ambient functioning in the Arctic (but see refs. 14, 20). temperatures and more Collembola under warming, suggesting The composition and activity of microbial communities are that Collembola mediate the indirect effects of wolf spiders on often modified by soil micro- and macroinvertebrates (5), which decomposition. The unexpected reversal of wolf spider effects on are themselves regulated by higher level predators, such as Collembola and decomposition suggest that in some cases, warm- surface-dwelling spiders (21). At our study site in the Alaskan ing does not simply alter the strength of top-down effects but, Arctic, wolf spiders are extremely abundant at the soil surface instead, induces a different trophic cascade altogether. Our results (22, 23) and outweigh larger mammalian predators, such as indicate that climate change-induced effects on predators can wolves, by several orders of magnitude (SI Appendix), making cascade through other trophic levels, alter critical ecosystem them one of the dominant predators of the tundra community. In functions, and potentially lead to climate feedbacks with impor- temperate forests and agroecosystems, wolf spider predation has tant global implications. Moreover, given the expected increase in wolf spider densities with climate change, our findings suggest indirect effects on key ecosystem processes, including plant productivity (24), nutrient cycling (25, 26), and decomposition that the observed cascading effects of this common predator on – detrital processes could potentially buffer concurrent changes in (27 29). As in temperate systems, Arctic wolf spiders are gen- decomposition rates. eralist feeders that prey upon herbivores, detritivores, and other Arctic | predator | decomposition | aboveground–belowground | Significance trophic interactions Organisms’ responses to climate change can result in altered espite general agreement that species interactions will be species interactions, with cascading effects on communities Daffected by climate change (1, 2), surprisingly few studies and ecosystems. Understanding these processes is especially have explored the ways in which climate-modified trophic cas- relevant in the rapidly warming Arctic, where faster decom- cades might affect ecosystem functioning (reviewed in ref. 3). position of stored soil carbon is expected to result in positive Individual and population-level responses to altered climatic carbon feedbacks to the atmosphere. We provide evidence that conditions could have cascading effects that either amplify or warmer temperatures alter the cascading effects of wolf spiders, an abundant and widespread predator, on ecosystem func- dampen the impacts of existing trophic cascades on ecosystems. tioning. Specifically, we find that warming tends to reverse the However, interactive effects between climate change and these effect of high spider densities on fungal-feeding Collembola population-level responses could also lead to completely new and ultimately leads to slower decomposition rates. Our work community structures with subsequent impacts on function. It is demonstrates that climate change can alter the nature of increasingly apparent that changes in community-scale dynamics predator effects on decomposition, resulting in unexpected can influence important ecosystem processes, such as pro- changes in ecosystem function with potentially important ductivity, nutrient cycling, and decomposition (4, 5). Thus, un- global implications. derstanding how global change will shape both community interactions and function is important when predicting the ef- Author contributions: A.M.K. and J.P.W. designed research; A.M.K. performed research; fects of future climate change. A.M.K. analyzed data; and A.M.K., A.T.C., and J.P.W. wrote the paper. Shifts in aboveground–belowground trophic interactions due The authors declare no conflict of interest. to climate change are particularly relevant in the Arctic, a region This article is a PNAS Direct Submission. that is warming rapidly (6) and stores a large amount of soil Published under the PNAS license. organic carbon (C) (7, 8). Rapid warming is facilitating increased 1To whom correspondence should be addressed. Email: [email protected]. belowground microbial respiration from thawing permafrost This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ECOLOGY more than it is increasing plant uptake of C, thereby causing the 1073/pnas.1808754115/-/DCSupplemental. Arctic to become a source of atmospheric C and accelerating Published online July 23, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1808754115 PNAS | vol. 115 | no. 32 | E7541–E7549 Downloaded by guest on October 4, 2021 predators (30–32), suggesting that they could indirectly influence Wolf spider density treatments included low density, control these processes in the Arctic as well. While experimental work density, and high density; high-density treatments had approxi- has failed to detect changes in plant performance due to Arctic mately twice the densities of the average early season densities wolf spider predation on herbivores (33), more recent work from the control treatments. Warming treatments were either suggests that these predators may obtain the majority of their