Towards Personalized, Tumour-Specific, Therapeutic Vaccines for Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Towards Personalized, Tumour-Specific, Therapeutic Vaccines for Cancer REVIEWS Towards personalized, tumour-specific, therapeutic vaccines for cancer Zhuting Hu1, Patrick A. Ott1–3 and Catherine J. Wu1–4 Abstract | Cancer vaccines, which are designed to amplify tumour-specific T cell responses through active immunization, have long been envisioned as a key tool of effective cancer immunotherapy. Despite a clear rationale for such vaccines, extensive past efforts were unsuccessful in mediating clinically relevant antitumour activity in humans. Recently, however, next-generation sequencing and novel bioinformatics tools have enabled the systematic discovery of tumour neoantigens, which are highly desirable immunogens because they arise from somatic mutations of the tumour and are therefore tumour specific. As a result of the diversity of tumour neoepitopes between individuals, the development of personalized cancer vaccines is warranted. Here, we review the emerging field of personalized cancer vaccination and discuss recent developments and future directions for this promising treatment strategy. Adoptive cell transfer Methods to harness the exquisite specificity of the individuals with B cell tumours, in which tumour cells (ACT). A form of immune system to eliminate tumours have been under are mostly uniform and express a common dominant immunotherapy in which development since the start of the 20th century1–3. antigen (such as CD19). Solid tumours typically lack a naturally occurring or Several effective strategies have emerged over the common surface antigen target, which poses a consider- genetically engineered past decade, such that immunotherapy is now widely able challenge for this approach. Similarly, despite some tumour-specific lymphocytes, objective response rate which may be autologous considered to be an important additional tool for the promising results from CPB, the (patient’s own) or allogeneic treatment of individuals with cancer. One powerful (ORR) of single-agent CPB is limited to 30% in most (donor), are activated and approach is adoptive cell transfer (ACT)4,5. Autologous tumour types for which activity has been shown9–11 selected in vitro for tumour tumour-­reactive T cells derived from tumour-­infiltrating (exceptions include microsatellite-instable tumours12, reactivity and expanded to 13 14 reach high numbers for lympho­cytes (TILs) and genetically engineered lympho­ Merkel cell carcinoma and Hodgkin lymphoma , for reinfusion into the patient. cytes that express highly active T cell receptors (TCRs) which ORRs of CPB are 50–80%). Furthermore, anti­ or chimeric antigen receptors (CARs) have shown potent tumour activity of CPB has been reported as being antitumour activity6. CAR–T cell therapy targeting absent to minimal in several types of malignancy, the B cell antigen CD19 was approved by the US Food including microsatellite-stable colorectal cancer15 and and Drug Administration (FDA) for childhood acute pancreatic cancer16. lympho­blastic leukaemia in 2017. Immune checkpoint Therefore, increasing research attention has shifted blockade 1Department of Medical (CPB) has emerged as another clinically to understanding the biological basis of these variable 7,8 Oncology, Dana-Farber effective approach . Monoclonal antibodies directed responses and to identifying biomarkers that can pre- Cancer Institute, Boston, against the programmed cell death protein 1 (PD1) and dict which patients are likely to respond or not respond Massachusetts 02215, USA. cytotoxic T lymphocyte antigen 4 (CTLA4) signalling to these therapies. Currently, a large number of clini- 2 Department of Medicine, pathways have shown clinical efficacy in a wide range of cal trials assessing combination therapies, which are Brigham and Women’s 17 Hospital, Boston, solid and haematological malignancies, which has led typically based on PD1 targeting, are under way . For Massachusetts 02115, USA. to approvals by the FDA for the treatment of a rapidly CPB, growing evidence supports the idea that individ- 3Harvard Medical School, growing list of tumour types7,8. The distinct immune- uals with tumours that lack pre-existing TILs are less Boston, Massachusetts based strategies of ACT and CPB illustrate the prom- likely to respond to therapy. However, the presence of 02115, USA. 4Broad Institute of MIT and ise of how cancer can be eradicated