Prometheus Monitoring Guide Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tarantool Enterprise Manual Release 1.10.4-1
Tarantool Enterprise manual Release 1.10.4-1 Mail.Ru, Tarantool team Sep 28, 2021 Contents 1 Setup 1 1.1 System requirements.........................................1 1.2 Package contents...........................................2 1.3 Installation..............................................3 2 Developer’s guide 4 2.1 Implementing LDAP authorization in the web interface.....................5 2.2 Delivering environment-independent applications.........................5 2.3 Running sample applications....................................8 3 Cluster administrator’s guide 11 3.1 Exploring spaces........................................... 11 3.2 Upgrading in production...................................... 13 4 Security hardening guide 15 4.1 Built-in security features...................................... 15 4.2 Recommendations on security hardening............................. 17 5 Security audit 18 5.1 Encryption of external iproto traffic................................ 18 5.2 Closed iproto ports......................................... 18 5.3 HTTPS connection termination.................................. 18 5.4 Closed HTTP ports......................................... 19 5.5 Restricted access to the administrative console.......................... 19 5.6 Limiting the guest user....................................... 19 5.7 Authorization in the web UI.................................... 19 5.8 Running under the tarantool user................................. 20 5.9 Limiting access to the tarantool user............................... -
Building Large Tarantool Cluster with 100+ Nodes Yaroslav Dynnikov
Building large Tarantool cluster with 100+ nodes Yaroslav Dynnikov Tarantool, Mail.Ru Group 10 October 2019 Slides: rosik.github.io/2019-bigdatadays 1 / 40 Tarantool = + Database Application server (Lua) (Transactions, WAL) (Business logics, HTTP) 2 / 40 Core team 20 C developers Product development Solution team 35 Lua developers Commertial projects 3 / 40 Core team 20 C developers Product development Solution team 35 Lua developers Commertial projects Common goals Make development fast and reliable 4 / 40 In-memory no-SQL Not only in-memory: vinyl disk engine Supports SQL (since v.2) 5 / 40 In-memory no-SQL Not only in-memory: vinyl disk engine Supports SQL (since v.2) But We need scaling (horizontal) 6 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 7 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 8 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 9 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 10 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 11 / 40 Vshard - horizontal scaling in tarantool Vshard assigns data to virtual buckets Buckets are distributed across servers 12 / 40 Vshard configuration Lua tables sharding_cfg = { ['cbf06940-0790-498b-948d-042b62cf3d29'] = { replicas = { ... }, }, ['ac522f65-aa94-4134-9f64-51ee384f1a54'] = { replicas = { ... }, }, } vshard.router.cfg(...) vshard.storage.cfg(...) 13 / 40 Vshard automation. Options Deployment scripts Docker compose Zookeeper 14 / 40 Vshard automation. -
LIST of NOSQL DATABASES [Currently 150]
Your Ultimate Guide to the Non - Relational Universe! [the best selected nosql link Archive in the web] ...never miss a conceptual article again... News Feed covering all changes here! NoSQL DEFINITION: Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable. The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more. So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above. [based on 7 sources, 14 constructive feedback emails (thanks!) and 1 disliking comment . Agree / Disagree? Tell me so! By the way: this is a strong definition and it is out there here since 2009!] LIST OF NOSQL DATABASES [currently 150] Core NoSQL Systems: [Mostly originated out of a Web 2.0 need] Wide Column Store / Column Families Hadoop / HBase API: Java / any writer, Protocol: any write call, Query Method: MapReduce Java / any exec, Replication: HDFS Replication, Written in: Java, Concurrency: ?, Misc: Links: 3 Books [1, 2, 3] Cassandra massively scalable, partitioned row store, masterless architecture, linear scale performance, no single points of failure, read/write support across multiple data centers & cloud availability zones. API / Query Method: CQL and Thrift, replication: peer-to-peer, written in: Java, Concurrency: tunable consistency, Misc: built-in data compression, MapReduce support, primary/secondary indexes, security features. -
