Infrared Spectra of Small Insertion and Methylidene Complexes in Reactions of Laser-Ablated Nickel Atoms with Halomethanes

Total Page:16

File Type:pdf, Size:1020Kb

Infrared Spectra of Small Insertion and Methylidene Complexes in Reactions of Laser-Ablated Nickel Atoms with Halomethanes Organometallics XXXX, XXX, 000–000 A DOI: 10.1021/om900498m Infrared Spectra of Small Insertion and Methylidene Complexes in Reactions of Laser-Ablated Nickel Atoms with Halomethanes Han-Gook Cho,† Lester Andrews,*,‡ Bess Vlaisavljevich,§ and Laura Gagliardi§,^ †Department of Chemistry, University of Incheon, 177 Dohwa-dong, Nam-ku, Incheon, 402-749, South Korea, ‡Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, §Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, and ^Department of Physical Chemistry, University of Geneva, 30, q. E. Ansermet, 1211 Geneve, Switzerland Received June 12, 2009 Nickel carbene complexes, CX2dNiX2, are prepared along with the insertion products, CX3-NiX, in reactions of laser-ablated Ni atoms with tetrahalomethanes. These reaction products are identified from matrix infrared spectra and density functional frequency calculations. In agreement with the previously studied Pt cases, the carbon-nickel bonds of the Ni carbene complexes are essentially double bonds with CASPT2-computed effective bond orders of 1.8-1.9. On the other hand, only insertion complexes are generated from dihalomethane and trihalomethane precursors. The nickel carbenes have staggered structures, and several insertion complexes containing C-Cl bonds reveal distinct bridged structures similar to those observed in the corresponding Fe products, which indicate effective coordination of Cl to the metal center. The unique F-bridged CH2F-NiCl structure is also observed. Introduction actinides with small alkanes and halomethanes via C-H(X) insertion following H(X) migration.5-9 These complexes High oxidation-state complexes, first introduced in the also show distinct structures, particularly due to agostic 1 1970s, are now considered an essential part of coordination interaction and dramatic photochemical reactions including chemistry and help to understand the nature of carbon-metal photoreversibility. Their small sizes make them ideal for 2 bonds. Their rich chemistry includes growing applications in high-level theoretical approaches and, therefore, are consid- numerous syntheses including metathesis, catalytic properties, ered as model systems for their much larger cousins. The 3 and C-H insertion. Their distinct structures and photoche- higher oxidation-state complexes, however, are expected to mical properties have also provided testing grounds for be less favored on going far right among the transition metals 4 theoretical applications. in the periodic table because the d-orbital becomes more Recently small high-oxidation-state complexes have been filled. reported from reactions of group 3-8 transition metals and More recently small Pt carbene complexes, along with the Publication Date (Web): September 9, 2009 | doi: 10.1021/om900498m insertion products, have been identified in reactions with *To whom correspondence should be addressed. E-mail: lsa@ 10 - Downloaded by UNIV DE GENEVA on September 9, 2009 | http://pubs.acs.org methane and halomethanes. The C Pt bond orders com- virginia.edu. (1) (a) Fischer, E. O.; Kreis, G.; Kreiter, C. G.; Muller,€ J.; Huttner, puted by density functional theory and natural bond order G.; Lorenz, H. Angew. Chem., Int. Ed. Engl. 1973, 12, 564. (b) Schrock, R. range from 1.41 to 1.70 as Cl is replaced by F since the R. J. Am. Chem. Soc. 1974, 96, 6796. more electronegative halogen evidently supports a stronger (2) (a) Herndon, J. W. Coord. Chem. Rev. 2009, 253, 1517. carbon-metal bond. The small Pt methylidenes have a (b) Herndon, J. W. Coord. Chem. Rev. 2009, 253, 86. (c) Herndon, J. W. - Coord. Chem. Rev. 2007, 251, 1158. (d) Herndon, J. W. Coord. Chem. Rev. substantial amount of double bond character from dπ pπ 2006, 250, 1889. (e) Herndon, J. W. Coord. Chem. Rev. 2005, 249, 999. bonding, and their C-Pt bonds are considerably shorter (f) Herndon, J. W. Coord. Chem. Rev. 2004, 248, 3, and earlier review articles in this series. (3) (a) Crabtree, R. H. Chem. Rev. 1995, 95, 987, and references (6) (a) Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2007, 111, 2480. therein. (b) Wada, K.; Craig, B.; Pamplin, C. B.; Legzdins, P; Patrick, B. O.; (b) Cho, H.