Visweb – the Visual Semantic Web: Unifying Human and Machine Knowledge Representations with Object-Process Methodology

Total Page:16

File Type:pdf, Size:1020Kb

Visweb – the Visual Semantic Web: Unifying Human and Machine Knowledge Representations with Object-Process Methodology The VLDB Journal (2004) 13: 120–147 / Digital Object Identifier (DOI) 10.1007/s00778-004-0120-x ViSWeb – the Visual Semantic Web: unifying human and machine knowledge representations with Object-Process Methodology Dov Dori1,2 1 Technion, Israel Institute of Technology, Haifa 32000, Israel; e-mail: [email protected] 2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA; e-mail: [email protected] Edited by V. Atluri. Received: December 14, 2002 / Accepted: November 28, 2003 Published online: February 6, 2004 – c Springer-Verlag 2004 Abstract. The Visual Semantic Web (ViSWeb) is a new Web is not a separate Web but an extension of the current one, paradigm for enhancing the current Semantic Web technol- in which information is given well-defined meaning, better en- ogy. Based on Object-Process Methodology (OPM), which abling computers and people to work in cooperation.” Indeed, enables modeling of systems in a single graphic and textual a major challenge in constructing a comprehensive Web-based model,ViSWeb provides for representation of knowledge over knowledge management system is the ability to reconcile the the Web in a unified way that caters to human perceptions apparent human-machine language orientation dilemma. On while also being machine processable. The advantages of the the one hand is the bulk of knowledge that has been published ViSWeb approach include equivalent graphic-text knowledge and continues to be gathered on the Web at an ever accelerat- representation, visual navigability, semantic sentence inter- ing rate. This knowledge is expressed in free natural language, pretation, specification of system dynamics, and complexity which in its raw form is currently indigestible to machines. management. Arguing against the claim that humans and ma- Indeed, as the Cyc project [11] has demonstrated, analysis of chines need to look at different knowledge representation for- unconstrained natural language by computers is far too diffi- mats, the principles and basics of various graphic and textual cult. On the other hand, current technologies that are aimed at knowledge representations are presented and examined as can- enabling Web-based knowledge management are developed didates for ViSWeb foundation. Since OPM is shown to be based on the premise that while humans prefer natural lan- most adequate for the task, ViSWeb is developed as an OPM- guage as the primary means of recording, communicating, and based layer on top of XML/RDF/OWL to express knowledge disseminating knowledge, machines must be fed with barely visually and in natural language. Both the graphic and the tex- human-intelligible, XML-like scripts, and if humans wish to tual representations are strictly equivalent. Being intuitive yet extract their meaning, they have to sweat to mentally compile formal, they are not only understandable to humans but are and decipher these scripts. also amenable to computer processing. The ability to use such Based on experience gained over the past half century bimodal knowledge representation is potentially a major step in developing artificial programming languages, the common forward in the evolution of the Semantic Web. wisdom has been that human-oriented and machine-oriented languages are necessarily mutually exclusive in terms of their Keywords: Semantic Web – Visual Semantic Web – Object- understandability: natural languages, which are intuitively un- Process Methodology – Conceptual graphs – Knowledge rep- derstood by humans, are much too difficult to be processed by resentation computers, while (programming) languages, which are easily “understood” by computers, require much training and effort to be deciphered by humans. The underlying assumption has been that the syntax of human-understandable language must necessarily be totally different than that of machine-digestible language. This view is clearly reflected by Berners-Lee and 1 The human-machine language orientation dilemma Hendler [4], who have noted that “. instead of asking ma- chines to understand people’s language, the new technology, A major assumption underlying the development of the Se- like the old, involves asking people to make some extra ef- mantic Web is that humans and machines must each use a dif- fort, in repayment for which they will get substantial new ferent format of knowledge representation. The first sentence functionality.” The ViSWeb approach was born as a result of the introduction of the Resource Description Framework of an attempt to provide the promised new functionality with- (RDF) [8] reads: “TheWorldWideWeb was originally built for out having to ask humans to make the extra effort required human consumption, and although everything on it is machine- by the current Semantic Web man-machine knowledge repre- readable, this data is not machine-understandable” (emphasis sentation