when active T cells pre-existing T cell responses at the site of the tumour 18 Harvard, Cambridge, recognize their cognate antigens. does not guarantee an antitumour response . One Massachusetts 02142, USA. Nevertheless, both ACT and CPB have limitations, approach to increasing the effectiveness of CPB is the Correspondence to C.J.W. which are reflected by the restricted patient populations combined administration of PD1‑blocking anti­bodies [email protected] that benefit from either therapy. By design, CAR–T cell and CTLA4‑blocking antibodies, which has been doi:10.1038/nri.2017.131 therapy is directed against a single antigen target, and approved for the treatment of melanoma and is being Published online 11 Dec 2017 clinical efficacy has thus far been achieved primarily in investigated in many other malignancies. Although this 168 | MARCH 2018 | VOLUME 18 www.nature.com/nri ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. CANCER IMMUNOTHERAPYREVIEWS Chimeric antigen receptors approach can increase response rates in individuals with antitumour immune responses, as extensively reviewed 29,30 (CARs). Engineered receptors advanced melanoma, it also leads to substantially higher elsewhere . Fundamental to the generation of an anti- that are formed by fusing the toxicity19,20. Clearly, alternative approaches are needed tumour immune response is the activation or priming antigen-recognition domain of to achieve maximal benefit from these agents while of naive antigen-specific T cells by professional antigen-­ a specific antibody to an intracellular signalling domain. minimizing toxicity. presenting cells (APCs), such as dendritic cells (DCs), They can be used to modify A rational approach to achieve this goal is to com- which requires interactions between diverse cell types effector T cells or natural killer bine CPB with a therapy that can presensitize the host and distinct tissue compartments31 (FIG. 2a). In both mice cells. immune system to the tumour. Given their potential and humans, there has been a growing appreciation of to both generate new antigen-specific T cell responses the various defects at the level of antigen processing and Immune checkpoint 32 blockade against tumour cells and amplify existing responses, can- presentation that occur in tumour-bearing hosts , as (CPB). The reversion of T cell cer vaccines may be an effective combinatorial partner well as of the impaired functionality of tumour-specific exhaustion using monoclonal with CPB (FIG. 1). By selecting suitable antigen targets, T cells within the immunosuppressive tumour micro­ antibodies that inhibit the a potent and tumour-specific immune response can environment due to various mechanisms of primary function of inhibitory immune adaptive immune resistance33 receptors on the cell surface, be induced while minimizing autoimmunity. Recent immune resistance and . 34 such as programmed cell death studies have shown that tumour neoantigens are key Tumour heterogeneity between and within tumours is protein 1 (PD1), PD1 ligand 1 targets for ACT, CPB and therapeutic vaccination21–28. also a major challenge to the development of cancer (PDL1) and cytotoxic T In this Review, we focus on the current development immunotherapy; a crucial factor in this regard is the lymphocyte antigen 4 (CTLA4). of neoantigen-based,­ personalized, tumour-specific, clonal evolution of tumour cells arising from selective therapeutic vaccines for cancer. pressure, which leads some mutant clones to expand, whereas it leads others to become extinct35. Building cancer vaccines In this context, an open question remains regarding Increased knowledge of methods for antigen discov- whether therapeutic cancer vaccines designed to activate ery and of soluble immunomodulatory factors has APCs can overcome these challenges to facilitate tumour led to our current understanding of the key cellular antigen presentation and to promote an efficient anti- components that are involved in mounting effective tumour immune response. On the basis of our under- standing of how productive antigen-specific immune Naive T cell responses are generated, the active ingredients of cancer vaccines comprise four key components: tumour anti- Vaccination gens, formulations, immune adjuvants and delivery vehi- a Tumour cles, which are described below (FIG. 2b). As we discuss, despite the large number of antigens, adjuvants, delivery De novo tumour- strategies and formulations that have been tested so far, specific