-G.; Andrews, L. Organometallics 2007, 26, 633. (Group 3). Tsyba, I.; Bau, R. J. Am. Chem. Soc. 2003, 125, 7035. (c) Ujaque, G.; (7) (a) Cho, H.-G.; Andrews, L. Organometallics 2007, 26, 4096. Cooper, A. C.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. (b) Cho, H.-G.; Andrews, L. Inorg. Chem. 2008, 47, 1653. (Re). 1998, 120, 361. (8) (a) Cho, H.-G.; Lyon, J. T.; Andrews, L. Organometallics 2008, (4) Clot, E.; Eisenstein, O. In Computational Inorganic Chemistry; 27, 5241. (b) Cho, H.-G.; Andrews, L. Eur. J. Inorg. Chem. 2008, 2537. Kaltzoyannis, N., McGrady, J. E., Eds.; Structure and Bonding; Spring- (c) Cho, H.-G.; Andrews, L. Organometallics 2008, 27, 1786. (Group 8). er: Heidelberg, 2004; pp 1-36. Aubert, C.; Buisine, O.; Malacria, M. Chem. (9) (a) Andrews, L.; Cho, H.-G. J. Phys. Chem. A 2005, 109, 6796. Rev. 2002, 102, 813, and references therein. (b) Cho, H.-G.; Lyon, J. T.; Andrews, L. J. Phys. Chem. A 2008, 112, 6902. (5) (a) Andrews, L.; Cho, H.-G. Organometallics 2006, 25, 4040, and (c) Lyon, J. T.; Cho, H.-G.; Andrews, L. Eur. J. Inorg. Chem. 2008, 1047 references therein (review article, groups 4-6). (b) Lyon, J. T.; Cho, H.-G.; (Actinides). Andrews, L. Organometallics 2007, 26, 2519 (Ti, Zr, Hf þ CHX3,CX4). (10) (a) Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2008, 130, 15836. (c) Lyon, J. T.; Cho, H.-G.; Andrews, L. Organometallics 2007, 26, 6373 (b) Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2008, 112, 12293. (c) Cho, (Cr, Mo, W þ CHX3,CX4). H.-G.; Andrews, L. Organometallics, 2009, 28, 1358. (Pt). r XXXX American Chemical Society pubs.acs.org/Organometallics B Organometallics, Vol. XXX, No. XX, XXXX Cho et al. than those of typical Pt(II) carbene complexes, leading to a conclusion that the small Pt methylidene complexes have substantial Pt(IV) character.11 As a continuation of our investigation on the chemistry of small transition-metal high-oxidation-state complexes, we re- port reactions of Ni with halomethanes. In contrast to the case of Pt,10 which is considered as the most effective C-H insertion agent among group 10 metals,10,12 only tetrahalomethanes generate Ni methylidenes. Several insertion products have interesting structures, particularly due to intermolecular inter- action between X bonded to C and the metal center. Experimental and Computational Methods Laser-ablated nickel atoms were reacted with CCl4 (Fisher), 13 CCl4 (90% enriched, MSD Isotopes), CFCl3,CF2Cl2 (Dupont), CHCl3,CH2Cl2,CH2FCl, CH2F2 (Dupont), CDCl3, 13 CD2Cl2 (MSD Isotopes), CD2FCl, and CD2F2 (synthesized )in excess argon during condensation at 10 K using a closed-cycle refrigerator (Air Products Displex). These methods have been described in detail in previous publications.10,14 Reagent gas - mixtures were in the range 0.2 1.0% in argon. The Nd:YAG - -1 laser fundamental (1064 nm, 10 Hz repetition rate, 10 ns pulse Figure 1. Infrared spectra in the 1000 800 cm region for the width) was focused on a rotating metal target (Ni, 99.99%, reaction products of the laser-ablated nickel atom with CCl4 iso- Johnson Matthey) using 5-10 mJ/pulse. After initial reaction, topomers in excess argon at 10 K. (a) Ni and CCl4 (0.5% in argon) -1 λ infrared spectra were recorded at 0.5 cm resolution using a co-depositedfor1h.