(19) TZZ Z Z_T

(11) EP 2 924 020 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 255/50 (2006.01) C07D 235/06 (2006.01) 16.01.2019 Bulletin 2019/03 C09K 11/06 (2006.01) H01L 51/50 (2006.01)

(21) Application number: 13838080.3 (86) International application number: PCT/KR2013/010491 (22) Date of filing: 19.11.2013 (87) International publication number: WO 2014/081168 (30.05.2014 Gazette 2014/22)

(54) FLUORANTHENE COMPOUND, AND ORGANIC ELECTRONIC DEVICE COMPRISING SAME FLUORANTHENVERBINDUNG UND ORGANISCHE ELEKTRONISCHE VORRICHTUNG DAMIT COMPOSÉ DE FLUORANTHÈNE ET DISPOSITIF ÉLECTRONIQUE ORGANIQUE COMPRENANT CELUI-CI

(84) Designated Contracting States: • KIM, Dong Sik AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Daejeon 305-738 (KR) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • KOO, Kidong PL PT RO RS SE SI SK SM TR Daejeon 305-738 (KR) • KANG, Minyoung (30) Priority: 21.11.2012 KR 20120132190 Daejeon 305-738 (KR)

(43) Date of publication of application: (74) Representative: Hoffmann Eitle 30.09.2015 Bulletin 2015/40 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (73) Proprietor: LG Chem, Ltd. 81925 München (DE) Seoul 150-721 (KR) (56) References cited: (72) Inventors: WO-A1-2013/182046 WO-A1-2014/178434 • JANG, Boonjae KR-A- 20110 137 897 KR-A- 20110 137 897 Daejeon 305-738 (KR) KR-A- 20120 029 258 KR-A- 20120 029 258 • LEE, Dong Hoon Daejeon 305-738 (KR) • TONG, Q. X. ET AL.: ’High-efficiency nondoped • KIM, Kongkyeom green organic light-emitting devices’ CHEMICAL Daejeon 305-738 (KR) PHYSICS LETTERS vol. 455, 2008, pages 79 - 82, • CHUN, Minseung XP022541081 Daejeon 305-738 (KR)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 924 020 B1

Printed by Jouve, 75001 PARIS (FR) EP 2 924 020 B1

Description

Field of the Invention

5 [0001] The present specification relates to a fluoranthene compound and an organic electronic device including the same.

Background of the Invention

10 [0002] An organic electronic device means a device that needs charge exchanges between an electrode and an organic material using holes and/or electrons. An organic electronic device can be categorized into two main groups depending on the operation principle. First is an electric device in which excitons form in an organic material layer by the photons brought into the device from an external source, these excitons are separated into electrons and holes, and these electrons and holes are used as a current source (voltage source) by being transferred to different electrodes. 15 Second is an electronic device in which holes and/or electrons are injected to an organic material semiconductor that forms an interface with an electrode by applying voltage or current to two or more electrodes, and the device is operated by the injected electrons and holes. [0003] Examples of an organic electronic device include an organic light emitting device, an organic solar cell, an organic photo conductor (OPC), an organic transistor, and the like, and these all need a hole injection or transfer material, 20 an electron injection or transfer material, or a light emitting material for the driving of the device. Hereinafter, an organic light emitting device will be described in detail, however, in the organic electronic devices, a hole injection or transfer material, an electron injection or transfer material, or a light emitting material is used under similar principles. [0004] An organic light emission phenomenon generally refers to a phenomenon that converts electric energy to light energy using an organic material. An organic light emitting device using an organic light emission phenomenon typically 25 has a structure that includes an anode, a cathode, and an organic material layer therebetween. Herein, the organic material layer is usually formed as a multilayer structure formed with different materials in order to improve the efficiency and the stability of an organic light emitting device, and for example, may be formed with a hole injection layer, a hole transfer layer, a light emitting layer, an electron transfer layer, an electron injection layer, and the like. In the structure of such an organic light emitting device, holes from an anode and electrons from a cathode flow into an organic material 30 layer when voltage is applied between the two electrodes, excitons form when the electrons and the holes injected are combined, and light emits when these excitons fall back to the ground state. Such an organic light emitting device has been known to have characteristics such as spontaneous light emission, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast, and quick response. [0005] In an organic light emitting device, the material used as an organic material layer can be divided into a light 35 emitting material and a charge transfer material, for example, a hole injection material, a hole transfer material, an electron transfer material, an electron injection material and the like, depending on the function. In addition, the light emitting material can be divided into, depending on the light emitting color, a blue, a green and a red light emitting material, and a yellow and an orange light emitting material to obtain better natural color. Meanwhile, when only one material is used as the light emitting material, problems occur such as the maximum light emitting wavelength moving 40 to a long wavelength due to the interaction between molecules, color purity being reduced, or the efficiency of the device being reduced due to a light emission diminution effect. Therefore, a host/dopant-based material may be used as the light emitting material in order to increase color purity and increase light emission efficiency through the energy transfer. [0006] In order for an organic light emitting device to exhibit excellent characteristics described above, materials that form an organic material layer, for example, a hole injection material, a hole transfer material, a light emitting material, 45 an electron transfer material, an electron injection material, and the like, need to be supported by stable and efficient materials first, however, the development of stable and efficient materials of an organic material layer for an organic light emitting device has not been sufficient so far. Therefore, there have been continuous demands for the development of new materials, and the needs for the development of such materials also apply to other organic electronic devices described above. 50 Prior Art Documents