T cell comparative data on these different approaches, par- response Tumour cell ticularly in humans, are scarce. Therefore, fundamental questions such as the most effective type of adjuvant Tumour antigens (including different adjuvants for different types of anti- gen), delivery approach, dose, route of administration b Pre-existing tumour-specific and schedule remain unanswered. T cell Tumour antigens The identification of the optimal antigen to target Amplification of for a particular tumour type has long been a priority existing tumour- for the field of cancer immunotherapy (BOXES 1,2). specific T cell Tumour antigens can generally be categorized as being response tumour associated or tumour specific. As described below,
Recommended publications
  • WHO Drug Information Vol. 12, No. 3, 1998
    WHO DRUG INFORMATION VOLUME 12 NUMBER 3 • 1998 RECOMMENDED INN LIST 40 INTERNATIONAL NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES WORLD HEALTH ORGANIZATION • GENEVA Volume 12, Number 3, 1998 World Health Organization, Geneva WHO Drug Information Contents Seratrodast and hepatic dysfunction 146 Meloxicam safety similar to other NSAIDs 147 Proxibarbal withdrawn from the market 147 General Policy Issues Cholestin an unapproved drug 147 Vigabatrin and visual defects 147 Starting materials for pharmaceutical products: safety concerns 129 Glycerol contaminated with diethylene glycol 129 ATC/DDD Classification (final) 148 Pharmaceutical excipients: certificates of analysis and vendor qualification 130 ATC/DDD Classification Quality assurance and supply of starting (temporary) 150 materials 132 Implementation of vendor certification 134 Control and safe trade in starting materials Essential Drugs for pharmaceuticals: recommendations 134 WHO Model Formulary: Immunosuppressives, antineoplastics and drugs used in palliative care Reports on Individual Drugs Immunosuppresive drugs 153 Tamoxifen in the prevention and treatment Azathioprine 153 of breast cancer 136 Ciclosporin 154 Selective serotonin re-uptake inhibitors and Cytotoxic drugs 154 withdrawal reactions 136 Asparaginase 157 Triclabendazole and fascioliasis 138 Bleomycin 157 Calcium folinate 157 Chlormethine 158 Current Topics Cisplatin 158 Reverse transcriptase activity in vaccines 140 Cyclophosphamide 158 Consumer protection and herbal remedies 141 Cytarabine 159 Indiscriminate antibiotic
    [Show full text]
  • Tumor Neoantigens: from Basic Research to Clinical Applications
    Jiang et al. Journal of Hematology & Oncology (2019) 12:93 https://doi.org/10.1186/s13045-019-0787-5 REVIEW Open Access Tumor neoantigens: from basic research to clinical applications Tao Jiang1,4†, Tao Shi2†, Henghui Zhang3†,JieHu1, Yuanlin Song1, Jia Wei2*, Shengxiang Ren4* and Caicun Zhou4* Abstract Tumor neoantigen is the truly foreign protein and entirely absent from normal human organs/tissues. It could be specifically recognized by neoantigen-specific T cell receptors (TCRs) in the context of major histocompatibility complexes (MHCs) molecules. Emerging evidence has suggested that neoantigens play a critical role in tumor- specific T cell-mediated antitumor immune response and successful cancer immunotherapies. From a theoretical perspective, neoantigen is an ideal immunotherapy target because they are distinguished from germline and could be recognized as non-self by the host immune system. Neoantigen-based therapeutic personalized vaccines and adoptive T cell transfer have shown promising preliminary results. Furthermore, recent studies suggested the significant role of neoantigen in immune escape, immunoediting, and sensitivity to immune checkpoint inhibitors. In this review, we systematically summarize the recent advances of understanding and identification of tumor- specific neoantigens and its role on current cancer immunotherapies. We also discuss the ongoing development of strategies based on neoantigens and its future clinical applications. Keywords: Neoantigen, Immunotherapy, Immune escape, Immune checkpoint, Resistance Introduction polyomavirus (MCPyV)–related Merkel cell carcinoma Tumor neoantigen, or tumor-specific antigen (TSA), (MCC) and Epstein-Barr virus (EBV)–relatedheadandneck is the repertoire of peptides that displays on the cancers, any epitopes derive from open reading frames tumor cell surface and could be specifically recog- (ORFs) in the viral genome also contribute to the potential nized by neoantigen-specific T cell receptors (TCRs) source of neoantigens [6–8].