(b)As(a)aftervisible( > 420 nm) irradiation. Nicolet 550 spectrometer with a Hg-Cd-Te range B detector. (c) As (b) after ultraviolet (240-380 nm) irradiation. (d) As (c) after Then samples were irradiated for 20 min periods by a mercury arc full arc (λ > 220 nm) irradiation. (e) As (d) after annealing to 26 K. 13 street lamp (175 W) with the globe removed using a combination (f) Ni and CCl4 reagent (0.5% in argon) co-deposited for 1 h. (g-j) of optical filters or annealed to allow further reagent diffusion. As (f) spectra taken following the same irradiation and annealing To provide support for the assignment of new experimental sequence. i and m designate the product absorption groups, while - frequencies and to correlate with related works,5 10 density func- P and c stand for the precursor and common absorptions. tional theory (DFT) calculations were performed using the Gauss- ian 03 program system,15 the B3LYP and BPW91 density and the optimized geometry was confirmed by vibrational analysis. functionals,16,17 and the 6-311þþG(3df,3pd)basissetsforC,F,Cl, The vibrational frequencies were calculated analytically, and zero- and Ni atoms.18 Geometries were fully relaxed during optimization, point energy is included in the calculation of binding and reaction energies. Previous investigations have shown that DFT-calculated harmonic frequencies are usually slightly higher than observed (11) Prokopchuk, E. M.; Puddephatt, R. J. Organometallics 2003, 22, frequencies,5-10,19 and they provide useful predictions for infrared 563, and references therein. Pt(IV). spectra of new molecules. Natural bond orbital (NBO) analysis15,20 (12) (a) Carroll, J. J.; Weisshaar, J. C.; Siegbahn, P. E. M.; Wittborn, - C. A. M.; Blomberg, M. R. A. J. Phys. Chem. 1995, 99, 14388. (b) Low, J. was done to help understand the carbon nickel bonding in the J.; Goddard, W. A.III. Organometallics 1986, 5, 609. (c) Wang, X.; Andrews, carbenes, but the results were questionable, and the carbenes were L. J. Phys. Chem. A 2004, 108, 4838. (d) Cho, H.-G.; Andrews, L. J. Phys. examined using CASSCF/CASPT2 methods and triple-ζ (ANO- Chem. A 2004, 108, 6272. RCC-VTZP) basis sets.21,22 An active space of (6,6) was chosen for (13) Isotopic modifications synthesized: Andrews, L.; Willner, H.; the active orbitals involved in the C-M bond.
Recommended publications
  • United States Patent (19) (11) 3,799,996 Bloch (45) Mar
    United States Patent (19) (11) 3,799,996 Bloch (45) Mar. 26, 1974 54). PREPARATION OF 3,016,405 1/1962 Lovejoy........................... 260/653.3 TETRAFLUOROETHYLENE 75 Inventor: Herman S. Bloch, Skokie, Ill. Primary Examiner-Daniel D. Horwitz 73) Assignee: Universal Oil Products Company, Attorney, Agent, or Firm-James R. Hoatson, Jr.; Ray Des Plaines, Ill. mond H. Nelson 22 Filed: Aug. 4, 1971 (21 Appl. No.: 169,046 57 ABSTRACT Tetrahalo-substituted ethylenes, and particularly tetra 52) U.S. Cl............................... 260/653.3, 252/443 fluoroethylene, may be prepared by reacting a mixed (51 Int. Cl........................ C07c 17/26, CO7c 2 1/18 tetrahalomethane with a metal carbonyl in the pres 58) Field of Search.................................. 260/653.3 ence of an inert solvent. The tetrafluoroethylene which is prepared is useful as a starting material for (56 References Cited the preparation of polymeric substances. UNITED STATES PATENTS 2,925,446 2/1960 Drysdale.......................... 260/653.3 9 Claims, No Drawings 3,799,996 1 2 PREPARATION OF TETRAFLUOROETHYLENE fluoromethane, said compounds having been formed This invention relates to a process for preparing tet by any means known in the art. In the present process rahaloethylenes. More specifically, the invention is these compounds are treated with a metal carbonyl concerned with a process for preparing tetrafluor compound under reaction conditions hereinafter set oethylene by utilizing a mixed tetrahalomethane as the forth in greater detail. The metal carbonyls which are starting material, said methane containing two fluoro used to treat the aforementioned dihalodifluorome atoms as well as two halo substituents of a dissimilar na thane preferably comprise carbonyls of metals of ture.