[0007] Korean Patent Application Laid-Open Publication No. 2007-001220. Document KR2011137897 discloses fluoranthene derivatives having a group for use as electroluminescent/semiconductor materials. 55 [0008] KR 20100057887 discloses fluoranthene derivatives and an organic electroluminescent light emitting device using the same. [0009] KR20120029258 discloses similar compounds with an imidazopyrimidine as a heterocyclic group for the same use.

2 EP 2 924 020 B1

Summary of the Invention

[0010] In view of the above, an objective of the present application is to provide a fluoranthene compound derivative having a chemical structure that can perform various roles required in an organic electronic device depending on sub- 5 stituents, and provide an organic electronic device including the fluoranthene compound derivative. [0011] The present specification provides a fluoranthene compound represented by the following 1.

10

15

20

25

[0012] In Chemical Formula 1,

30 R1 to R3 are groups represented by -(L)p-(Y)q, p is an integer of 0 to 10 and q is an integer of 1 to 10, o is an integer of 1 to 5, r is an integer of 0 to 6, L is a substituted or unsubstituted arylene group; a substituted or unsubstituted alkenylene group; a substituted or 35 unsubstituted fluorenylene group; or a substituted or unsubstituted heteroarylene group having O, N, S or P as a heteroatom, Y is ; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or unsub- stituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or 40 unsubstituted alkylthioxy group; a substituted or unsubstituted arylthioxy group; a substituted or unsubstituted alkyl- sulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkylamine group; a substituted or unsubstituted aralkylamine group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted heteroarylamine group; a substituted 45 or unsubstituted aryl group; a substituted or unsubstituted fluorenyl group; a substituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms, when p≥2 or q≥2, Ls or Ys are the same as or different from each other, R1 and R3 may be bonded to each other to form an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond, 50 when o≥2, R4s are the same as or different from each other, R4 is a phenyl group substituted with a substituent shown in claim 1. when r≥ 2, R5s are the same as or different from each other, R5 is hydrogen; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or unsub- stituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy group; a 55 substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or unsubstituted alkylthioxy group; a substituted or unsubstituted arylthioxy group; a substituted or unsubstituted alkyl- sulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted

3 EP 2 924 020 B1

amine group; a substituted or unsubstituted alkylamine group; a substituted or unsubstituted aralkylamine group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted heteroarylamine group; a substituted or unsubstituted aryl group; a substituted or unsubstituted fluorenyl group; a substituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms, or adjacent 5 groups among a plurality of R5s are bonded to each other to form an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond.

