Geologic Map of the Lakshmi Planum Quadrangle (V–7), Venus

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Lakshmi Planum Quadrangle (V–7), Venus Prepared for the National Aeronautics and Space Administration Geologic Map of the Lakshmi Planum Quadrangle (V–7), Venus By Mikhail A. Ivanov and James W. Head, III Pamphlet to accompany Scientific Investigations Map 3116 75° 75° V–1 V–6 V–3 50° 50° V–7 V–2 V–17 V–10 V–18 V–9 V–19 V–8 25° 25° V–29 V–22 V–30 V–21 V–31 V–20 270° 300° 330° 0° 30° 60° 90° 0° 0° V–43 V–32 V–42 V–33 V–41 V–34 –25° –25° V–55 V–44 V–54 V–45 V–53 V–46 V–61 V–56 –50° –50° V–60 V–57 2010 V–62 –75° –75° U.S. Department of the Interior QUADRANGLE LOCATION U.S. Geological Survey Photomosaic showing location of map area. An outline of 1:5,000,000-scale quadrangles is provided for reference. Contents The Magellan Mission ..................................................................................................................................1 Magellan Radar Data ..........................................................................................................................1 Introduction ....................................................................................................................................................1 Magellan Sar and Related Data ........................................................................................................2 General Geology ............................................................................................................................................2 Stratigraphy ...................................................................................................................................................4 Structures .......................................................................................................................................................6 Stratigraphic Relations of Units .................................................................................................................7 Geologic History ............................................................................................................................................9 Acknowledgements ....................................................................................................................................14 References Cited .........................................................................................................................................14 Tables Table 1. List of volcanic and volcano-tectonic centers in the Lakshmi Planum quadrangle (V–7), Venus .............................................................................................................................................17 Table 2. List of impact craters within the Lakshmi Planum quadrangle (V–7), Venus ....................18 Table 3. Area of units mapped in the Laksmi Planum quadrangle (V–7), Venus .............................18 i The Magellan Mission cal elevation, above which high-dielectric minerals or coatings are thought to be present. This leads to very bright SAR echoes from virtually all areas above that critical elevation. The Magellan spacecraft orbited Venus from August 10, The measurements of passive thermal emission from 1990, until it plunged into the Venusian atmosphere on October Venus, though of much lower spatial resolution than the SAR 12, 1994. Magellan Mission objectives included: (1) improving data, are more sensitive to changes in the dielectric constant of knowledge of the geological processes, surface properties, and the surface than to roughness. As such, they can be used to aug- geologic history of Venus by analysis of surface radar charac- ment studies of the surface and to discriminate between rough- teristics, topography, and morphology, and (2) improving the ness and reflectivity effects. Observations of the near-nadir knowledge of the geophysics of Venus by analysis of Venusian backscatter power, collected using a separate smaller antenna gravity. on the spacecraft, were modeled using the Hagfors expression The Magellan spacecraft carried a 12.6-cm radar system to for echoes from gently undulating surfaces to yield estimates map the surface of Venus. The transmitter and receiver systems of planetary radius, Fresnel reflectivity, and root-mean-square were used to collect three data sets: (1) synthetic aperture radar (rms) slope. The topographic data produced by this technique (SAR) images of the surface, (2) passive microwave thermal have horizontal footprint sizes of about 10 km near periapsis, emission observations, and (3) measurements of the backscat- and a vertical resolution on the order of 100 m. The Fresnel tered power at small angles of incidence, which were processed reflectivity data provide a comparison to the emissivity maps, to yield altimetric data. Radar imaging, altimetric, and radio- and the rms slope parameter is an indicator of the surface tilts metric mapping of the Venusian surface was done in mission which contribute to the quasi-specular scattering component. cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar reso- lution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these Introduction full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-trans- The Lakshmi Planum quadrangle (V–7, fig. 1) is in the mit, horizontal-receive (HH), but additional data for selected northern hemisphere of Venus and extends from lat 50° to areas were collected for the vertical polarization sense. Inci- 75° N., and from long 300° to 360° E. The elevated