    [Show full text]
  • Efficient Tumor Clearance and Diversified Immunity Through Neoepitope Vaccines and Combinatorial Immunotherapy
    Published OnlineFirst July 10, 2019; DOI: 10.1158/2326-6066.CIR-18-0620 Research Article Cancer Immunology Research Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy Karin L. Lee1, Stephen C. Benz2, Kristin C. Hicks1, Andrew Nguyen2,Sofia R. Gameiro1, Claudia Palena1, John Z. Sanborn2, Zhen Su3, Peter Ordentlich4, Lars Rohlin5, John H. Lee6, Shahrooz Rabizadeh2,5, Patrick Soon-Shiong2,5, Kayvan Niazi5, Jeffrey Schlom1, and Duane H. Hamilton1 Abstract Progressive tumor growth is associated with deficits in the tumor immunosuppression, and a tumor-targeted IL12 immunity generated against tumor antigens. Vaccines target- molecule to facilitate T-cell function within the tumor ing tumor neoepitopes have the potential to address qualita- microenvironment. Analysis of tumor-infiltrating leuko- tive defects; however, additional mechanisms of immune cytes demonstrated this multifaceted treatment regimen was þ failure may underlie tumor progression. In such cases, patients required to promote the influx of CD8 Tcellsandenhance would benefit from additional immune-oncology agents tar- the expression of transcripts relating to T-cell activation/ geting potential mechanisms of immune failure. This effector function. Tumor-targeted IL12 resulted in a marked study explores the identification of neoepitopes in the MC38 increase in clonality of T-cell repertoire infiltrating the colon carcinoma model by comparison of tumor to normal tumor, which when sculpted with the addition of either a DNA and tumor RNA sequencing technology, as well as peptide or adenoviral neoepitope vaccine promoted effi- neoepitope delivery by both peptide- and adenovirus-based cient tumor clearance. In addition, the neoepitope vaccine vaccination strategies. To improve antitumor efficacies, we induced the spread of immunity to neoepitopes expressed combined the vaccine with a group of rationally selected by the tumor but not contained within the vaccine.
    [Show full text]
  • The Double Stranded RNA Analog Poly-IC Elicits Both Robust IFN-Λ Production and Oncolytic Activity in Human Gastrointestinal Cancer Cells
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 77), pp: 34471-34484 Research Paper The double stranded RNA analog poly-IC elicits both robust IFN-λ production and oncolytic activity in human gastrointestinal cancer cells Chantal Bou-Hanna1,*, Anne Jarry1,2,*, Jean-François Mosnier1,3, Céline Bossard1,2,3 and Christian L. Laboisse1,3 1University of Nantes, EA4273 Biometadys, Nantes, France 2Current address: CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France 3Pathology Department, Nantes University Hospital, Nantes, France *Equal co-authors Correspondence to: Christian L. Laboisse, email: [email protected]; [email protected] Keywords: dsRNA/poly-IC; IFN-λ; immunoadjuvant; oncolysis; human gastrointestinal cancer Received: February 09, 2018 Accepted: September 06, 2018 Published: October 02, 2018 Copyright: Bou-Hanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Purpose: Type III IFN (IFN-λ) is the dominant frontline response over type I IFN in human normal intestinal epithelial cells upon viral infection, this response being mimicked by the dsRNA analog poly-IC. Poly-IC also induces cell death in murine intestinal crypts ex vivo. Here we examined whether these innate defense functions of normal intestinal epithelial cells are recapitulated in gastrointestinal carcinoma cells so that they could be harnessed to exert both immunoadjuvant and oncolytic functions, an unknown issue yet. Experimental design: Four human gastrointestinal carcinoma cell lines versus the Jurkat lymphoma cell line were used to assess the effects of intracellular poly-IC on i) IFN-λ secretion and cell proliferation and ii) role of NFκB signaling using the NFκB inhibitory peptide SN50 as a screening probe and a siRNA approach.
    [Show full text]
  • Patient Resource Free
    PATIENT RESOURCE FREE Third Edition CancerUnderstanding Immunotherapy Published in partnership with CONTENT REVIEWED BY A DISTINGUISHED PRP MEDICAL PATIENT ADVISORY RESOURCE BOARD PUBLISHING® Understanding TABLE OF CONTENTS Cancer Immunotherapy Third Edition IN THIS GUIDE 1 Immunotherapy Today 2 The Immune System 4 Immunotherapy Strategies 6 Melanoma Survivor Story: Jane McNee Chief Executive Officer Mark A. Uhlig I didn’t look sick, so I didn’t want to act sick. Publisher Linette Atwood Having and treating cancer is only one part of your life. Co-Editor-in-Chief Charles M. Balch, MD, FACS Jane McNee, melanoma survivor Co-Editor-in-Chief Howard L. Kaufman, MD, FACS Senior Vice President Debby Easum 7 The Road to Immunotherapy Vice President, Operations Leann Sandifar 8 Cancer Types Managing Editor Lori Alexander, MTPW, ELS, MWC™ 14 Side Effects Senior Editors Dana Campbell Colleen Scherer 15 Glossary Graphic Designer Michael St. George 16 About Clinical Trials Medical Illustrator Todd Smith 16 Cancer Immunotherapy Clinical Trials by Disease Production Manager Jennifer Hiltunen 35 Support & Financial Resources Vice Presidents, Amy Galey Business Development Kathy Hungerford 37 Notes Stephanie Myers Kenney Account Executive Melissa Amaya Office Address 8455 Lenexa Drive CO-EDITORS-IN-CHIEF Overland Park, KS 66214 For Additional Information [email protected] Charles M. Balch, MD, FACS Advisory Board Visit our website at Professor of Surgery, The University of Texas PatientResource.com to read bios of MD Anderson Cancer Center our Medical and Patient Advisory Board. Editor-in-Chief, Patient Resource LLC Editor-in-Chief, Annals of Surgical Oncology Past President, Society of Surgical Oncology For Additional Copies: To order additional copies of Patient Resource Cancer Guide: Understanding Cancer Immunotherapy, Howard L.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Neoepitopes As Difference Makers for General Cancer Vaccines?