[0013] In addition, the present specification provides an organic electronic device that includes a first electrode, a second electrode, and one or more layers of organic material layers disposed between the first electrode and the second 10 electrode, wherein one or more layers of the organic material layers include the fluoranthene compound of Chemical Formula 1.

Advantageous Effects

15 [0014] A fluoranthene derivative according to the present specification can be used as an organic material layer of an organic electronic device including an organic light emitting device, and the organic electronic device including the organic light emitting device using the fluoranthene derivative can have improved efficiency, low driving voltage and/or improved life span characteristics.

20 Brief Description of the Drawings

[0015]

Fig. 1 shows an example of an organic electronic device formed with a substrate (1), an anode (2), a light emitting 25 layer (3) and a cathode (4) by a diagram. Fig. 2 shows an example of an organic electronic device formed with a substrate (1), an anode (2), a hole injection layer (5), a hole transfer layer (6), a light emitting layer (3), an electron transfer layer (7) and a cathode (4) by a diagram .

Detailed Description of the Embodiments 30 [0016] The present specification provides a fluoranthene compound represented by Chemical Formula 1. [0017] In addition, the compound represented by Chemical Formula 1 of the present specification may be represented by the following Chemical Formula 2.

35

40

45

50

55 [0018] In Chemical Formula 2,

o, r, and R3 to R5 are the same as those defined in Chemical Formula 1, each of n and m is an integer of 0 to 5,

4 EP 2 924 020 B1

when n≥ 2, R6s are the same as or different from each other, when m≥ 2, R7s are the same as or different from each other, R6 and R7 are the same as or different from each other, each independently hydrogen; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted 5 cycloalkyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or unsubstituted alkylthioxy group; a substituted or un- substituted arylthioxy group; a substituted or unsubstituted alkylsulfoxy group; a substituted or unsubstituted aryl- sulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkylamine 10 group; a substituted or unsubstituted aralkylamine group; a substituted or unsubstituted arylamine group; a substi- tuted or unsubstituted heteroarylamine group; a substituted or unsubstituted aryl group; a substituted or unsubstituted fluorenyl group; a substituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms, or adjacent groups may be bonded to each other to form an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond. 15 [0019] Examples of the substituents are described below, but are not limited thereto. [0020] In addition, in the present specification, the term "substituted or unsubstituted" means being substituted with one or more substituents selected from the group consisting of deuterium; a halogen group; an alkyl group; an alkenyl group; an alkoxy group; a cycloalkyl group; a silyl group; an arylalkenyl group; an aryl group; an aryloxy group; an 20 alkylthioxy group; an alkylsulfoxy group; an arylsulfoxy group; a boron group; an alkylamine group; an aralkylamine group; an arylamine group; a heteroaryl group; a carbazole group; an arylamine group; an aryl group; a fluorenyl group; a nitrile group; a nitro group; a hydroxy group; a cyano group, and a heteroring group including one or more of N, O, S and P atoms, or having no substituents. [0021] In the present specification, an alkyl group may be linear or branched, and although not particularly limited, the 25 number of carbon atoms is preferably 1 to 50. