Stellarator Fusion Reactors - an Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Richard G. Hewlett and Jack M. Holl. Atoms
ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12. -
Nuclear Energy: Fission and Fusion
CHAPTER 5 NUCLEAR ENERGY: FISSION AND FUSION Many of the technologies that will help us to meet the new air quality standards in America can also help to address climate change. President Bill Clinton 1 Two distinct processes involving the nuclei of atoms can be harnessed, in principle, for energy production: fission—the splitting of a nucleus—and fusion—the joining together of two nuclei. For any given mass or volume of fuel, nuclear processes generate more energy than can be produced through any other fuel-based approach. Another attractive feature of these energy-producing reactions is that they do not produce greenhouse gases (GHG) or other forms of air pollution directly. In the case of nuclear fission—a mature though controversial energy technology—electricity is generated from the energy released when heavy nuclei break apart. In the case of nuclear fusion, much work remains in the quest to sustain the fusion reactions and then to design and build practical fusion power plants. Fusion’s fuel is abundant, namely, light atoms such as the isotopes of hydrogen, and essentially limitless. The most optimistic timetable for fusion development is half a century, because of the extraordinary scientific and engineering challenges involved, but fusion’s benefits are so globally attractive that fusion R&D is an important component of today’s energy R&D portfolio internationally. Fission power currently provides about 17 percent of the world’s electric power. As of December 1996, 442 nuclear power reactors were operating in 30 countries, and 36 more plants were under construction. If fossil plants were used to produce the amount of electricity generated by these nuclear plants, more than an additional 300 million metric tons of carbon would be emitted each year. -
NETS 2020 Template
بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18 -
Uranium (Nuclear)
Uranium (Nuclear) Uranium at a Glance, 2016 Classification: Major Uses: What Is Uranium? nonrenewable electricity Uranium is a naturally occurring radioactive element, that is very hard U.S. Energy Consumption: U.S. Energy Production: and heavy and is classified as a metal. It is also one of the few elements 8.427 Q 8.427 Q that is easily fissioned. It is the fuel used by nuclear power plants. 8.65% 10.01% Uranium was formed when the Earth was created and is found in rocks all over the world. Rocks that contain a lot of uranium are called uranium Lighter Atom Splits Element ore, or pitch-blende. Uranium, although abundant, is a nonrenewable energy source. Neutron Uranium Three isotopes of uranium are found in nature, uranium-234, 235 + Energy FISSION Neutron uranium-235, and uranium-238. These numbers refer to the number of Neutron neutrons and protons in each atom. Uranium-235 is the form commonly Lighter used for energy production because, unlike the other isotopes, the Element nucleus splits easily when bombarded by a neutron. During fission, the uranium-235 atom absorbs a bombarding neutron, causing its nucleus to split apart into two atoms of lighter mass. The first nuclear power plant came online in Shippingport, PA in 1957. At the same time, the fission reaction releases thermal and radiant Since then, the industry has experienced dramatic shifts in fortune. energy, as well as releasing more neutrons. The newly released neutrons Through the mid 1960s, government and industry experimented with go on to bombard other uranium atoms, and the process repeats itself demonstration and small commercial plants. -
1 Phys:1200 Lecture 36 — Atomic and Nuclear Physics
1 PHYS:1200 LECTURE 36 — ATOMIC AND NUCLEAR PHYSICS (4) This last lecture of the course will focus on nuclear energy. There is an enormous reservoir of energy in the nucleus and it can be released either in a controlled manner in a nuclear reactor, or in an uncontrolled manner in a nuclear bomb. The energy released in a nuclear reactor can be used to produce electricity. The two processes in which nuclear energy is released – nuclear fission and nuclear fusion, will be discussed in this lecture. The biological effects of nuclear radiation will also be discussed. 36‐1. Biological Effects of Nuclear Radiation.