    Author Manuscript Published OnlineFirst on July 9, 2020; DOI: 10.1158/1078-0432.CCR-20-2127 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Neoepitopes as difference makers for general cancer vaccines? Jessica N. Filderman, B.S.1 and Walter J. Storkus, Ph.D.1-5 From the Departments of 1Immunology, 2Dermatology, 3Pathology and 4Bioengineering, University of Pittsburgh School of Medicine and the 5Hillman Cancer Center, Pittsburgh, PA 15213. Correspondence to: Walter J. Storkus, Ph.D. W1151 Biomedical Science Tower Department of Dermatology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh, PA 15213 Tel: 412-648-9981 FAX: 412-383-5857 Email: [email protected] Running Title: Cancer neoepitopes as difference makers (39 characters) Conflicts of Interest: The author has no conflict of interest. Funding: This work was support by NIH T32 CA082084 (JNF) and NIH R01 CA204419 (WJS). Title characters: 61 Text Words: 1,024 Summary Words: 50 References: 5 Figures: 1 1 Downloaded from clincancerres.aacrjournals.org on October 6, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 9, 2020; DOI: 10.1158/1078-0432.CCR-20-2127 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. SUMMARY: The cancer mutanome has been associated with disease prognosis as well as response to interventional immunotherapy and provides a substrate for development of personalized vaccines targeting tumor neoepitopes. Recent findings suggest that neoantigen-based vaccines may represent general interventional approaches for patients with solid cancers, regardless of their inherent mutational burden.
    [Show full text]
  • Pioneering Individualized Cancer Therapies
    PLATFORMS Pharmacologically optimized protein coding RNA for targeted in vivo delivery mRNA Technology • Cancer immunotherapies • Prophylactic vaccines • Protein replacement Immunotherapy with genetically engineered T cells, adoptive T cell transfer Cell Therapy • T cell receptor therapies • CAR-T therapies Engineered nanoparticles for cancer immunotherapy • Bispecific antibodies Protein Therapeutics • Microbodies • Virus-like particles Small molecule drug discovery • TLR7-agonists Small Molecules • Immuno-modulating small molecules • Drug discovery services FIRST INDIVIDUALIZED CLINICAL CANCER TRIALS WORLDWIDE WITH • An mRNA-based individualized cancer vaccine targeting neo-antigens • An intravenous formulation of an mRNA vaccine • An mRNA-based individualized vaccine drawn from a warehouse of mRNAs encoding cancer-selective antigens • A genomics-driven GMP-approved manufacturing process for individual patient-specific therapies PIONEERING INDIVIDUALIZED BioNTech SE An der Goldgrube 12 CANCER THERAPIES 55131 Mainz Germany +49 6131 – 9084 – 0 [email protected] www.biontech.de/de COMPANY OVERVIEW INDIVIDUALIZED MRNA IMMUNOLOGY BioNTech is the largest privately held biopharmaceutical company in Europe. CONCEPTS – A BIONTECH PLATFORM We develop truly individualized and patient-tailored treatments against cancer. Our objective is to transform cancer into a manageable and non-lethal disease by BioNTech’s initial product candidates for individualized cancer treatments providing treatments from a suite of therapeutic platforms and offering lifelong are developed using the company’s mRNA technology platform. The IVAC® patient support. We currently have several product candidates in clinical develop- (Individualized Vaccines Against Cancer) platform has enabled the design ment and have established all of the building blocks necessary in an effort to bring of immunotherapies targeting cancer mutations and therefore has the highly potent, tailor-made and individualized cancer therapies to patients.