volcanic dence angles varied between about 20° and 45°. plateau of Lakshmi Planum, which represents a very specific High resolution Doppler tracking of the spacecraft took and unique class of highlands on Venus, dominates the northern place from September 1992 through October 1994 (mission half of the quadrangle (fig. 1). The surface of the planum stands cycles 4,5,6). Approximately 950 orbits of high-resolution grav- 3–4 km above mean planetary radius (fig. A2 ) and the plateau is ity observations were obtained between September 1992 and surrounded by the highest Venusian mountain ranges, 7–10 km May 1993 while Magellan was in an elliptical orbit with a peri- high (figs. 2A and 3). apsis near 175 km and an apoapsis near 8,000 km. An additional Before the Magellan mission, the geology of the Lakshmi 1,500 orbits were obtained following orbit-circularization in Planum quadrangle was known on the basis of topographic mid-1993. These data exist as a 75°by 75°harmonic field. data acquired by the Pioneer-Venus and Venera-15/16 altim- eter (Masursky and others, 1980; Pettengill and others, 1980; Magellan Radar Data Barsukov and others, 1986) and radar images received by the Arecibo telescope (Campbell and others, 1991) and Venera- Radar backscatter power is determined by (1) the morphol- 15/16 spacecraft (Basilevsky and others, 1986; Barsukov and ogy of the surface at a broad range of scales and (2) the intrinsic others, 1986; Sukanov and others, 1989). These data showed reflectivity, or dielectric constant, of the material. Topography at unique topographic and morphologic structures of the moun- scales of several meters and larger can produce quasi-specular tain belts, which have no counterparts elsewhere on Venus, and echoes and the strength of the return is greatest when the local the interior volcanic plateau with two large and low volcanic surface is perpendicular to the incident beam. This type of centers (Colette and Sacajawea Paterae) and large blocks of scattering is most important at very small angles of incidence tessera-like terrain (Barsukov and others, 1986; Sukanov and because natural surfaces generally have few large tilted facets others, 1986; Pronin, 1986). From the outside, Lakshmi Planum at high angles. The exception is in areas of steep slopes, such as is outlined by a zone of complexly deformed terrains that occur ridges or rift zones, where favorably tilted terrain can produce on the regional outer slope of Lakshmi. Vast low-lying plains very bright signatures in the radar image. For most other areas, surround this zone. After acquisition of the Venera-15/16 data, diffuse echoes from roughness at scales comparable to the radar two classes of hypotheses were formulated to explain the unique wavelength are responsible for variations in the SAR return. In structure of Lakshmi Planum and its surrounding. The first either case, the echo strength is also modulated by the reflectiv- proposed that the western portion of Ishtar Terra, dominated ity of the surface material. The density of the upper few wave- by Lakshmi Planum, was a site of large-scale upwelling (for lengths of the surface can have a significant effect. Low-density example, Pronin, 1986, 1992; Grimm and Phillips, 1990) while layers, such as crater ejecta or volcanic ash, can absorb the the alternative hypothesis considered this region as a site of incident energy and produce a lower observed echo. On Venus, large-scale downwelling and underthrusting (for example, Head, there also exists a rapid increase in reflectivity at a certain criti- 1986; Bindschadler and others, 1990). 1 Early Magellan results (Kaula and others, 1992) showed our unit definition and characterization is described in Tanaka important details of the general geology of this area displayed (1994), Basilevsky and Head (1995a,b), Basilevsky and others in the Venera-15/16 images. Swarms of extensional structures (1997), and Ivanov and Head (1998). and massifs
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan
    2017 SCOP MS 8 Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan Tossups (1) This astronomical body, which was called Hesperus when it appeared as the Evening Star, has surface features called Maxwell Montes, Lakshmi Planum, and Ishtar Terra that are obscured by a permanent cover of (*) sulfuric acid clouds. A 96% carbon dioxide atmosphere led to a runaway greenhouse effect on, for ten points, what second planet in the Solar System? ANSWER: Venus (2) A holder of this title controversially pushed his people away from polytheism in favor of a solar god worshiped at Amarna. Lord Carnavon funded Howard Carter’s 1922 expedition to discover the burial grounds of one of these people at (*) Luxor, and found a sarcophagus containing a solid gold funerary mask and mummified remains. For ten points, name this title given to Akenhaten, King Tut, and other ancient Egyptian rulers. ANSWER: Egyptian pharaohs (3) A composer from this country wrote about the unlucky servant Ninetta in The Thieving Magpie, and included a “cavalry charge” galop in his (*) William Tell overture. For ten points, name this home country of Gioachino Rossini as well as Giacomo Puccini, who set his opera Tosca in Rome. ANSWER: Italy (accept Italia; accept Italian Republic or Repubblica italiana) (4) The Rydberg formula inspired one model of these objects, and the first sub-parts of these objects were detected by a deflection of cathode rays observed by JJ Thomson. A (*) gold foil experiment determined that these things possess a dense central mass, disproving their “plum pudding” model.