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group and the like, but are not limited thereto. [0022] In the present specification, the alkenyl group may be linear or branched, and although not particularly limited, the number of carbon atoms is preferably 2 to 50. Specific examples thereof preferably include an alkenyl group in which 30 an aryl group such as a stylbenyl group or a styrenyl group is substituted, but are not limited thereto. [0023] In the present specification, the alkoxy group may be linear or branched, and although not particularly limited, the number of carbon atoms is preferably 1 to 50. [0024] The length of the alkyl group, the alkenyl group and the alkoxy group included in the compound does not have an influence on the conjugation length of the compound, and only concomitantly has an influence on the application 35 method of the compound to an organic electronic device, for example, on the application of a vacuum deposition method or a solution coating method, therefore, the number of carbon atoms is not particularly limited. [0025] In the present specification, the cycloalkyl group is not particularly limited, however, the number of carbon atoms is preferably 3 to 60, and particularly, a cyclopentyl group or a cyclohexyl group is preferable. [0026] In the present specification, the aryl group may be monocyclic or multicyclic, and although not particularly 40 limited, the number of carbon atoms is preferably 6 to 60. Specific examples of the aryl group include a monocyclic aromatic group such as a phenyl group, a biphenyl group, a triphenyl group, a terphenyl group or a stilbenyl group, and a multicyclic aromatic group such as a naphthyl group, a binaphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a tetracenyl group, a crycenyl group, a fluorenyl group, an acenaphthacenyl group, a triphenylene group or a fluoranthene group, but are not limited thereto. 45 [0027] In the present specification, the heteroring group is a heteroring group that includes O, N, S and P as a heteroatom, and although not particularly limited, the number of carbon atoms is preferably 2 to 60. Examples of the heteroring group include a thiophene group, a group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a group, an acridyl group, a group, a qinolinyl group, an isoquinoline group, an group, a carbazole group, a 50 group, a benzimidazole group, a group, a benzocarbazole group, a group, a dibenzothi- ophene group, a benzofuranyl group, a dibenzofuranyl group or the like, but are not limited thereto. [0028] In the present specification, examples of the monocyclic or multicyclic heteroring group including a 6-membered ring that includes one or more Ns include a group, a group, a pyridazine group, a group, a triazinegroup, a group, a pentazinegroup, a quinoline group, a cynoline group, a quinazoline group, a quinoxaline 55 group, a pyridopyrazine group, a pyrazinopyrazine group, a pyrazinoquinoxaline group, an acridine group, a phenan- throline group or the like, but are not limited thereto. [0029] In the present specification, the monocyclic or multicyclic heteroring group including a 6-membered ring that includes one or more Ns is a heteroring group including at least one or more 6-membered rings that include one or more