    [Show full text]
  • Multi-Step Screening of Neoantigens'
    www.nature.com/scientificreports OPEN Multi‑step screening of neoantigens’ HLA‑ and TCR‑interfaces improves prediction of survival Guilhem Richard1*, Anne S. De Groot2,3, Gary D. Steinberg4, Tzintzuni I. Garcia5, Alec Kacew5, Matthew Ardito2, William D. Martin2, Gad Berdugo1,6, Michael F. Princiotta1, Arjun V. Balar4 & Randy F. Sweis5* Improvement of risk stratifcation through prognostic biomarkers may enhance the personalization of cancer patient monitoring and treatment. We used Ancer, an immunoinformatic CD8, CD4, and regulatory T cell neoepitope screening system, to perform an advanced neoantigen analysis of genomic data derived from the urothelial cancer cohort of The Cancer Genome Atlas. Ancer demonstrated improved prognostic stratifcation and fve‑year survival prediction compared to standard analyses using tumor mutational burden or neoepitope identifcation using NetMHCpan and NetMHCIIpan. The superiority of Ancer, shown in both univariate and multivariate survival analyses, is attributed to the removal of neoepitopes that do not contribute to tumor immunogenicity based on their homology with self‑epitopes. This analysis suggests that the presence of a higher number of unique, non‑self CD8‑ and CD4‑neoepitopes contributes to cancer survival, and that prospectively defning these neoepitopes using Ancer is a novel prognostic or predictive biomarker. Understanding mechanisms of cancer progression and identifying patients at high risk for recurrence are pivotal to the personalization of cancer care. Improvements in DNA sequencing techniques combined with cost reduc- tions have enabled the routine mapping of the tumor genome and improved our mechanistic understanding of cancer progression and patients’ survival. Tumor mutational burden (TMB) has arisen as a potential cancer prognosis biomarker in numerous tumor types 1,2.
    [Show full text]
  • And Poly-ICLC in Glioblastoma
    De Waele et al. Journal of Experimental & Clinical Cancer Research (2021) 40:213 https://doi.org/10.1186/s13046-021-02017-2 REVIEW Open Access A systematic review on poly(I:C) and poly- ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy Jorrit De Waele1* , Tias Verhezen1, Sanne van der Heijden1, Zwi N. Berneman2,3,4, Marc Peeters1,5, Filip Lardon1, An Wouters1† and Evelien L. J. M. Smits1,4† Abstract Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Identification of the Core Regulators of the HLA I-Peptide Binding Process
    www.nature.com/scientificreports OPEN Identification of the core regulators of the HLA I-peptide binding process Received: 01 November 2016 Yu-Hang Zhang1,*, Zhihao Xing1,*, Chenglin Liu2, ShaoPeng Wang3, Tao Huang1, Yu-Dong Cai3 Accepted: 13 January 2017 & Xiangyin Kong1 Published: 17 February 2017 During the display of peptide/human leukocyte antigen (HLA) -I complex for further immune recognition, the cleaved and transported antigenic peptides have to bind to HLA-I protein and the binding affinity between peptide epitopes and HLA proteins directly influences the immune recognition ability in human beings. Key factors affecting the binding affinity during the generation, selection and presentation processes of HLA-I complex have not yet been fully discovered. In this study, a new method describing the HLA class I-peptide interactions was proposed. Three hundred and forty features of HLA I proteins and peptide sequences were utilized for analysis by four candidate algorithms, screening the optimal classifier. Features derived from the optimal classifier were further selected and systematically analyzed, revealing the core regulators. The results validated the hypothesis that features of HLA I proteins and related peptides simultaneously affect the binding process, though with discrepant redundancy. Besides, the high relative ratio (16/20) of the amino acid composition features suggests the unique role of sequence signatures for the binding processes. Integrating biological, evolutionary and chemical features of both HLA I molecules and peptides, this study may provide a new perspective of the underlying mechanisms of HLA I-mediated immune reactions. Human leukocyte antigen (HLA), which refers in particular to the major histocompatibility complex (MHC) in humans, is a group of cell surface proteins that is essential for the recognition of self-cells and non-self-cells and activation of the acquired immune system to eliminate the non-self-components1,2.
    [Show full text]