    [Show full text]
  • Pamphlet to Accompany Scientific Investigations Map 3131
    Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data By Alison B. Till, Julie A. Dumoulin, Melanie B. Werdon, and Heather A. Bleick Pamphlet to accompany Scientific Investigations Map 3131 View of Salmon Lake and the eastern Kigluaik Mountains, central Seward Peninsula 2011 U.S. Department of the Interior U.S. Geological Survey Contents Introduction ....................................................................................................................................................1 Sources of data ....................................................................................................................................1 Components of the map and accompanying materials .................................................................1 Geologic Summary ........................................................................................................................................1 Major geologic components ..............................................................................................................1 York terrane ..................................................................................................................................2 Grantley Harbor Fault Zone and contact between the York terrane and the Nome Complex ..........................................................................................................................3 Nome Complex ............................................................................................................................3
    [Show full text]
  • THE FOUR ARACHNOID GROUPS of VENUS. Kostama, V-P
    Lunar and Planetary Science XXXIII (2002) 1115.pdf THE FOUR ARACHNOID GROUPS OF VENUS. Kostama, V-P. Astronomy, Department of Physical Sciences, Uni- versity of Oulu, P.O. BOX 3000, FIN-90014, Finland (<[email protected]>). Introduction: A population of 96 arachnoids has some parts of the ridge belt cut the arachnoids. This been found on Venus [1]. These surface structures implies that the arachnoids or the group may have had were first discovered on the Venera 15/16 radar images several evolution phases. and later defined in detail by the Magellan mission [2, 3]. The arachnoids have a peculiar distribution, which is generally different to that of the coronae and particu- larly the novae [4]. The global distribution of arach- noids reflects certain noticeable facts: There is a clear concentration of arachnoid features in the northern hemisphere as 65,6 percent (63 feat.) of the features is located there, while only 34,4 percent (33 feat.) of the population is located in the southern hemisphere [5]. In addition, the arachnoids form four large groups which include roughly 25 % of the total population. The arachnoids of Bereghinya and Ganiki Planitia: The arachnoid group of Bereghinya Planitia is by far the largest arachnoid concentration on Venus. The structural composition of the features of the group are generally distinct and the features are connected by a uniform, chain-like pattern of lineaments. Figure 2. Scetch map of the large arachnoid group on Bereghinya Planitia. Brown lines are ridges, red repre- sents the lava channel within the area. Deformation zones are in grey.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • Cleopatra Crater on Venus: Happy Solution of the Volcanic Vs