ambient temperature or warmed. energy from detritivorous prey [e.g., Collembola (22)], and Given the pace at which the Arctic is warming and the fact that therefore are more likely to have measurable indirect effects on wolf spider densities may be higher in the future, our primary processes such as decomposition and nutrient cycling. Currently, interest for this experiment was in capturing potential interac- Arctic wolf spiders are responding to earlier snowmelt dates tions between the wolf spider density and warming treatments. brought on by climate change by becoming larger (34) and hence We used a series of mixed effects models to investigate these more fecund (35). Because bigger and more abundant spiders potential interactive treatment effects on belowground commu- could exert stronger predation pressure on belowground prey, nity structure and function. In each model, either average soil these changes could have important consequences for microbial moisture or litter moisture content was included as a fixed effect activity and nutrient cycling in the tundra. and experimental block was included as a random effect. Post Arctic wolf spiders and the food web to which they belong hoc tests (e.g., Tukey) are not available for general linear mixed provide us with an ideal system to study how trophic interactions models with interaction terms; thus, for those models that might alter the predicted effects of climate change on ecosystem showed significant interactive effects on the response variable, functioning. Here, we explore the role of Arctic wolf spiders in we split the models by ambient temperature and warming mediating the response of the belowground community to treatments to investigate pairwise differences under the three warming. Specifically, using a fully factorial experimental design, spider density treatments (low, control, or high). we investigated the extent to which warming and the expected associated increase in wolf spider
Recommended publications
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Analysis of Habitat Fragmentation and Ecosystem Connectivity Within the Castle Parks, Alberta, Canada by Breanna Beaver Submit
    Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada by Breanna Beaver Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Environmental Science Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada Breanna Beaver I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Breanna Beaver, Student Date Approvals: Dawna Cerney, Thesis Advisor Date Peter Kimosop, Committee Member Date Felicia Armstrong, Committee Member Date Clayton Whitesides, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract Habitat fragmentation is an important subject of research needed by park management planners, particularly for conservation management. The Castle Parks, in southwest Alberta, Canada, exhibit extensive habitat fragmentation from recreational and resource use activities. Umbrella and keystone species within The Castle Parks include grizzly bears, wolverines, cougars, and elk which are important animals used for conservation agendas to help protect the matrix of the ecosystem. This study identified and analyzed the nature of habitat fragmentation within The Castle Parks for these species, and has identified geographic areas of habitat fragmentation concern. This was accomplished using remote sensing, ArcGIS, and statistical analyses, to develop models of fragmentation for ecosystem cover type and Digital Elevation Models of slope, which acted as proxies for species habitat suitability.
    [Show full text]
  • Ecological Systems of the United States a Working Classification of U.S
    ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS NatureServe is a non-profit organization dedicated to providing the scientific knowledge that forms the basis for effective conservation action. Citation: Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia. © NatureServe 2003 Ecological Systems of the United States is a component of NatureServe’s International Terrestrial Ecological Systems Classification. Á Funding for this report was provided by a grant from The Nature Conservancy. Front cover: Maroon Bells Wilderness, Colorado. Photo © Patrick Comer NatureServe 1101 Wilson Boulevard, 15th Floor Arlington, VA 22209 (703) 908-1800 www.natureserve.org ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS Á Á Á Á Á Patrick Comer Don Faber-Langendoen Rob Evans Sue Gawler Carmen Josse Gwen Kittel Shannon Menard Milo Pyne Marion Reid Keith Schulz Kristin Snow Judy Teague June 2003 Acknowledgements We wish to acknowledge the generous support provided by The Nature Conservancy for this effort to classify and characterize the ecological systems of the United States. We are particularly grateful to the late John Sawhill, past President of The Nature Conservancy, who was an early supporter of this concept, and who made this funding possible through an allocation from the President’s Discretionary Fund. Many of the concepts and approaches for defining and applying ecological systems have greatly benefited from collaborations with Conservancy staff, and the classification has been refined during its application in Conservancy-sponsored conservation assessments.