    [Show full text]
  • Thesis in the Shikimate Area
    University of Bath PHD Synthesis in the shikimate area Diston, Simon Award date: 1995 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 SYNTHESIS IN THE SHHOMATE AREA Submitted by Simon Diston for the degree of Ph.D. of the University of Bath 1995 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may not be consulted, photocopied or lent to other libraries without the permission of the author and Zeneca for three years from the date of acceptance of the thesis.
    [Show full text]
  • The Haloform Reaction. Reynold C
    Subscriber access provided by Service des bibliothèques | Université de Sherbrooke The Haloform Reaction. Reynold C. Fuson, and Benton A. Bull Chem. Rev., 1934, 15 (3), 275-309 • DOI: 10.1021/cr60052a001 Downloaded from http://pubs.acs.org on December 30, 2008 More About This Article The permalink http://dx.doi.org/10.1021/cr60052a001 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Chemical Reviews is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 THE HALOFORM REACTION REYNOLD C. FUSON AND BEE-TON A. BULL Department of Chemistry, University of Illinois, Urbana, Illinois Received September $8, 1934 CONTENTS I. Introduction.. .................... ......... ...............275 11. The early history of the haloform ............................. 276 111. The haloform reaction in qualitative organic analysis 277 IV. Structural determination by means of the haloform degradation.. ...... 281 V. Quantitative methods based on the haloform reaction ................... 286 VI. The use of the haloform reaction in synthesis.. ..... A. The haloforms., ............................. B. Saturated aliphatic acids.. ..................................... 288 C. Unsaturated acids D. Aromatic acids.. .. VII. The mechanism of the haloform reaction.. ............................. 291 A. The halogenation phase of the haloform reaction.. B. The cleavage phase of the haloform reaction .................... 295 VIII. Reactions
    [Show full text]
  • United States Patent 0 ""Lc€ Patented Nov
    3,479,286 United States Patent 0 ""lC€ Patented Nov. 18, 1969 1 2 with the Underwriters Laboratories (UL) classi?cation 3,479,286 which indicates a decrease in toxicity from class 1 to class FLAME-EXTINGUISHING COMPOSITIONS 6. In class 1, compounds such as sulfur dioxide are in Gian Paolo Gambaretto, Padova, Paolo Rinaldo, Venice, and Mario Palato, Padova, Italy, assignors to Monte cluded Whereas tri?uorobromomethane (CBrF3) is con catini Edison S.p.A., Milan, Italy, a corporation of sidered to be in class 6. Compounds such as carbon tetra Milan, Italy chloride are the most toxic of the haloalkanes (class 3). No Drawing. Filed Sept. 19, 1966, Ser. No. 580,212 TABLE I.—TOXICITY OF HALOALKANES Claims priority, application Italy, Sept. 22, 1965, 21,090/65 Compound: U.L. Class Int. Cl. A62d 1/00 10 C014 ____ __ 3 US. ‘Cl. 252-8 2 ‘Claims CCl3F _______________________________ __ 5a CCI2F2 __ __ 6 CCIF3 ___ _____ 6 ABSTRACT OF THE DISCLOSURE CF, 6 A ?ame-extinguishing composition containing a com 15 CHCI, _____ 3 pletely halogenated alkane, having at least two ?uorine CHCl2F ___ 5 atoms and at least one bromine atom per molecule and a CHClF2 ______________________________ __ 5a ?uorohydrocarbon having at least one hydrogen atom per CHF, ___-.. 6 molecule. The composition can include, optionally, a pro (CHCIB) ____ 3 pellant such as sulfur-hexa?uoride and carbon dioxide. (CC13F)' 5a The molar ratio of the ?uoro-hydrocarbon to the com CH2Cl2 _ ___ 4-5 pletely halogenated alkane ranges between substantially (CHCI2F) ____________________________ __ 5 0.2 and 5.