    CLEOPATRA CRATER ON VENUS: HAPPY SOLUTION OF THE VOLCANIC VS. IMPACT CRATER CONTROVERSY; A.T. Basilevsky, A.T. Vernadsky Institute of Geochemistry and Analytical chemistry, Moscow, USSR, and G.G. Schaber, U.S. Geological Survey, Flagstaff AZ 86001 ~ntroduction. Cleopatra is a 100-km-diameter crater on the eastern slope of Maxwell Montes in western Ishtar Terra. For over 12 years, Cleopatra has been the subject of scientific controversy. Discovered during the Pioneer Venus altimetric survey, this feature was initially interpreted as a caldera near the top of a giant volcanic construct, Maxwell Montes [I]. Venera 15/16 data and recent Arecibo radar images show, however, that the Maxwell Montes appear to be more of a tectonic construct, with little or no resemblance to other giant shields known in the Solar System; thus, a nonvolcanic origin of Cleopatra was proposed [2-61. The similarity of the double-ring structure of Cleopatra to those of other multi-ring impact craters of similar size on Venus and the Moon, Mercury, and Mars was more recently given by Basilevsky and Ivanov [7] as the primarily reason to consider this feature an impact crater. At the same time, some characteristics of Cleopatra seemed to contradict an impact origin. For example, Schaber et al. [8], suggestingthat a definitive verification of a volcanic or impact origin would probably require Magellan data, proposed that the evidence from Venera 15/16 and earlier data for a probable volcanic origin for Cleopatra is substantial. They cited, among other points: (1) the absence of a raised rim and highly backscattering ejecta deposits; (2) the crater's association with plains-forming deposits immediately downslope to the east, interpreted as probable lava flows emanating from a distinct breach in the crater's rim; (3) the excessive depth (2.5 km) and depth-to-diameter ratio (0.028) of the crater, (4) the offset of the inner and outer craters; and (5) the crater's position in what was interpreted as a regional tectonic framework.
    [Show full text]
  • Styles of Deformation in Ishtar Terra and Their Implications
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. El0, PAGES 16,085-16,120, OCTOBER 25, 1992 Stylesof Deformationin IshtarTerra and Their Implications Wn.T.TAMM. KAU•A,• DOAN•L. BINDSCHAD•-R,l ROBERT E. GPaM•,2'3 VICKIL. HANSEN,2KARl M. ROBERTS,4AND SUZANNE E. SMREr,AR s IshtarTerra, the highest region on Venus, appears to havecharacteristics of both plume uplifts and convergent belts.Magellan imagery over longitudes 330ø-30øE indicates a great variety of tectonicand volcanic activity, with largevariations within distances of onlya few 100km. Themost prominent terrain types are the volcanic plains of Lakshmiand the mountain belts of Maxwell,Freyja, and Danu. Thebelts appear to havemarked variations in age. Thereare also extensive regions of tesserain boththe upland and outboard plateaus, some rather featureless smoothscarps, flanking basins of complexextensional tectonics, and regions of gravitationalor impactmodifica- tion.Parts of Ishtarare the locations of contemporaryvigorous tectonics and past extensive volcanism. Ishtar appearsto be the consequence of a history of several100 m.y., in whichthere have been marked changes in kinematic patternsand in whichactivity at any stage has been strongly influenced by the past. Ishtar demonstrates three general propertiesof Venus:(1) erosionaldegradation is absent,leading to preservationof patternsresulting from past activity;(2) manysurface features are the responses ofa competentlayer less than 10 km thick to flowsof 100km orbroaderscale; and (3) thesebroader scale flows are controlled mainly by heterogeneities inthe mantle. Ishtar Terra doesnot appear to bethe result of a compressionconveyed by anEarthlike lithosphere. But there is stilldoubt as to whetherIshtar is predominantlythe consequence of a mantleupflow or downflow.Upflow is favoredby the extensivevolcanic plain of Lakshmiand the high geoid: topography ratio; downflow is favoredby the intense deformationof themountain belts and the absence of majorrifts.