5 EP 2 924 020 B1

Ns, and also includes a heteroring group in which a 5-membered ring is fused to a 6-membered ring that includes one or more Ns. In other words, other 5-membered rings or 6-membered rings different from the specific examples described above may be additionally fused, and the fused 5-membered ring or 6-membered ring may be an aromatic ring, an aliphatic ring, an aliphatic heteroring and/or an aromatic heteroring. 5 [0030] In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine. [0031] In the present specification, the fluorenyl group has a structure in which two cyclic organic compounds are linked through one atom, and examples thereof include

10

15 or the like. [0032] In the present specification, the fluorenyl group includes the structure of an open fluorenyl group, and herein, the open fluorenyl group has a structure in which the linkage of one ring compound is broken in the structure of two ring compounds linked through one atom, and examples thereof include

20

25 or the like. [0033] In the present specification, the number of carbon atoms of the amine group is not particularly limited, but is preferably 1 to 50. Specific examples of the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, an 30 anthracenylamine group, a 9-methyl-anthracenylamine group, a diphenylamine group, a phenylnaphthylamine group, a ditolylamine group, a phenyltolylamine group, a triphenylamine group or the like, but are not limited thereto. [0034] In the present specification, the number of carbon atoms of the arylamine group is not particularly limited, but is preferably 6 to 50. Examples of the arylamine group include a substituted or unsubstituted monocyclic diarylamine group, a substituted or unsubstituted multicyclic diarylamine group or a substituted or unsubstituted monocyclic and 35 monocyclic diarylamine group. [0035] In the present specification, the number of carbon atoms of the aryloxy group, the arylthioxy group, the arylsulfoxy group and the aralkylamine group is not particularly limited, but is preferably 6 to 50. The aryl group in the aryloxy group, the arylthioxy group, the arylsulfoxy group and the aralkylamine group is the same as the examples of the aryl group described above. 40 [0036] In the present specification, the alkyl group in the alkylthioxy group, the alkylsulfoxy group, the alkylamine group and the aralkylamine group is the same as the examples of the alkyl group described above. [0037] In the present specification, the heteroaryl group in a heteroarylamine group may be selected from among the examples of the heteroring group described above. [0038] In the present specification, the arylene group, the alkenylene group, the fluorenylene group, and the heter- 45 oarylene group are divalent groups of the aryl group, the alkenyl group, the fluorenyl group, and the heteroaryl group, respectively. Descriptions for the aryl group, the alkenyl group, the fluorenyl group and the heteroaryl group may be applied to the arylene group, the alkenylene group, the fluorenylene group, and the heteroarylene group, except that these are divalent groups. [0039] In the present specification, the substituted arylene group means that a phenyl group, a biphenyl group, a 50 naphthyl group, a fluorenyl group, a pyrenyl group, a phenanthrenyl group, a perylene group, a tetracenyl group, an anthracenyl group, or the like, is substituted with other substituents. [0040] In the present specification, the substituted heteroarylene group means that a pyridyl group, a thiophenyl group, a triazine group, a quinoline group, a phenanthroline group, an imidazole group, a thiazole group, an oxazole group, a carbazole group, and fused heteroring groups thereof such as a benzoquinoline group, a benzimidazole group, a benox- 55 azole group, a benzothiazole group, a benzocarbazole group, a dibenzothiophenyl group, or the like, is substituted with other substituents. [0041] An adjacent group in the present specification means each neighboring substituent when there are two or more substituents.

6 EP 2 924 020 B1

[0042] In the present specification, forming an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring with an adjacent group means that each of the adjacent substituents forms a bond to form a 5-membered to 7-membered multicyclic or monocyclic ring. [0043] In the present specification, a spiro bond means a structure in which two cyclic organic compounds are linked 5 to one atom, and may include a structure in which the linkage of one ring compound is broken in the structure of two cyclic organic compounds linked through one atom. [0044] The present specification provides a novel fluoranthene compound represented by Chemical Formula 1. The compound may be used as an organic material layer in an organic electronic device due to its structural specificity. [0045] In one embodiment of the present specification, R1 to R3 are represented by -(L)p-(Y)q. 10 [0046] In one embodiment of the present specification, p is an integer of 0 to 10. [0047] In one embodiment of the present specification, p is 1. [0048] In one embodiment of the present specification, p is 0. [0049] In one embodiment of the present specification, q is an integer of 1 to 10. [0050] In one embodiment of the present specification, q is 1. 15 [0051] In one embodiment of the present specification, L is a substituted or unsubstituted arylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted heteroarylene group. [0052] In one embodiment of the present specification, L is a substituted or unsubstituted arylene group. [0053] In one embodiment of the present specification, L is a substituted or unsubstituted phenylene group. [0054] In one embodiment of the present specification, Y is hydrogen. 20 [0055] In one embodiment of the present specification, R4 is a substituted or unsubstituted benzoquinoline group; a substituted or unsubstituted phenanthroline group; a substituted or unsubstituted pyrimidine group; a substituted or unsubstituted triazine group; a substituted or unsubstituted benzophenanthridine group; a substituted or unsubstituted quinoline group; a substituted or unsubstituted carbazole group; a substituted or unsubstituted benzocarbazole group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted benzothiophene group; or a sub- 25 stituted or unsubstituted group; or a substituted or unsubstituted quinazoline group. [0056] In one embodiment of the present specification, R4 forms an aliphatic ring by being bonded to an adjacent group. [0057] In one embodiment of the present specification, R4 forms an aromatic ring by being bonded to an adjacent group. [0058] In one embodiment of the present specification, R4 is a phenyl group substituted with at least one of the following substituents; or is at least one of the following substituents, or a plurality of adjacent R4s form a hydrocarbon ring 30 substituted with at least one of the following substituents with each other.