Monitoring Container Environment with Prometheus and Grafana
Matti Holopainen Monitoring Container Environment with Prometheus and Grafana Metropolia University of Applied Sciences Bachelor of Engineering Information and Communication Technology Bachelor’s Thesis 3.5.2021 Abstract Tekijä Matti Holopainen Otsikko Monitoring Container Environment with Prometheus and Grafana Sivumäärä Aika 50 sivua 3.5.2021 Tutkinto Insinööri (AMK) Tutkinto-ohjelma Tieto- ja viestintätekniikka Ammatillinen pääaine Ohjelmistotuotanto Ohjaajat Nina Simola, Projektipäällikkö Auvo Häkkinen, Yliopettaja Insinöörityön tavoitteena oli oppia pystyttämään monitorointijärjestelmä konttiympäristön re- surssien käytön seuraamista, monitorointia ja analysoimista varten. Tavoitteena oli helpot- taa monitorointijärjestelmän käyttöönottoa. Työ tehtiin käytettävien ohjelmistojen dokumen- taation ja käytännön tekemisellä opittujen asioiden pohjalta. Insinöörityön alussa käytiin läpi työssä käytettyjä teknologioita. Tämän jälkeen käytiin läpi monitorointi järjestelmän konfiguraatio ja käyttöönotto. Seuraavaksi tutustuttiin PromQL-ha- kukieleen, jonka jälkeen näytettiin kuinka pystyttää valvontamonitori ja hälytykset sähköpos- timuistutuksella. Työn lopussa käydään läpi kuinka monitorointijärjestelmässä saatua dataa analysoidaan ja mietitään miten monitorointijärjestelmää voisi parantaa. Keywords Monitorointi, Kontti, Prometheus, Grafana, Docker Abstract Author Matti Holopainen Title Monitoring Container Environment with Prometheus and Grafana Number of Pages Date 50 pages 3.5.2021 Degree Bachelor of Engineering Degree Programme Information -
Experimental Methods for the Evaluation of Big Data Systems Abdulqawi Saif
Experimental Methods for the Evaluation of Big Data Systems Abdulqawi Saif To cite this version: Abdulqawi Saif. Experimental Methods for the Evaluation of Big Data Systems. Computer Science [cs]. Université de Lorraine, 2020. English. NNT : 2020LORR0001. tel-02499941 HAL Id: tel-02499941 https://hal.univ-lorraine.fr/tel-02499941 Submitted on 5 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm -
Pentest-Report Prometheus 05.-06.2018 Cure53, Dr.-Ing
Dr.-Ing. Mario Heiderich, Cure53 Bielefelder Str. 14 D 10709 Berlin cure53.de · [email protected] Pentest-Report Prometheus 05.-06.2018 Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. J. Hector, Dipl.-Ing. A. Inführ, J. Larsson Index Introduction Scope Test Methodology Part 1 (Manual Code Auditing) Part 2 (Code-Assisted Penetration Testing) Hardening Recommendations General Security Recommendations HTTP Security Headers Content Security Policy & Beyond Authentication / Authorization Non-Idempotent Request Protection Transport Security Clients/metrics endpoint API Endpoint Admin GUI Identified Vulnerabilities PRM-01-001 Web: Prometheus lifecycle killed with CSRF (Medium) PRM-01-003 Web: CORS header exposes API data to all origins (High) PRM-01-005 Server: Clients can cause Denial of Service via Gzip Bomb (Medium) Miscellaneous Issues PRM-01-002 Client: Clients leak Metrics data through unprotected endpoint (Low) PRM-01-004 Web: Parameters used insecurely in HTML templates (Low) Conclusions Cure53, Berlin · 06/11/18 1/18 Dr.-Ing. Mario Heiderich, Cure53 Bielefelder Str. 14 D 10709 Berlin cure53.de · [email protected] Introduction “An open-source monitoring system with a dimensional data model, flexible query language, efficient time series database and modern alerting approach.” From https://prometheus.io/ This report documents the findings of a security assessment targeting the Prometheus software compound and carried out by Cure53 in 2018. It should be noted that the project was sponsored by The Linux Foundation / Cloud Native Computing Foundation. In terms of the scope, the assignment entailed two main components as the Prometheus project was investigated through both a dedicated source code audit and comprehensive penetration testing. -