    [Show full text]
  • A Biosynthetically Inspired Synthetic Route to Substituted Furans, and Its Application to the Total Synthesis of the Furan Fatty
    A Biosynthetically Inspired Synthetic Route to Substituted Furans, and its Application to the Total Synthesis of the Furan Fatty Acid F5 A thesis submitted in partial fulfilment of the requirements of the degree Doctor of Philosophy Robert Jack Lee Supervisors: Dr Gareth J. Pritchard and Dr Marc C. Kimber 1 Thesis Abstract Dietary fish oil supplementation has long been shown to have significant health benefits, largely stemming from the anti-inflammatory activity of the ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) present in fish oils. The anti-inflammatory properties of these fatty acids has been linked to beneficial health effects, such as protecting the heart, in individuals consuming diets rich in fish, or supplemented with fish oils.1 These effects are highly notable in the Māori people native to coastal regions of New Zealand; the significantly lower rates of heart problems compared to the inland populous has been attributed to the consumption of the green lipped mussel Perna Canaliculus. Commercially available health supplements based on the New Zealand green lipped mussel include a freeze-dried powder and a lipid extract (Lyprinol®), the latter of which has shown anti- inflammatory properties comparable to classical non-steroidal anti-inflammatory drugs (NSAIDs) such as Naproxen.2 GCMS analysis of Lyprinol by Murphy et al. showed the presence of a class of ω-4 and ω-6 PUFAs bearing a highly electron rich tri- or tetra-alkyl furan ring, which were designated furan fatty acids (F-acids).3 Due to their instability, isolation of F- acids from natural sources cannot be carried out and a general synthetic route toward this class of natural products was required.
    [Show full text]
  • United States Patent Office Patented Jan
    3,422,155 United States Patent Office Patented Jan. 14, 1969 2 3,422,155 bromoform; and alkyl haloforms such as alkyl chloro BICYCLO3.3.0 OCTANONES forms and alkyl bromoforms, the alkyl groups being typi Rostylaw Dowbenko, Gibsonia, Pa., assignor to PPG cally methyl, ethyl, and propyl, although other alkyl halo Industries, Inc., Pittsburgh, Pa., a corporation of forms, for example, those having alkyl groups of up to Pennsylvania about 12 carbon atoms or more, may also be employed. No Drawing. Original application Apr. 16, 1964, Ser. No. 5 Also included within the scope of the invention are mixed 360,434, now Patent No. 3,305,346, dated Feb. 21, polyhaloalkanes in which the halogens are different, for 1967. Divided and this application Mar. 11, 1966, Ser. example, such compounds as chlorotrifluoromethane, di No. 554,231 chlorodifluoromethane and trichlorobromomethane. U.S. C. 260-648 18 Claims The reaction of tetrahalomethanes with 1,5-cycloocta Int, C. C07c 23/32; C05g 3/08 10 diene produces compounds having the formula: ABSTRACT OF THE DISCLOSURE The following compounds have been prepared: 5 A. where X is halogen. As can be seen, one of the halogens 20 from the tetrahalomethane is attached to the bicyclo 3.3.0]octane nucleus in the 6-position and a trihalo B methyl radical is attached in the 2-position. The product of the reaction utilizing a trihalomethane where A is -CX or CX2R, X being halogen and R has the following formula: being an alkyl radical; B being either halogen or alkyl. 25 These compounds are formed by transannular addition of polyhaloalkanes to 1,5-cyclooctadiene.
    [Show full text]
  • Pierangelo Metrangolo Giuseppe Resnati Editors Impact on Materials
    Topics in Current Chemistry 358 Pierangelo Metrangolo Giuseppe Resnati Editors Halogen Bonding I Impact on Materials Chemistry and Life Sciences 358 Topics in Current Chemistry Editorial Board: H. Bayley, Oxford, UK K.N. Houk, Los Angeles, CA, USA G. Hughes, CA, USA C.A. Hunter, Sheffield, UK K. Ishihara, Chikusa, Japan M.J. Krische, Austin, TX, USA J.-M. Lehn, Strasbourg Cedex, France R. Luque, Cordoba, Spain M. Olivucci, Siena, Italy J.S. Siegel, Nankai District, China J. Thiem, Hamburg, Germany M. Venturi, Bologna, Italy C.-H. Wong, Taipei, Taiwan H.N.C. Wong, Shatin, Hong Kong [email protected] Aims and Scope The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage includes all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether at the university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented. A description of the laboratory procedures involved is often useful to the reader. The coverage should not be exhaustive in data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented.