    [Show full text]
  • Venus' Ishtar Terra: Topographic Analysis of Maxwell, Freyja, Akna
    16th VEXAG Meeting 2018 (LPI Contrib. No. 2137) 8046.pdf Venus’ Ishtar Terra: Topographic Analysis of Maxwell, Freyja, Akna and Danu Montes. Sara Rastegar1 and 2 1 ​ Donna M. Jurdy ,​ C​ ity Colleges of Chicago, Harold Washington College, 30 E. Lake Street, Chicago, IL 60601, ​ ​ 2 [email protected], D​ epartment of Earth and Planetary Sciences, Northwestern University, 2145 Sheridan ​ ​ Rd, Evanston, IL 60208, [email protected] ​ Introduction: Venus’ mountain chains (Figure 1) Analysis: We attempt to address these questions ​ ​ ​ surround Lakshmi Planum, a 3-4 km highland, making with analysis of Magellan topographic data for up Ishtar Terra. No other mountain belts exist on quantitative comparison of Venus' four mountain Venus. Circling Ishtar Terra, Maxwell Montes, ascends chains: Maxwell, Freyja, Akna and Danu. Patterns in to over 11 km, ranking as the location of highest topography may provide clues to the dynamics forming elevation on the planet. Freyja Montes rises to over 7 these Venusian orogenic belts. From topographic km, higher than Akna Montes at about an elevation of profiles across the ec mountain chain, we then 6 km. Danu Montes, ~1.5 km over Lakshmi Planum, determine an average profile for each mountain belt. alone displays a distinctly arcuate form. Next, we correlate these averages to establish a measure of similarity between the chains and terrestrial Tectonic Enigma: The existence of the four analogs. These correlations allow construction of a venusian mountain chains has been attributed to covariance matrix, which can be diagonalized for localized downwelling - analogous to terrestrial eigenvalues, for Principal Component Analysis (PCA) subduction - in response to the proposed upwelling [4].
    [Show full text]
  • Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B
    Claremont Colleges Scholarship @ Claremont Pomona Faculty Publications and Research Pomona Faculty Scholarship 1-1-2011 Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B. Grosfils Pomona College Sylvan M. Long Elizabeth M. Venechuk Debra M. Hurwitz Joseph W. Richards See next page for additional authors Recommended Citation Grosfils, E.B., Long, S.M., Venechuk, E.M., Hurwitz, D.M., Richards, J.W., Kastl, Brian, Drury, D.E., and Hardin, Johanna, 2011, Geologic map of the Ganiki Planitia quadrangle (V-14), Venus: U.S. Geological Survey Scientific nI vestigations Map 3121. This Report is brought to you for free and open access by the Pomona Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Authors Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna S. Hardin This report is available at Scholarship @ Claremont: http://scholarship.claremont.edu/pomona_fac_pub/303 Prepared for the National Aeronautics and Space Administration Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus By Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna Hardin Pamphlet to accompany Scientific Investigations Map 3121 75° 75° V–1 V–3 V–6 50° 50° V–4 V–5 V–11 V–16 V–12 V–15 V–13 V–14 25° 25° V–23 V–28 V–24 V–27 V–25 V–26 90° 120° 150° 180° 210° 240° 270° 0° 0° V–37 V–38 V–36 V–39 V–35 V–40 –25° –25° V–49 V–50 V–48 V–51 V–47 V–52 V–58 V–59 –50° –50° V–57 V–60 2011 V–62 –75° –75° U.S.