dichotomy. Achieving this requires that people who in source). Berners-Lee et al. [5] have noted that “the Semantic invent these new environments make some extra effort in try- Dov Dori: ViSWeb – the visual semantic Web 121 ing to cater to human intuition while ensuring that computers this paper, which, to an outside human observer, superficially too will be able to process the same representation. suggests that they understand. The implicit, conventional wisdom assumption, accord- Synthesis of sentences that make perfect sense to humans ing to which human-readable and machine-readable formats using a subset of natural language while still being amenable are bound to be different, is the basis not only of RDF, but to reliable computer processing and compilation is not only also of OWL, the Web Ontology Language [32]. OWL is in- feasible, it has already been achieved to an astonishing level tended to describe the classes and relations between them of sophistication by Object-Process Language (OPL), a subset that are inherent in Web documents and applications. Ap- of English generated automatically on the fly in response to pendix B of [32] contains references to many Semantic Web graphic human input into an Object-Process Diagram (OPD). and ontology-related works. The introduction to OWL [32] OPL is the textual modality of Object-Process Methodology reads: “The World Wide Web, as it is currently constituted, re- (OPM) designed to favor the human over the machine in its sembles a poorly mapped geography....Inordertomapthis closeness to being natural yet formal to a sufficient degree to terrain more precisely, computational agents require machine- enable concise, unambiguous machine processing. readable descriptions of the content and capabilities of web The following sections contain a survey and assessment of accessible resources. These descriptions must be in addition various graphic and/or textual knowledge representation ap- to the human-readable versions of that information.” proaches and methods and expose the reader to principles of Challenging this assertion, according to which machine- Object-Process Methodology. OPM with the appropriate Vi- readable descriptions must be added on top of the human- sual Semantic Web extensions is then elaborated upon as a readable ones, this paper proposes a fresh approach to the issue human-understandable layer on top of RDF [8, 20] for speci- of knowledge representation over theWorldWideWebthrough fying knowledge over the Web. ViSWeb – the Visual Semantic Web. ViSWeb is founded on the premise that human and machine Web-based knowledge need not be represented by two distinct formats. The ViSWeb 2 Combining graphic (Visual Semantic Web) approach is based on Object-Process and textual knowledge representations Methodology (OPM) [14]. Using a bimodal representation of graphics and text, OPM models knowledge about systems of A powerful knowledge modeling and communication modal- various types and different complexity levels in a single model ity that is complementary to language is graphics. Diagrams that integrates structure and behavior. OPM, described in more are often invaluable for describing models of abstract things, detail below, combines a subset of natural language, called especially complex systems. The fact that people from the Object-Process Language (OPL), with a formal yet intuitive early caveman days to date have been using some kind of graphic model, a set of one or more Object-Process Diagrams sketching or diagramming technique to express their knowl- (OPDs) of exactly the same knowledge expressed in OPL. This edge or ideas is testimony to the viability of graphic repre- dual graphic-textual representation constitutes a solid founda- sentation. However, such representation of our knowledge is tion for generic knowledge representation over the Web. Since valuable only if it is backed by a comprehensive and consis- the ultimate objective of the Semantic Web is enhancing the tent modeling methodology. Such methodology is essential human ability to extract knowledge from the Web and under- if we want to represent knowledge, understand complex sys- stand it, it should involve human-understandable language. tems in any domain, and communicate our understanding to And since a combination of graphics and text is highly effec- others. An accepted diagramming method has the potential of tive as a knowledge modeling language [14], we follow this becoming a powerful modeling tool if it constitutes an unam- paradigm in designing ViSWeb, in which the human and ma- biguous language. In such visual formalism, each symbol must chine representations are effectively identical, enabling hu- bear defined semantics and
Recommended publications
  • Graph-Based Reasoning in Collaborative Knowledge Management for Industrial Maintenance Bernard Kamsu-Foguem, Daniel Noyes