35

40

45

50

55

7 EP 2 924 020 B1

5

10

15

20

25

30

35

40

45

50

55

8 EP 2 924 020 B1

5

10

15

20

25

30

35

40

45

[0059] The substituents may be unsubstituted or additionally substituted with substituents selected from the group 50 consisting of a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; and a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms. [0060] In one embodiment of the present specification, the substituents are additionally substituted with hydrogen; a methyl group; an ethyl group; a phenyl group; a naphthyl group; a biphenyl group; or a pyridine group. [0061] In one embodiment of the present specification, the hydrocarbon ring may be an aromatic ring, an aliphatic 55 ring, or a fused ring of an aliphatic ring and an aromatic ring, and may be monocyclic or multicyclic. [0062] In the substituents, "being substituted" means that a hydrogen atom bonded to the carbon atom of a compound is replaced with other atoms or functional groups, and "substituent" includes all of hydrogen, other atoms and functional groups. The substitution position in the present specification is not limited as long as it is a position at which a hydrogen

9 EP 2 924 020 B1

atom is substituted, that is, a position that can be substituted with substituents, and when two or more are substituted, the two or more substituents may be the same as or different from each other. [0063] In one embodiment of the present specification, R4 is a substituted or unsubstituted benzoquinoline group. [0064] In one embodiment of the present specification, R4 is a substituted or unsubstituted phenanthroline group. 5 [0065] In one embodiment of the present specification, R4 is a substituted or unsubstituted pyrimidine group. [0066] In one embodiment of the present specification, R4 is a pyrimidine group substituted with a phenyl group. [0067] In one embodiment of the present specification, R4 is a pyrimidine group substituted with a biphenyl group. [0068] In one embodiment of the present specification, R4 is a substituted or unsubstituted triazine group. [0069] In one embodiment of the present specification, R4 is a triazine group substituted with a phenyl group. 10 [0070] In one embodiment of the present specification, R4 is a triazine group substituted with a naphthyl group. [0071] In one embodiment of the present specification, R4 is a substituted or unsubstituted benzophenanthridine group. [0072] In one embodiment of the present specification, R4 is a substituted or unsubstituted quinoline group. [0073] In one embodiment of the present specification, R4 is a quinoline group substituted with a phenyl group. [0074] In one embodiment of the present specification, R4 is a quinoline group substituted with a pyridine group. 15 [0075] In one embodiment of the present specification, R4 is a substituent having a structure in which a phenanthridine group and a benzimidazole group are bonded. [0076] In one embodiment of the present specification, R4 is a substituent having a structure in which a quinoline group and a benzimidazole group are bonded. [0077] In one embodiment of the present specification, R4 is a substituted or unsubstituted benzocarbazole group. 20 The benzocarbazole group is either

25

or 30

35

40

45

50

[0078] In one embodiment of the present specification, R4 is a substituted or unsubstituted phosphine oxide group. [0079] In one embodiment of the present specification, R4 is a phosphine oxide group substituted with a phenyl group. 55 [0080] In one embodiment of the present specification, R4 is benzothiophene substituted with a phenyl group. [0081] In one embodiment of the present specification, R4 is benzofuran substituted with a phenyl group. [0082] In one embodiment of the present specification, R4 is a substituted or unsubstituted quinazoline group. [0083] In one embodiment of the present specification, R4 is a quinazoline group substituted with a phenyl group.

10 EP 2 924 020 B1

[0084] In one embodiment of the present specification, R4 is a substituted or unsubstituted phenanthrene group. [0085] In one embodiment of the present specification, R4 is a substituted or unsubstituted a pyridine group. [0086] In one embodiment of the present specification, R4 is a pyridine group substituted with a pyridine group. [0087] Preferable specific examples of the compound according to the present specification include the following 5 compounds, but are not limited thereto. [0088] In one embodiment of the present specification, R4 is any one of the following structural formulae.

10

15

20

25

30

35

40

45

50

[0089] In one embodiment of the present specification, R4 is any one of the following structural formulae. 55

11 EP 2 924 020 B1

5

10

15

20

25

30

[0090] In one embodiment of the present specification, Chemical Formula 1 is represented by any one of the following 35 Compounds 1 to 38.