Virtualization/Containerization of the PNNL High Energy Physics Computing Infrastructure
Virtualization/Containerization of the PNNL High Energy Physics Computing Infrastructure Kevin Fox, David Cowley, Malachi Schram, Evan Felix, James Czebotar, Smith Gary Grid Services Deployed DIRAC Belle2DB Distributed Data Management REST Service System UI Service Gatekeeper Services Payload Service Many development and testing Squid Cache services Postgresql Relational Database Condor CE's FTS3 DIRAC SiteDirector CVMFS Stratum HTCondor cluster Zero Squid Cache One Leadership Class Facility CE's Authorization DIRAC SiteDirector Gums HPC Cluster VOMS Server with multiple VO's SE's BestMan2 Gridftp Backed by Lustre Note to the Sysadmins New methodology for system administration. Cloud Native focuses around what the user cares about most, not what we Sysadmins are used to caring about. Users care about services. Users do not care about machines providing service. Pets vs Cattle analogy. We must unlearn what we have learned. Try and separate pets and cattle to different pools of resource. Our Infrastructure Journey Individual machines Automated provisioning Virtual machines OpenStack Cloud Repo Mirrors Containers Kubernetes Infrastructure Deployed Kubernetes + Docker Engine Prometheus OpenStack + KVM Grafana Ceph CheckMK GitLab ElasticSearch Lustre 389-DS LoadBalancing/HA Cobbler PerfSonar NFS Metric/Log gathering is very important for system problem analysis Current tool stack includes CheckMK Grafana/Prometheus Kibana/ElasticSearch/LogShippers Kubernetes Load Balancers Give users a load balancer to talk to. Back it with multiple instances of the software making up of the service whenever possible. When not possible, make it very quick to redeploy. Deployment Flow Separate Build and Deploy steps. Kubernetes/Docker example: #Build > docker build . -t pnnlhep/condor-compute:2017-09-01 … > docker push pnnlhep/condor-compute:2017-09-01 … #Deploy > helm install --name ce0-compute condor-compute \ –set version=2017-09-01 .. -
Lumada Edge Version
Hitachi - Inspire The Next December 20, 2019 @ 01:04 Lumada Edge V e r s i o n 3 . 0 Component Component Version License OpenShift Origin v3.7.0-alpha.0 Apache License 2.0 Docker Moby v1.10.0-rc1 Apache License 2.0 golang.org/x/oauth2 20190130-snapshot-99b60b75 BSD 3-clause "New" or "Revised" License golang sys 20180821-snapshot-3b58ed4a BSD 3-clause "New" or "Revised" License Docker Moby v1.12.0-rc1 Apache License 2.0 Go programming language 20180824-snapshot-4910a1d5 BSD 3-clause "New" or "Revised" License hpcloud-tail v1.0.0 MIT License Ethereum v1.5.0 BSD 3-clause "New" or "Revised" License zerolog v1.12.0 MIT License cadvisor v0.28.2 Apache License 2.0 Go programming language 0.0~git20170629.0.5ef0053 BSD 3-clause "New" or "Revised" License golang-github-docker-go-connections-dev 0.4.0 Apache License 2.0 docker 18.06.1 Apache License 2.0 mattn-go-isatty 20180120-snapshot MIT License Docker Moby v1.1.0 Apache License 2.0 cadvisor v0.23.4 Apache License 2.0 docker v17.12.1-ce-rc2 Apache License 2.0 Kubernetes v1.15.0-alpha.2 Apache License 2.0 projectcalico/calico-cni 20170522-snapshot Apache License 2.0 Kubernetes v1.7.0-alpha.3 Apache License 2.0 Kubernetes v1.2.0-alpha.6 Apache License 2.0 Kubernetes v1.4.0-alpha.2 Apache License 2.0 Go programming language v0.2.0 BSD 3-clause "New" or "Revised" License kubevirt v1.7.0 Apache License 2.0 certificate-transparency 1.0.21 Apache License 2.0 kubernetes/api kubernetes-1.15.0 Apache License 2.0 cadvisor v0.28.1 Apache License 2.0 Go programming language v0.3.0 BSD 3-clause "New" or "Revised" -
(PDF) What Can Cloud Native Do for Csps?