    [Show full text]
  • Clinical Applications of 3D Dosimetry
    Clinical and Research Applications of 3D Dosimetry by Titania Juang Graduate Program in Medical Physics Duke University Date:_______________________ Approved: ___________________________ Mark Oldham, Supervisor ___________________________ Timothy Turkington, Chair ___________________________ Shiva Das ___________________________ Justus Adamson ___________________________ Jing Cai Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Medical Physics in the Graduate School of Duke University 2015 ABSTRACT Clinical and Research Applications of 3D Dosimetry by Titania Juang Graduate Program in Medical Physics Duke University Date:_______________________ Approved: ___________________________ Mark Oldham, Supervisor ___________________________ Timothy Turkington, Chair ___________________________ Shiva Das ___________________________ Justus Adamson ___________________________ Jing Cai An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Medical Physics in the Graduate School of Duke University 2015 Copyright by Titania Juang 2015 ABSTRACT Quality assurance (QA) is a critical component of radiation oncology medical physics for both effective treatment and patient safety, particularly as innovations in technology allow movement toward advanced treatment techniques that require increasingly higher accuracy in delivery. Comprehensive 3D dosimetry with PRESAGE® 3D dosimeters
    [Show full text]
  • United States Patent Office Patented Mar
    2,826,602 United States Patent Office Patented Mar. 11, 1958 2 fourteen carbon atoms, alkoxyalkyl groups of three to seven carbon atoms, aralkyl groups of seven to fourteen 2,826,602 carbon atoms, cycloalkyl and alkylcycloalkyl groups of METHYLTRHALOETYLHALOADPATES three to fourteen carbon atoms. 5 There may be employed as specific preferred embodi Newman M. Bortnick, Oreland, and Marian F. Fegicy, ments of R the groups methyl, ethyl, isopropyl, butyl, Mont Clare, Pa., assignors to Rohm & Haas Company, octyl, decyl, dodecyl, tetradecyl, methoxyethyl, methoxy Philadelphia, Pa., a corporation of Delaware propyl, methoxyisopropyl, ethoxyethyl, ethoxyisopropyl, propoxyethyl, propoxypropyl, butoxyethyl, butoxypropyl, No Drawing. Application July 11, 1955 butoxyisopropyl, benzyl, phenylethyl, naphthylmethyl, Serial No. 521,402 phenylbutyl, phenylhexyl, phenylheptyl, phenyloctyl, cy 7 Claims. (C. 260-485) clopropyl, cyclopentyl, cyclohexyl, butylcyclopentyl, octylcyclohexyl, cyclopentylheptyl, and cyclohexyloctyl. There may also be used as R, groups such as bornyl, This invention relates to methyltrihaloethylhaloadipates nordicyclopenienyl, norcamphanyl, norcamphanylmethyl, as new compositions of matter and to a method for their and the like. preparation. The a-methylene-o'-methyl adipate reactants are known The compounds of the present invention may be repre or may be prepared by known methods. For instance, Sented by the formula the dimethyl ester may be made by heating methyl meth 20 acrylate for 12 hours at about 225 C. under conditions CXCH-YCHCH.gich, of autogenous pressure and in the presence of about 1% COOR O OR hydroquinone as an inhibitor. Other adipate esters may be obtained by reacting c-methylene-a'-methyladipic in which X is a halogen atom having an atomic weight acid or the corresponding acid chloride with the desired of about 19 to 127, Y is a halogen atom having an atom 2 5 alcohol under esterifying conditions.
    [Show full text]
  • SRINIVASAN COLLEGE of ARTS and SCIENCE PERAMBALUR - 621 212 (Affiliated to Bharathidasan University, Tiruchirappalli)
    B. Sc. Chemistry General Chemistry II Semester II SRINIVASAN COLLEGE OF ARTS AND SCIENCE PERAMBALUR - 621 212 (Affiliated to Bharathidasan University, Tiruchirappalli) COURSE MATERIAL DEPARTMENT OF CHEMISTRY B. Sc. Chemistry General Chemistry - II SYLLABUS S. NO. UNITS PAGE NO. 1. 4 CHEMICAL BONDING CHEMISTRY OF s-BLOCK & ZERO GROUP ELEMENTS AND 2. 15 METALLURGY CHEMISTRY OF BENZENE AND BENZENOID 3. 24 COMPOUNDS 4. 29 ALKYL AND ARYL HALOGENS ATOMIC STRUCTURE AND BASIC QUANTUM 5. 47 MECHANICS Srinivasan College of Arts and Science, Perambalur – 621 212 1 B. Sc. Chemistry General Chemistry II Semester II SYLLABUS UNIT I CHEMICAL BONDING 1.1 Ionic bond – formation, variable electrovalency – Lattice energy, Born – Haber Cycle. Covalent bond - formation, variable covalency, maximum covalency, covalent character in ionic bond – Fajans Rule. Polarisation – partial ionic character of a covalent bond. 1.2 VB theory, MO theory – Basic principles of bonding and antibonding orbitals, applications of MOT to H2 He2, N2 & O2 – molecular orbital sequence, comparison of VB & MO Theories. 1.3 Hybridisation – Formation of BeCl2 & BCl3. VSEPR theory of simple inorganic molecules – BeCl2, SiCl4, PCl5, SF6, IF7, XeF6, BF3 & H2O. 1.4 Hydrogen bonding – Intermolecular & Intramolecular H2 – bonding and consequences. UNIT II CHEMISTRY OF s-BLOCK & ZERO GROUP ELEMENTS AND METALLURGY 2.1 General characteristics of s-block elements – comparative study of elements – alkali metals and their hydroxides, oxides and halides, alkaline earth metals and their oxides, carbonates and sulphates. 2.2 Diagonal relationship of Li & Mg, Be & Al, chemistry of NaOH, KI & Mg(NH4)PO4. 2.3 Metallurgy : Occurrence of metals – concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process, purification of metals – electrolysis, zone refining, van Arkel de-Boer process.