    Graph-based reasoning in collaborative knowledge management for industrial maintenance Bernard Kamsu-Foguem, Daniel Noyes To cite this version: Bernard Kamsu-Foguem, Daniel Noyes. Graph-based reasoning in collaborative knowledge manage- ment for industrial maintenance. Computers in Industry, Elsevier, 2013, Vol. 64, pp. 998-1013. 10.1016/j.compind.2013.06.013. hal-00881052 HAL Id: hal-00881052 https://hal.archives-ouvertes.fr/hal-00881052 Submitted on 7 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 9587 To link to this article: doi.org/10.1016/j.compind.2013.06.013 http://www.sciencedirect.com/science/article/pii/S0166361513001279 To cite this version: Kamsu Foguem, Bernard and Noyes, Daniel Graph-based reasoning in collaborative knowledge management for industrial
    [Show full text]
  • Exploring the Components of Dynamic Modeling Techniques
    Old Dominion University ODU Digital Commons Computational Modeling & Simulation Computational Modeling & Simulation Engineering Theses & Dissertations Engineering Spring 2012 Exploring the Components of Dynamic Modeling Techniques Charles Daniel Turnitsa Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Turnitsa, Charles D.. "Exploring the Components of Dynamic Modeling Techniques" (2012). Doctor of Philosophy (PhD), Dissertation, Computational Modeling & Simulation Engineering, Old Dominion University, DOI: 10.25777/99hf-vx67 https://digitalcommons.odu.edu/msve_etds/38 This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. EXPLORING THE COMPONENTS OF DYNAMIC MODELING TECHNIQUES by Charles Daniel Turnitsa B.S. December 1991, Christopher Newport University M.S. May 2006, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY MODELING AND SIMULATION OLD DOMINION UNIVERSITY May 2012 Approved b, Andreas Tolk (Director) Frederic D. MctCefizie (Member) Patrick T. Hester (Member) Robert H. Kewley, Jr. (Member) / UMI Number: 3511005 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Downloaded at the Address: Predicates in the Ontology
    Ontology-Supported and Ontology-Driven Conceptual Navigation on the World Wide Web Michel Crampes and Sylvie Ranwez Laboratoire de Génie Informatique et d’Ingénierie de Production (LGI2P) EERIE-EMA, Parc Scientifique Georges Besse 30 000 NIMES (FRANCE) Tel: (33) 4 66 38 7000 E-mail: {Michel.Crampes, Sylvie Ranwez}@site-eerie.ema.fr ABSTRACT It is accepted that there is no ideal solution to a complex This paper presents the principles of ontology-supported problem and a coherent paradigm may present limits and ontology-driven conceptual navigation. Conceptual when considering the complexity and the variety of the navigation realizes the independence between resources users' needs. Let’s recall some of the traditional criticisms and links to facilitate interoperability and reusability. An about hypertext. The readers get lost in hyperspace. The engine builds dynamic links, assembles resources under links are predefined by the authors and the author's an argumentative scheme and allows optimization with a intention does not necessary match the readers' intentions. possible constraint, such as the user’s available time. There may be other interesting links to other resources Among several strategies, two are discussed in detail with that are not given. The narrative construction which is the examples of applications. On the one hand, conceptual result of link following may present argumentative specifications for linking and assembling are embedded in pitfalls. the resource meta-description with the support of the ontology of the domain to facilitate meta-communication. As regards the IR paradigm, there are other criticisms. Resources are like agents looking for conceptual The search engines leave the readers with a list of acquaintances with intention.
    [Show full text]
  • Argumentation Graphs with Constraint-Based Reasoning for Collaborative Expertise
    Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/21334 To cite this version: Doumbouya, Mamadou Bilo and Kamsu-Foguem, Bernard and Kenfack, Hugues and Foguem, Clovis Argumentation graphs with constraint-based reasoning for collaborative expertise. (2018) Future Generation Computer Systems, 81. 16-29. ISSN 0167-739X Any correspondence concerning this service should be sent to the repository administrator: [email protected] Argumentation graphs with constraint-based reasoning for collaborative expertise Mamadou Bilo Doumbouya a,b , Bernard Kamsu-Foguem a,*, Hugues Kenfack b, Clovis Foguem c,d a Université de Toulouse, Laboratoire de Génie de Production (LGP), EA 1905, ENIT-INPT, 47 Avenue d'Azereix, BP 1629, 65016, Tarbes Cedex, France b Université de Toulouse, Faculté de droit, 2 rue du Doyen Gabriel Marty, 31042 Toulouse cedex 9, France c Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, 9 E Boulevard Jeanne d'Arc, 21000 Dijon, France d Auban Moët Hospital, 137 rue de l’hôpital, 51200 Epernay, France h i g h l i g h t s • Reasoning underlying the remote collaborative processes in complex decision making. • Abstract argumentation framework with the directed graphs to represent propositions • Conceptual graphs for ontological knowledge modelling and formal visual reasoning. • Competencies and information sources for the weighting of shared advices/opinions. • Constraints checking for conflicts detection according to medical–legal obligations.