    [Show full text]
  • Diversity and Evolution of Bacterial Bioluminescence Genes in the Global Ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y
    Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y. Timsit To cite this version: Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, et al.. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genomics and Bioinformatics, Oxford University Press, 2020, 2 (2), 10.1093/nargab/lqaa018. hal-02514159 HAL Id: hal-02514159 https://hal.archives-ouvertes.fr/hal-02514159 Submitted on 21 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published online 14 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1 doi: 10.1093/nargab/lqaa018 Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier 1,2,*, Pascal Hingamp1,2, Floriane Turrel1, Lisa Tanet1, Magali Lescot 1,2,* and Youri Timsit 1,2,* 1Aix Marseille Univ, Universite´ de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France and 2Research / Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022 Tara GOSEE, 3 rue Michel-Ange, Downloaded from https://academic.oup.com/nargab/article-abstract/2/2/lqaa018/5805306 by guest on 21 March 2020 75016 Paris, France Received October 21, 2019; Revised February 14, 2020; Editorial Decision March 02, 2020; Accepted March 06, 2020 ABSTRACT ganisms and is particularly widespread in marine species (7–9).
    [Show full text]
  • The Effects of Eutrophication on the Structure and Function of Microbial Biofilms
    The Effects of Eutrophication on the Structure and Function of Microbial Biofilms David J. Van Horn1*, Cliff N. Dahm1 1UNM Department of Biology, 167 Castetter Hall MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001 Abstract: Biofilms are the dominate form of microbial life in aquatic ecosystems and are responsible for performing a wide variety of ecosystem services including nutrient and organic matter processing and retention. Understanding how eutrophication impacts these communities is essential for ecosystem managers as many aquatic ecosystems are being enriched by anthropogenic activities. This study investigated the effects of eutrophication on biofilm productivity, community structure and diversity, and function. Increasing background dissolved organic carbon and nutrient concentrations by a factor of twelve increased biofilm ash free dry mass and the abundance of live cells ~ 22 and 200 fold respectively. Extracellular enzyme activities for five enzymes from the same samples showed a range of increase from ~ 300 times for phosphatase to 8000 times for N-acetylglucosaminidase. Enrichment decreased the bacterial diversity of these biofilms and resulted in a gradual shift in community structure that intensified from low to high enrichment. These data indicate that the productivity, community structure, and function of stream biofilm communities are highly responsive to eutrophication inputs. 1 Introduction: Microbes are the most abundant organisms on Earth and play a central role in all global processes. While often overlooked due to their inconspicuous nature, microbes contain as much carbon and ten times more nitrogen and phosphorus than plants (Whitman et al. 1998), possess unique metabolic pathways essential to biogeochemical cycles (Schlesinger 1997), and represent a potentially massive pool of genetic diversity that is only now being explored (Curtis et al.
    [Show full text]
  • What Happened When Wolves Were Reintroduced to Yellowstone Park?
    Trophic Cascades: What Happened When Wolves Were Reintroduced to Yellowstone Park? Lesson Question How did the reintroduction of wolves into Yellowstone Park affect the other animals and plants in the ecosystem? Lesson Tasks Students analyze data to determine the effect of wolves on Yellowstone’s elk population, on the plants that elk graze on, and on the animals that compete with elk for food. They write a report describing how the reintroduction of wolves has created a trophic cascade—not just a few direct changes in one food chain, but a series of indirect changes throughout the food web. Standards • HS-LS2-2 Ecosystems: Interactions, Energy, and Dynamics NGSS Science and Engineering Practices • Constructing Explanations and Designing Solutions • Engaging in Argument from Evidence • Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. NGSS Disciplinary Core Ideas • LS2.C: Ecosystem Dynamics, Functioning and Resilience • ETS1.B: Developing Possible Solutions Crosscutting Concepts • Stability and Change, Patterns Connections to Nature of Science • Scientific Knowledge is open to revision in light of new evidence. • Most scientific Knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. Trophic Cascades: What Happened When Wolves Were Reintroduced to Yellowstone Park? TABLE OF CONTENTS OVERVIEW ........................................................... 3 INVESTIGATION ...............................................