What Can Cloud Native Do for CSPs? Cloud Native Can Improve…. Development Cloud native is a way of approaching the development and deployment of applications in such a way that takes account of the characteristics and nature of the cloud—resulting in processes and workflows that fully take advantage of the platform. Operations Cloud native is an approach to building and running software applications that exploits the advantages of the cloud computing delivery model. Cloud-native is about how applications are created and deployed, not where. Infrastructure Cloud native platforms available “as a service” in the cloud can accommodate hybrid and multi-cloud environments. What are Cloud Native Core Concepts? Continuous Integration DevSecOps Microservices Containers and Deployment Not My Problem Release Once Every Tightly Coupled Directly Ported to a VM Separate tools, varied 6 Months Components Monolithic application incentives, opaque process More bugs in production Slow deployment cycles unable to leverage modern waiting on integrated tests cloud tools teams Shared Responsibility Release Early Loosely Coupled Packaged for Containers Common incentives, tools, and Often Components Focus on business process and culture Higher quality of code Automated deploy without software by leveraging waiting on individual the platform ecosystem components What are the Benefits of Cloud Native? Business Optimization Microservices architecture enables flexibility, agility, and reuse across various platforms. CAPEX and OPEX Reduction Service-based architecture allows integration with the public Cloud to handle overload capacity, offer new services with less development, and take advantage of other 3rd party services such as analytics, machine learning, and artificial intelligence. Service Agility Common services can be shared by all network functions deployed on the Cloud-Native Environment (CNE). -
A Complete Introduction to Monitoring Kubernetes with New Relic the Fundamentals You Need to Know to Effectively Monitor Kubernetes Deployments Table of Contents
White Paper A Complete Introduction to Monitoring Kubernetes with New Relic The fundamentals you need to know to effectively monitor Kubernetes deployments Table of Contents Introduction 03 Monitoring Kubernetes with New Relic 04 Getting started 04 Exploring clusters with the Kubernetes cluster explorer 05 Benefits of monitoring with the cluster explorer 06 Kubernetes Observability 07 Visualizing services 07 Monitoring cluster health and capacity 07 Correlating Kubernetes events with cluster health 12 Integrating with APM data 13 Integrating with Prometheus metrics 15 Using Prometheus data in New Relic 15 Monitoring logs in context 16 Investigating end-user experience 17 Scaling Kubernetes with Success: A Real-World Example 18 02 A Complete Introduction to Monitoring Kubernetes with New Relic Introduction Before Kubernetes took over the world, cluster adminis- • Automatic scheduling of pods can cause capacity trators, DevOps engineers, application developers, and issues, especially if you’re not monitoring resource operations teams had to perform many manual tasks availability. in order to schedule, deploy, and manage their contain- erized applications. The rise of the Kubernetes con- In effect, while Kubernetes solves old problems, it can tainer orchestration platform has altered many of these also create new ones. Specifically, adopting containers responsibilities. and container orchestration requires teams to rethink and adapt their monitoring strategies to account for the Kubernetes makes it easy to deploy and operate applica- new infrastructure layers introduced in a distributed tions in a microservice architecture. It does so by creating Kubernetes environment. an abstraction layer on top of a group of hosts, so that development teams can deploy their applications and let With that in mind, we designed this guide to highlight the Kubernetes manage: fundamentals of what you need to know to effectively monitor Kubernetes deployments with New Relic. -