    [Show full text]
  • Institute of Fine Arts Alumni Newsletter, Number 55, Fall 2020
    Number 55 – Fall 2020 NEWSLETTERAlumni PatriciaEichtnbaumKaretzky andZhangEr Neoclasicos rnE'-RTISTREINVENTiD,1~1-1= THEME""'lLC.IIEllMNICOLUCTION MoMA Ano M. Franco .. ..H .. •... 1 .1 e-i =~-:.~ CALLi RESPONSE Nyu THE INSTITUTE Published by the Alumni Association of II IOF FINE ARTS 1 Contents Letter from the Director In Memoriam ................. .10 The Year in Pictures: New Challenges, Renewed Commitments, Alumni at the Institute ..........16 and the Spirit of Community ........ .3 Iris Love, Trailblazing Archaeologist 10 Faculty Updates ...............17 Conversations with Alumni ....... .4 Leatrice Mendelsohn, Alumni Updates ...............22 The Best Way to Get Things Done: Expert on Italian Renaissance An Interview with Suzanne Deal Booth 4 Art Theory 11 Doctors of Philosophy Conferred in 2019-2020 .................34 The IFA as a Launching Pad for Seventy Nadia Tscherny, Years of Art-Historical Discovery: Expert in British Art 11 Master of Arts and An Interview with Jack Wasserman 6 Master of Science Dual-Degrees Dora Wiebenson, Conferred in 2019-2020 .........34 Zainab Bahrani Elected to the American Innovative, Infuential, and Academy of Arts and Sciences .... .8 Prolifc Architectural Historian 14 Masters Degrees Conferred in 2019-2020 .................34 Carolyn C Wilson Newmark, Noted Scholar of Venetian Art 15 Donors to the Institute, 2019-2020 .36 Institute of Fine Arts Alumni Association Offcers: Alumni Board Members: Walter S. Cook Lecture Susan Galassi, Co-Chair President Martha Dunkelman [email protected] and William Ambler [email protected] Katherine A. Schwab, Co-Chair [email protected] Matthew Israel [email protected] [email protected] Yvonne Elet Vice President Gabriella Perez Derek Moore Kathryn Calley Galitz [email protected] Debra Pincus [email protected] Debra Pincus Gertje Utley Treasurer [email protected] Newsletter Lisa Schermerhorn Rebecca Rushfeld Reva Wolf, Editor Lisa.Schermerhorn@ [email protected] [email protected] kressfoundation.org Katherine A.
    [Show full text]
  • DOCUMENT RESUME ED 391 163 CS 215 167 AUTHOR Bonadonna, Angelo TITLE to Logology and Back--The Late Essays of Kenneth PUB DATE N
    DOCUMENT RESUME ED 391 163 CS 215 167 AUTHOR Bonadonna, Angelo TITLE To Logology and Back--The Late Essays of Kenneth Burke. PUB DATE Jul 95 NOTE 16p.; Paper presented at the Annual Penn State Conference on Rhetoric and Composition (14th, University Park, PA, July 12-15, 1995). PUB TYPE Viewpoints (Opinion/Position Papers, Essays, etc.) (120) Speeches/Conference Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Critical Theory; *Essays; Higher Education; *Language Role; Linguistics; *Literary.Criticism; *Rhetoric; *Rhetorical Theory IDENTIFIERS *Burke (Kenneth); Logology ABSTRACT As a writer and critic, Kenneth Burke defies convenient pigeonholing. Even if just one segment of Burke's public writings is considered, the 40-plus critical essays of the post-Libbie (his Muse and secretary), post-LSA ("Language as Symbolic Action") era, the difficulty of categorizing him remains. The earlier periods of his life are more or less defined by decade, which presents a rather hollow version of Burke. The search for an understanding of this post-Libbie period must strive for a suitable strategy for appreciating the full complexity of Burke's work. Burke said language not only enables but requires situations to be approached strategically. So as a means of reviewing the works of this period, a list of strategies for classifying them is helpful. First, the scholar might take the lead of other Burkean commentators and identify the distinctive nature of the late essays. James Chesebro (1993), for instance, identifies 1968 as the year that Burke finally gave up the "comedic posture" and got into the serious business of ontological inquiry.
    [Show full text]
  • The Science Return from Venus Express the Science Return From
    The Science Return from Venus Express Venus Express Science Håkan Svedhem & Olivier Witasse Research and Scientific Support Department, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Dmitri V. Titov Max Planck Institute for Solar System Studies, Katlenburg-Lindau, Germany (on leave from IKI, Moscow) ince the beginning of the space era, Venus has been an attractive target for Splanetary scientists. Our nearest planetary neighbour and, in size at least, the Earth’s twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called ‘morning star’ remains a mysterious world! Introduction All of these earlier studies of Venus have given us a basic knowledge of the conditions prevailing on the planet, but have generated many more questions than they have answered concerning its atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and plasma environment. It is now high time that we proceed from the discovery phase to a thorough
    [Show full text]