    [Show full text]
  • Visualization for Constructing and Sharing Geo-Scientific Concepts
    Colloquium Visualization for constructing and sharing geo-scientific concepts Alan M. MacEachren*, Mark Gahegan, and William Pike GeoVISTA Center, Department of Geography, Pennsylvania State University, 302 Walker, University Park, PA 16802 Representations of scientific knowledge must reflect the dynamic their instantiation in data. These visual representations can nature of knowledge construction and the evolving networks of provide insight into the similarities and differences among relations between scientific concepts. In this article, we describe scientific concepts held by a community of researchers. More- initial work toward dynamic, visual methods and tools that sup- over, visualization can serve as a vehicle through which groups port the construction, communication, revision, and application of of researchers share and refine concepts and even negotiate scientific knowledge. Specifically, we focus on tools to capture and common conceptualizations. Our approach integrates geovisu- explore the concepts that underlie collaborative science activities, alization for data exploration and hypothesis generation, col- with examples drawn from the domain of human–environment laborative tools that facilitate structured discourse among re- interaction. These tools help individual researchers describe the searchers, and electronic notebooks that store records of process of knowledge construction while enabling teams of col- individual and group investigation. By detecting and displaying laborators to synthesize common concepts. Our visualization ap- similarity and structure in the data, methods, perspectives, and proach links geographic visualization techniques with concept- analysis procedures used by scientists, we are able to synthesize mapping tools and allows the knowledge structures that result to visual depictions of the core concepts involved in a domain at be shared through a Web portal that helps scientists work collec- several levels of abstraction.
    [Show full text]
  • Web, Graphs and Semantics Olivier Corby
    Web, Graphs and Semantics Olivier Corby To cite this version: Olivier Corby. Web, Graphs and Semantics. International Conference on Conceptual Structures, Jul 2008, Toulouse, France. 10.1007/978-3-540-70596-3_3. hal-01531149 HAL Id: hal-01531149 https://hal.inria.fr/hal-01531149 Submitted on 1 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Web, Graphs and Semantics Olivier Corby INRIA Edelweiss Team 2004 route des lucioles - BP 93 FR-06902 Sophia Antipolis cedex [email protected] Abstract. In this paper we show how Conceptual Graphs (CG) are a powerful metaphor for identifying and understanding the W3C Resource Description Framework. We also presents CG as a target language and graph homomorphism as an abstract machine to interpret/implement RDF/S, SPARQL and Rules. We show that CG components can be used to implement such notions as named graphs and properties as resources. In brief, we think that CG are an excellent framework to progress in the Semantic Web because the W3C now considers that RDF graphs are – along with XML trees – one of the two standard formats for the Web1.
    [Show full text]
  • An Intelligent Hypertext System
    An Intelligent Hypertext System Michael Junke Hu Thesis submitted for the degree of Doctor of Philosophy of the University of London. November 1994 Department of Computer Science University College London ProQuest Number: 10045477 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10045477 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT This thesis investigates the apphcations of machine intelligence in information gen­ eration, organization, manipulation, search and retrieval. In order to alleviate and solve some problems in the present information retrieval (IR) community, and to increase the efficiency and effectiveness of information sys­ tems, a new data structure is proposed in the thesis. The conceptual index is external to the collection of information components (documents). It integrates the conven­ tional global index with a special semantic network. As a result, a much richer set of concepts, as well as the relationships between concepts, can be represented in the data structure. It is shown in the thesis that such a data structure is more suit­ able for sophisticated IR environments such as hypertext, and could make automatic information generation, self-adjustment and evolvement, inferencing and reasoning possible.