—Radioactive nuclei emit alpha, beta, and gamma radiation. These radiations are harmful to humans because they are ionizing radiation that have the ability to remove electrons from atoms and molecules in human cells. This can lead to the death or alterations of cells. Alteration of the cell can transform a healthy cell into a cancer cell. The hazards of radiation can be minimized by limiting ones overall exposure to radiation. However, there is still some uncertainty in the medical community about the possibility the effect of a single radioactive particle on the bottom. In other words, are the effects cumulative, or can a single exposure lead to cancer in the body. Exposure to radiation can produce either short term effects appearing within minutes of exposure, or long term effects that may appear in years or decades or even in future generations due to changes in DNA. The effects of absorbing ionizing radiation is measured in a unit called the rem. -
Inis: Terminology Charts
IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System. -
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R. -
Fission and Fusion Can Yield Energy
Nuclear Energy Nuclear energy can also be separated into 2 separate forms: nuclear fission and nuclear fusion. Nuclear fusion is the splitting of large atomic nuclei into smaller elements releasing energy, and nuclear fusion is the joining of two small atomic nuclei into a larger element and in the process releasing energy. The mass of a nucleus is always less than the sum of the individual masses of the protons and neutrons which constitute it. The difference is a measure of the nuclear binding energy which holds the nucleus together (Figure 1). As figures 1 and 2 below show, the energy yield from nuclear fusion is much greater than nuclear fission. Figure 1 2 Nuclear binding energy = ∆mc For the alpha particle ∆m= 0.0304 u which gives a binding energy of 28.3 MeV. (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ) Fission and fusion can yield energy Figure 2 (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html) Nuclear fission When a neutron is fired at a uranium-235 nucleus, the nucleus captures the neutron. It then splits into two lighter elements and throws off two or three new neutrons (the number of ejected neutrons depends on how the U-235 atom happens to split). The two new atoms then emit gamma radiation as they settle into their new states. (John R. Huizenga, "Nuclear fission", in AccessScience@McGraw-Hill, http://proxy.library.upenn.edu:3725) There are three things about this induced fission process that make it especially interesting: 1) The probability of a U-235 atom capturing a neutron as it passes by is fairly high. -
Highlights in Early Stellarator Research at Princeton
J. Plasma Fusion Res. SERIES, Vol.1 (1998) 3-8 Highlights in Early Stellarator Research at Princeton STIX Thomas H. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA (Received: 30 September 1997/Accepted: 22 October 1997) Abstract This paper presents an overview of the work on Stellarators in Princeton during the first fifteen years. Particular emphasis is given to the pioneering contributions of the late Lyman Spitzer, Jr. The concepts discussed will include equilibrium, stability, ohmic and radiofrequency plasma heating, plasma purity, and the problems associated with creating a full-scale fusion power plant. Brief descriptions are given of the early Princeton Stellarators: Model A, Model B, Model B-2, Model B-3, Models 8-64 and 8-65, and Model C, and also of the postulated fusion power plant, Model D. Keywords: Spitzer, Kruskal, stellarator, rotational transform, Bohm diffusion, ohmic heating, magnetic pumping, ion cyclotron resonance heating (ICRH), magnetic island, tokamak On March 31 of this year, at the age of 82, Lyman stellarator was brought to the headquarters of the U.S. Spitzer, Jr., a true pioneer in the fields of astrophysics Atomic Energy Commission in Washington where it re- and plasma physics, died. I wish to dedicate this presen- ceived a favorable reception. Spitzer chose the name tation to his memory. "Project Matterhorn" for the project which was to be Forty-six years ago, in early 1951, Spitzer, then sited in the Princeton area, on the newly acquired For- chair of the Department of Astronomy at Princeton restal tract, and funding began on July 1 of that year University, together with Princeton physicist John 121- Wheeler, had been thinking about the physics of ther- Spitzer's earliest stellarator papers comprise a truly monoclear processes. -
Tomographic Inversion of Wendelstein 7-X Stellarator Plasmas