    [Show full text]
  • In Presenting the Dissertation As a Partial Fulfillment of The
    "In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted•by the professor under whose direction it was written, or, in his absence, by the dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission. SOME STUDIES ON THE HALIDES OF METHANE PART I 'WE EFFECT OF HALOGEN ATOMS UPON THE SN2 REACTIVITY OF OTHER HALOGEN ATOMS ATTACHED TO 1HE SAME CARBON ATOM PART II AN EMPIRICAL METHOD FOR PREDICTION OF THE BOILING POINTS OF THE HALOMETHANES PART III A CORRELATION OF REACTIVITIES IN THE BASIC SOLVOLYSIS OF HALOFORMS A THESIS Presented to the Faculty of the Graduate Division By Stanton Jay Ehrenson In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology' June 1957 SOME STUDTES ON HALIDES OF METHANE PART I TKE 0TECT OF HALOGEN ATOMS UPON THE 2 REACTIVITY OF OTHER HALOGEN ATOMS ATT BED TO TEE SAME CARBON ATOM PART II AN EMPIRICAL METHOD FOR PREDICTION OF TAE BOILING POINTS OF TEE HALOMETHANES PART III A'CORRELATION OF REACTIVITIES IN THE BASIC SOLVOLYSIS OF HALOFORMS Approved: L 77.
    [Show full text]
  • Kinetics of the Reaction Between Triphenylphosphine and Some Haloalkanes
    Indian Journal of Chemistry Vol. 30A, November 1991, pp.929-935 Kinetics of the reaction between triphenylphosphine and some haloalkanes DV S Jain* & R Chadha Department of Chemistry, Panjab University, Chandigarh 160014 Received 27 February 1991; accepted 8 July 1991 Kinetics of reactions RX + (C6Hs)3P- (C6Hs)3PR+X-(R = CCI3,CBr3,CH2Br, C4H9 and X = Br, Cl, Ii have been studied at different temperatures and in different dielectric media. The values of second or- der rate constants of the reactions with tetrahalomethanes are much higher than those with partially hal- ogenated alkanes. This suggests that the reaction may be of charge transfer type with tetrahalomethanes while with other haloalkanes it is simple nucleophilic substitution reaction of SN2 type. A mixture of triphenylphosphine (TPP) and tetra- used as such. I-BB and l-lB were prepared in the halo methane (CX4) (especially X = CI or Br) has laboratory. Carbon tetrachloride was dried over been widely used as a versatile reagent for halogena- phosphorus pentoxide and the middle fraction, b.p. tion, dehydration, for creating P-N linkage and for 349 K was used. Acetonitrile was purified as de- replacing a hydroxyl group with halogen':" under scribed earlier". Tribromomethyltriphenylphos- mild conditions. lnspite of such wide applications of phonium bromide was prepared as described earli- TPP/CX4 systems, there have been few detailed kin- er". Trichloromethyltriphenylphosphonium chlo- etic and mechanistic studies of the reactions between ride and trichloromethyltriphenylphosphonium TPP and CX4. We report herein the results of kinetic bromide were prepared by adding TCM (3.06 g) studies of the reactions of TPP with (CX4) such as and BTCM (1.98 ~ to TPP solution in acetonitrile CCI4, CBr4 and CBrCl3 in different solvents at dif- (5 mI) respectively.
    [Show full text]