    [Show full text]
  • Visual Knowledge Representation of Conceptual Semantic Networks Leyla Zhuhadar Western Kentucky Univeristy, [email protected]
    Western Kentucky University TopSCHOLAR® CIS Faculty Publications Computer Information Systems 2011 Visual knowledge representation of conceptual semantic networks Leyla Zhuhadar Western Kentucky Univeristy, [email protected] Olfa Nasraoui University of Louisville Robert Wyatt Western Kentucky University, [email protected] Rong Yang Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/cis_fac_pub Part of the Databases and Information Systems Commons Recommended Citation Leyla Zhuhadar, Olfa Nasaoui, Robert Wyatt, and Rong Yang. Visual Knowledge Representation of Conceptual Semantic Networks, Social Network Analysis and Mining Journal, 219-229, Volume 1, 2011. This Article is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in CIS Faculty Publications by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. Manuscript Click here to download Manuscript: Visual_Knowledge_Representation_of_Conceptual_Semantic_Networks.psClick here to view linked References 1 2 3 4 5 6 7 8 9 Leyla Zhuhadar, Olfa Nasraoui 10 11 Knowledge Discovery and Web Mining Lab 12 Department of Computer Engineering and Computer Science 13 14 University of Louisville, KY 40292, USA. 15 16 17 18 Robert Wyatt 19 The Office of Distance Learning 20 21 Division of Extended Learning and Outreach 22 23 Western Kentucky University, KY 42101, USA. 24 25 26 27 28 29 30 31 32 33 Visual Knowledge Representation of 34 35 Conceptual Semantic Networks 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Springer 60 61 62 63 64 65 1 2 3 4 5 Abstract This article presents methods of using visual analysis to visually represent large amounts of massive, 6 dynamic, ambiguous data allocated in a repository of learning objects.
    [Show full text]
  • Graph-Based Formalisms for Knowledge Representation
    Graph-Based Formalisms for Knowledge Representation Mile PAVLIĆ Department of Informatics, University of Rijeka, Rijeka, Croatia Ana MEŠTROVIĆ Department of Informatics, University of Rijeka, Rijeka, Croatia and Alen JAKUPOVIĆ Bussines Department, Polytechnic of Rijeka, Rijeka, Croatia ABSTRACT understanding, semantic search, question answering systems, machine translation systems) and knowledge based systems Graph-based formalisms provide an intuitive and easily (KBS). understandable vehicle for knowledge representation. In this This paper deals with knowledge representation formalisms paper several existing graph-based formalisms are described. based on graphic notation. The main concepts used in graph- Furthermore, a new graph-based formalism for knowledge based knowledge representation are nodes (represented as representation is defined. Basic concepts for graphical vertices) and links (represented as arcs). In graph-based representation (nodes and links) as well as their variation are approach to knowledge representation graphs are considered for described. Context node, context link and process node are knowledge modeling and for computation. A benefit of this defined in order to represent different kinds and levels of approach is that labeled graphs, schemas and drawings provide knowledge. A knowledge network diagram defined from an intuitive vehicle for knowledge representation. There is a sentences expressed in natural language is presented. The main wide range of applications of graph-based methods such as such goal of this formalism is to present knowledge stored in textual as the ER model, UML, Topic Maps in the domain of database fields in the databases. and information systems development. The main reason is that graphs are easily understandable for users, knowledge engineers Keywords: knowledge representation, knowledge based or specialists in an application domain [3].