45th EPS Conference on Plasma Physics P4.1056 Tomographic inversion of Wendelstein 7-X stellarator plasmas C. Brandt1, H. Thomsen1, T. Andreeva, N. Lauf1, U. Neuner1, K. Rahbarnia1, J. Schilling1, T. Broszat1, R. Laube1 and the Wendelstein 7-X Team 1 Max-Planck-Institute for Plasma Physics, Greifswald, Germany In the operational phase OP1.2a (Aug-Dec 2017) of the Wendelstein 7-X (W7-X) stellarator experiment the soft X-ray tomography diagnostic (XMCTS: soft X-ray multi camera tomogra- phy system) has been commissioned. Soft X-ray tomography systems are powerful diagnostics for high temperature plasmas measuring spatiotemporal X-ray emissivity profiles. The XMCTS consists of 20 poloidally arranged pinhole cameras at one toroidal location observing a triangu- lar shaped up-down symmetric plasma cross section. X-ray radiation is mainly emitted in the hot plasma core (electron temperatures > 1keV). In the pinhole cameras the plasma radiation is filtered by a beryllium foil of 12:5 mm thickness being transmissible for X-ray radiation above 1keV. Taking into account the detector silicon thickness of 100 mm the detectable energy range is limited to approximately 1 − 10keV. With 18 available cameras in OP1.2a the soft X-ray emissivity has been recorded along 324 lines-of-sight with a time resolution of 0:5 ms. The presentation concentrates on the preparation and first results of the tomographic inver- sion. For correct calculation of the tomograms, both, the knowledge of the exact geometry of the lines-of-sight and the sensitivity of each photodiode are of crucial importance. The as-built coordinates of the cameras have been measured after the in-vessel installation. -
An Overview of the HIT-SI Research Program and Its Implications for Magnetic Fusion Energy
An overview of the HIT-SI research program and its implications for magnetic fusion energy Derek Sutherland, Tom Jarboe, and The HIT-SI Research Group University of Washington 36th Annual Fusion Power Associates Meeting – Strategies to Fusion Power December 16-17, 2015, Washington, D.C. Motivation • Spheromaks configurations are attractive for fusion power applications. • Previous spheromak experiments relied on coaxial helicity injection, which precluded good confinement during sustainment. • Fully inductive, non-axisymmetric helicity injection may allow us to overcome the limitations of past spheromak experiments. • Promising experimental results and an attractive reactor vision motivate continued exploration of this possible path to fusion power. Outline • Coaxial helicity injection NSTX and SSPX • Overview of the HIT-SI experiment • Motivating experimental results • Leading theoretical explanation • Reactor vision and comparisons • Conclusions and next steps Coaxial helicity injection (CHI) has been used successfully on NSTX to aid in non-inductive startup Figures: Raman, R., et al., Nucl. Fusion 53 (2013) 073017 • Reducing the need for inductive flux swing in an ST is important due to central solenoid flux-swing limitations. • Biasing the lower divertor plates with ambient magnetic field from coil sets in NSTX allows for the injection of magnetic helicity. • A ST plasma configuration is formed via CHI that is then augmented with other current drive methods to reach desired operating point, reducing or eliminating the need for a central solenoid. • Demonstrated on HIT-II at the University of Washington and successfully scaled to NSTX. Though CHI is useful on startup in NSTX, Cowling’s theorem removes the possibility of a steady-state, axisymmetric dynamo of interest for reactor applications • Cowling* argued that it is impossible to have a steady-state axisymmetric MHD dynamo (sustain current on magnetic axis against resistive dissipation). -
On Fusion Driven Systems (FDS) for Transmutation
R-08-126 On fusion driven systems (FDS) for transmutation O Ågren Uppsala University, Ångström laboratory, division of electricity V E Moiseenko Institute of Plasma Physics, National Science Center Kharkov Institute of Physics and Technology K Noack Forschungszentrum Dresden-Rossendorf October 2008 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 CM Gruppen AB, Bromma, 2008 ISSN 1402-3091 Tänd ett lager: SKB Rapport R-08-126 P, R eller TR. On fusion driven systems (FDS) for transmutation O Ågren Uppsala University, Ångström laboratory, division of electricity V E Moiseenko Institute of Plasma Physics, National Science Center Kharkov Institute of Physics and Technology K Noack Forschungszentrum Dresden-Rossendorf October 2008 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se. Summary This SKB report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented. 3 Sammanfattning Denna rapport för SKB ger en övergripande beskrivning av pågående aktiviteter kring fusionsdrivna system (FDS) för transmutation av långlivade radioaktiva isotoper i kärnavfallet från fissionskraftverk.