    [Show full text]
  • Interactions Between Photosynthesis and Respiration in an Aquatic Ecosystem
    Interactions between Photosynthesis and Respiration in an Aquatic Ecosystem Jane E. Caldwell and Kristi Teagarden 53 Campus Drive, P.O. Box 6057 Dept. of Biology West Virginia University Morgantown, WV 26506 [email protected] (304)293-5201 extension 31459 [email protected] (304)293-5201 extension 31542 Abstract: Students measure the results of respiration and photosynthesis separately, combined, and in comparison to a non-living control “ecosystem”. The living ecosystem uses only snails and water plants. Oxygen, carbon dioxide, and ammonia nitrogen concentrations are measured with simple colorimetric and titration water tests using commercially available kits. The exercise is designed for large enrollment non-majors labs, but modifications for large and small classrooms are described. Introduction This lab exercise was developed for a freshman course for non-science majors at West Virginia University. The exercise asks students to apply their knowledge of basic metabolic processes to a series of simple aquatic ecosystems, which students monitor through water testing. These ecosystems consist of aquaria containing plants and/or snails with or without light exposure, and are compared against a non-living control system (an aquarium with water, light, and gravel). As they analyze their results, students observe the interplay of respiration, photosynthesis, protein digestion (or waste excretion), and decomposition through their effects on dissolved oxygen, carbon dioxide, and ammonia. Students synthesize these observations into written explanations of their results. During the course of the lab, students: • predict the relative levels of oxygen, carbon dioxide, and ammonia for various aquaria compared to a control aquarium. • observe and conduct titrimetric and colorimetric tests for dissolved compounds in water.
    [Show full text]
  • Evidence for Ecosystem-Level Trophic Cascade Effects Involving Gulf Menhaden (Brevoortia Patronus) Triggered by the Deepwater Horizon Blowout
    Journal of Marine Science and Engineering Article Evidence for Ecosystem-Level Trophic Cascade Effects Involving Gulf Menhaden (Brevoortia patronus) Triggered by the Deepwater Horizon Blowout Jeffrey W. Short 1,*, Christine M. Voss 2, Maria L. Vozzo 2,3 , Vincent Guillory 4, Harold J. Geiger 5, James C. Haney 6 and Charles H. Peterson 2 1 JWS Consulting LLC, 19315 Glacier Highway, Juneau, AK 99801, USA 2 Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA; [email protected] (C.M.V.); [email protected] (M.L.V.); [email protected] (C.H.P.) 3 Sydney Institute of Marine Science, Mosman, NSW 2088, Australia 4 Independent Researcher, 296 Levillage Drive, Larose, LA 70373, USA; [email protected] 5 St. Hubert Research Group, 222 Seward, Suite 205, Juneau, AK 99801, USA; [email protected] 6 Terra Mar Applied Sciences LLC, 123 W. Nye Lane, Suite 129, Carson City, NV 89706, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-907-209-3321 Abstract: Unprecedented recruitment of Gulf menhaden (Brevoortia patronus) followed the 2010 Deepwater Horizon blowout (DWH). The foregone consumption of Gulf menhaden, after their many predator species were killed by oiling, increased competition among menhaden for food, resulting in poor physiological conditions and low lipid content during 2011 and 2012. Menhaden sampled Citation: Short, J.W.; Voss, C.M.; for length and weight measurements, beginning in 2011, exhibited the poorest condition around Vozzo, M.L.; Guillory, V.; Geiger, H.J.; Barataria Bay, west of the Mississippi River, where recruitment of the 2010 year class was highest.
    [Show full text]
  • Soil Microbial Biomass, Activity and Community Composition Along
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-184 Manuscript under review for journal Biogeosciences Discussion started: 12 June 2017 c Author(s) 2017. CC BY 3.0 License. 1 Soil microbial biomass, activity and community composition along 2 altitudinal gradients in the High Arctic (Billefjorden, Svalbard) 3 Petr Kotas1,2, Hana Šantrůčková1, Josef Elster3,4, Eva Kaštovská1 4 1Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech 5 Republic 6 2Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, 7 Czech Republic 8 3Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic 9 4Centre for Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, 379 82, Czech Republic 10 11 Correspondence to: Petr Kotas ([email protected]) 12 Abstract The unique and fragile High Arctic ecosystems are vulnerable to proceeding global climate warming. Elucidation 13 of factors driving microbial distribution and activity in Arctic soils is essential for comprehensive understanding of the 14 ecosystem functioning and its response to environmental change. The goals of this study were to investigate the microbial 15 biomass, activity, microbial community structure (MCS) and its abiotic controls in soils along three elevational gradients in 16 coastal mountains of Billefjorden, Central Svalbard. Soils from four different altitudes (25, 275, 525, and 765 m above sea 17 level) were analysed for a suite of characteristics including temperature regimes, organic matter content, base cation 18 availability, moisture, pH, basal respiration, and microbial biomass and community structure using phospholipid fatty acids 19 (PLFA).