    [Show full text]
  • Conceptual Knowledge Markup Language: the Central Core
    Conceptual Knowledge Markup Language: The Central Core Robert E. Kent TOC (The Ontology Consortium) 550 Staley Dr. Pullman, WA 99163, USA [email protected] ABSTRACT The conceptual knowledge framework OML/CKML needs several components for a successful design (Kent, 1999). One important, but previously overlooked, component is the central core of OML/CKML. The central core provides a theoretical link between the ontological specification in OML and the conceptual knowledge representation in CKML. This paper discusses the formal semantics and syntactic styles of the central core, and also the important role it plays in defining interoperability between OML/CKML, RDF/S and Ontolingua. OVERVIEW CKML The OML/CKML pair of languages is in various senses both description logic based and frame based. OML A bird’s eye view of the architectural structure of OML/CKML is visualized in Figure 1. Simple OML • CKML: This language provides a conceptual ∂∂∂ knowledge framework for the representation of ⊢⊢⊢ ⊢⊢⊢ distributed information. Earlier versions of ⊨⊨⊨ ⊨⊨⊨ CKML followed rather exclusively the philosophy of Conceptual Knowledge Processing ∂∂∂ (CKP) (Wille, 1982; Ganter and Wille, 1989), a principled approach to knowledge representation and data analysis that “advocates methods and Figure 1: OML/CKML at a glance instruments of conceptual knowledge processing which support people in their rational thinking, judgment and acting and promote critical discussion.” The new version of CKML continues to follow this approach, but also incorporates various principles, insights and techniques from Information Flow (IF), the logical design of distributed systems (Barwise and Seligman, 1997). This allows diverse communities of discourse to compare their own information structures, as coded in ontologies, logical theories and theory interpretations, with that of other communities that share a common terminology and semantics.
    [Show full text]
  • XX. Using Conceptual Graphs to Analyze Multiple Views of Software Requirements
    XX. Using Conceptual Graphs to Analyze Multiple Views Of Software Requirements Harry S. Delugach Computer Science Department University of Alabama in Huntsville Huntsville, AL 35899 U.S.A. XXX.1. INTRODUCTION This chapter describes an application of conceptual graphs to support software requirements development — the process of determining what software needs exist and how those needs will be filled. As a human knowl- edge- and experience-based activity, requirements development is an appro- priate domain for applying formal models of cognitive structures. This chapter introduces the following contributions to the theory and practice in conceptual graphs: a. The ability to represent a conceptual graph that changes over time, using a new class of node called a demon node. b. A structure to partially manipulate informal (external) information (i.e., information not expressed in conceptual graphs), by introducing a special referent form called a private referent. c. The ability to obtain a conceptual graph representation from a require- ments specification written in one of several common notations. d. A framework using conceptual graphs in the analysis of software re- quirements that effectively captures the overlap between multiple views. The chapter sections are organized as follows: XXX.2 discusses the general problem of software requirements, for those readers unfamiliar with this aspect of software development. XXX.3 describes two extensions to conceptual graphs that are desirable for capturing requirements. XXX.4 ex- plains how conceptual graphs (as extended) are used to capture require- ments. XXX.5 outlines the framework in which multiple views are analyzed. XXX.6 shows some partial results for an example set of requirements.
    [Show full text]
  • Conceptual Graphs for Representing Conceptual Structures
    Conceptual Graphs For Representing Conceptual Structures John F. Sowa VivoMind Intelligence Abstract. A conceptual graph (CG) is a graph representation for logic based on the semantic networks of artificial intelligence and the existential graphs of Charles Sanders Peirce. CG design principles emphasize the requirements for a cognitive representation: a smooth mapping to and from natural languages; an “iconic” structure for representing patterns of percepts in visual and tactile imagery; and cognitively realistic operations for perception, reasoning, and language understanding. The regularity and simplicity of the graph structures also support efficient algorithms for searching, pattern matching, and reasoning. Different subsets of conceptual graphs have different levels of expressive power: the ISO standard conceptual graphs express the full semantics of Common Logic (CL), which includes the subset used for the Semantic Web languages; a larger CG subset adds a context notation to support metalanguage and modality; and the research CGs are exploring an open-ended variety of extensions for aspects of natural language semantics. Unlike most notations for logic, CGs can be used with a continuous range of precision: at the formal end, they are equivalent to classical logic; but CGs can also be used in looser, less disciplined ways that can accommodate the vagueness and ambiguity of natural languages. This chapter surveys the history of conceptual graphs, their relationship to other knowledge representation languages, and their use in the design and implementation of intelligent systems. 1. Representing Conceptual Structures Conceptual graphs are a notation for representing the conceptual structures that relate language to perception and action. Such structures must exist, but their properties can only be inferred from indirect evidence.
    [Show full text]