TIBCO® Operational Intelligence Hawk® Redtail - Container Edition Installation, Configuration, and Administration Version 7.0.0 November 2020
TIBCO® Operational Intelligence Hawk® RedTail - Container Edition Installation, Configuration, and Administration Version 7.0.0 November 2020 Copyright © 2011-2020. TIBCO Software Inc. All Rights Reserved. 2 | Contents Contents Contents 2 TIBCO Documentation and Support Services 4 TIBCO® OI Hawk® RedTail - Container Edition Overview 6 Deployment Architecture and Components 7 Hawk Agent 8 Hawk Microagents 8 Hawk Console 9 Grafana 9 Time Series Storage (Prometheus) 9 Apache Zookeeper 10 Query Node 10 Webapp 10 Hardware and Software Requirements 11 Building Docker Images for the Components 13 Running TIBCO OI Hawk RedTail - Container Edition in Standalone Docker Compose Mode 16 Running TIBCO OI Hawk RedTail - Container Edition Containers in Kubernetes Cluster 18 Persistent Volume Claim for TIBCO OI Hawk RedTail - Container Edition Nodes 19 Environment Variables for TIBCO OI Hawk RedTail - Container Edition Components 20 TIBCO® Operational Intelligence Hawk® RedTail - Container Edition Installation, Configuration, and Administration 3 | Contents Configuring Grafana Data Source 36 Administration 39 Administration Tab 39 Adding a User 40 Adding a Role 41 Deleting a User or a Role 43 Configuring a Remote LDAP Server 44 Choosing a License 44 Adding Custom Hawk Plug-Ins to the TIBCO OI Hawk RedTail - Container Edition Agent 45 TIBCO OI Hawk RedTail - Container Edition Programming 47 Legal and Third-Party Notices 49 TIBCO® Operational Intelligence Hawk® RedTail - Container Edition Installation, Configuration, and Administration 4 | TIBCO Documentation and Support Services TIBCO Documentation and Support Services For information about this product, you can read the documentation, contact TIBCO Support, and join TIBCO Community. How to Access TIBCO Documentation Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in HTML and PDF formats. -
5 Real-World Prometheus Monitoring Use Cases.Indd
5 Real-World Prometheus Monitoring Use Cases. CUSTOMER STORIES 5 Real-World Prometheus rising. Prometheus Microservices built on containers and orchestrated by tools like Kubernetes are helping organizations build, run, and improve software applications much faster than ever be- Monitoring fore. In these new infrastructure stacks, keeping track of what’s happening becomes a Use Cases. new challenge. Good news – modern monitoring solutions help you get the visibility you need to under- stand what’s happening from performance and health, to security. y The Prometheus open-source monitoring toolkit has emerged as a leading solution for providing metrics and monitoring for cloud native applications. y Sysdig, the first unified approach to monitor and secure containers across the entire software lifecycle, delivers enterprise-class data management, scale, and support with Prometheus integration. Read on to learn how five progressive companies are taking advantage of Prometheus with Sysdig to gain a 360-degree view of their modern enterprise applications and infra- structure. Sysdig | REPORT 2 How do you build and operate a large-scale, next-generation platform to provide competitive offerings for online hosting, email and website services that are both secure and high- performance? This online services company turned to the Red Hat OpenShift as the foundation of their cloud hosting business. By offering a simple scalable platform for containers, customers can focus on delivering the best application code possible without the headaches of managing their own infrastructure. But what about visibility into performance? The web hosting firm’s customers bring a wide-range of apps to the platform. This includes modern services built on open-source components, as well as legacy apps brought into the new world of containers.