    [Show full text]
  • CHAPTER 5 Ecopath with Ecosim: Linking Fisheries and Ecology
    CHAPTER 5 Ecopath with Ecosim: linking fi sheries and ecology V. Christensen Fisheries Centre, University of British Columbia, Canada. 1 Why ecosystem modeling in fi sheries? Fifty years ago, fi sheries science emerged as a quantitative discipline with the publication of Ray Beverton and Sidney Holt’s [1] seminal volume On the Dynamics of Exploited Fish Populations. This book provided the foundation for how to manage fi sheries and was based on detailed, mathe- matical analyses of the dynamics of individual fi sh populations, of how they grow and how they are affected by fi shing. Fisheries science has developed and matured since then, and remarkably much of what has been achieved are modifi cations and further developments of what Beverton and Holt introduced. Given then that fi sheries science has developed to become one of the most data-rich, quantita- tive fi elds in ecology [2], how well has it fared? We often see fi sheries issues in the headlines and usually in a negative context and there are indeed many threats to the sustainability of ocean resources [3]. Many, judging not the least from newspaper headlines, consider fi sheries manage- ment a usual suspect in connection with fi sheries collapses. This may lead one to suspect that there is a problem with the science, but I hold this to be an erroneous conclusion. It should be stressed that the main problem is not to be found in the computational aspects of the science, but rather in how management advice actually is implemented in praxis [4]. The major force in fi sh- eries throughout the world is excessive fi shing capacity; the days with unexploited resources and untapped oceans are over [5], and the fi shing industry is now relying heavily on subsidies to keep the machinery going [6].
    [Show full text]
  • Biodiversity Implications Is Biogeography: For
    FEATURE BIODIVERSITY IS BIOGEOGRAPHY: IMPLICATIONS FOR CONSERVATION By G. Carleton Ray THREE THEMES DOMINATEthis review. The first is similarities, as is apparent within the coastal zone, that biodiversity is biogeography. Or, as Nelson the biodiversity of which depends on land-sea in- and Ladiges (1990) put it: "Indeed, what beyond teractions. biogeography is "biodiversity' about?" Second, "Characteristic Biodiversity"--a Static View watershed and seashed patterns and their scale-re- A complete species inventory for any biogeo- lated dynamics are major modifiers of biogeo- graphic province on Earth is virtually impossible. graphic pattern. And, third, concepts of biodiver- In fact, species lists, absent a biogeographic frame sity and biogeography are essential guides for of reference, can be ecologically meaningless, be- conservation and management of coastal-marine cause such lists say little about the dynamics of systems, especially for MACPAs (MArine and environmental change. To address such dynamics, Coastal Protected Areas). biodiversity is best expressed at a hierarchy of Conservation and conservation bioecology have scales, which this discussion follows. entered into an era of self-awareness of their suc- cesses. Proponents of "biodiversity" have achieved Global Patterns worldwide recognition. Nevertheless: "Like so Hayden el al. (1984) attempted a summary of the many buzz words, biodiversity has many shades of state-of-the-art of global, coastal-marine biogeogra- • . the coastal zone, meaning and is often used to express vague and phy at the behest of UNESCO's Man and the Bios- which is the most bio- ill-thought-out concepts" (Angel, 1991), as phere Programme (MAB) and the International reflected by various biodiversity "strategies" Union for the Conservation of Nature (IUCN).
    [Show full text]
  • Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2020 Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats Marley Madsen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Madsen, Marley, "Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats" (2020). All Graduate Theses and Dissertations. 7750. https://digitalcommons.usu.edu/etd/7750 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PATTERNS OF MICROBIAL DIVERSITY AND COMMUNITY COMPOSITION IN SLOT CANYONS, ROCK POOLS, AND OTHER EPHEMERAL AND PERENNIAL AQUATIC HABITATS by Marley Madsen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: Bonnie Waring, Ph.D. Paul Wolf, Ph.D. Major Professor Committee Member Will Pearse, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright c Marley Madsen 2020 All Rights Reserved iii Abstract Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats by Marley Madsen, Master of Science Utah State University, 2020 Major Professor: Dr. Bonnie Waring Department: Biology In general, species sorting is the dominant community assembly mechanism for mi- crobes, and this pattern holds true over a diverse range of habitats and spatial scales.
    [Show full text]