Compound 1 Compound 2

40

45

50

55

Compound 3 Compound 4

12 EP 2 924 020 B1

(continued)

5

10

15

20

25 Compound 5 Compound 6

30

35

40

45

50 Compound 9

55

13 EP 2 924 020 B1

(continued)

5

10

15

20

25 Compound 12

30

35

40

Compound 13 Compound 14

45

50

55

14 EP 2 924 020 B1

(continued)

5

10

15

20

25 Compound 15 Compound 16

30

35

40

45

50 Compound 17 Compound 18

55

15 EP 2 924 020 B1

(continued)

5

10

15

20

Compound 19 Compound 20

25

30

35

40

45 Compound 21 Compound 22

50

55

16 EP 2 924 020 B1

(continued)

5

10

15

20 Compound 23 Compound 24

25

30

35

Compound 25

40

45

50

55 Compound 32

17 EP 2 924 020 B1

(continued)

5

10

15

20

Compound 33 Compound 34

25

30

35

40 Compound 35 Compound 36

45

50

55

18 EP 2 924 020 B1

(continued)

5

10

15

20

Compound 37 Compound 38

25

30

35

40

45

The compound of Chemical Formula 1 may have suitable characteristics for use as an organic material layer used in an organic electronic device by having fluoranthene as the core structure and introducing various substituents, as shown 50 in Chemical Formula 1. [0091] The conjugation length of a compound and the energy band gap have a close relationship. Specifically, the longer the conjugation length is, the smaller the energy band gap is. As described above, the compound core of Chemical Formula 1 includes limited conjugation, therefore, the energy band gap is large. [0092] In the present specification, compounds having various energy band gap values may be synthesized by intro- 55 ducing various substituents at positions R1 to R7 and R’ of the core structure having a large energy band gap as above. Typically, adjusting an energy band gap by introducing substituents to a core structure having a large energy band gap is simple, however, when a core structure has a small energy band gap, largely adjusting the energy band gap is difficult

19 EP 2 924 020 B1

by introducing substituents. [0093] In addition, in the present specification, the HOMO and LUMO energy level of the compound may be adjusted by introducing various substituents at positions R1 to R7 and R’ of the core structure having the structure as above. [0094] In addition, by introducing various substituents to the core structure having the structure as above, compounds 5 having unique characteristics of the introduced substituents may be synthesized. For example, by introducing substituents normally used in a hole injection layer material, a hole transfer layer material, a light emitting layer material and an electron transfer layer material, which are used in the manufacture of an organic electronic device, to the core structure, materials satisfying the conditions required for each organic material layer may be synthesized. [0095] The compound of Chemical Formula 1 includes fluoranthene in the core structure, thereby has an energy level 10 suitable as a hole injection and/or a hole transfer material in an organic light emitting device. In the present specification, a device having low driving voltage and high light efficiency can be obtained by selecting compounds having suitable energy levels depending on the substituents among the compounds of Chemical Formula 1, and using the compound in an organic light emitting device. [0096] In addition, by introducing various substituents to the core structure, the energy band gap can be finely adjusted, 15 and meanwhile, characteristics at the interface between organic materials are improved, and therefore, the materials can have various applications. [0097] Meanwhile, the compound of Chemical Formula 1 has excellent thermal stability due to its high glass transition

temperature (Tg). This thermal stability enhancement becomes an important factor that provides a driving stability to a device. 20 [0098] The compound of Chemical Formula 1 may be prepared based on the preparation examples described later. [0099] As the compound of Chemical Formula 1 of the present specification, a compound is synthesized by reacting acenaphthenequinoneand substitutedpropanone. To this synthesized compound,ethynyl benzene to which asubstituent is attached is synthesized, and the compound of Chemical Formula 1 is provided. [0100] Alternatively, a compound is synthesized by reacting acenaphthenequinone and substituted propanone, a 25 fluoranthene derivative is synthesized by reacting the compound with substituted ethynyl benzene, and then the com- pound of Chemical Formula 1 is provided by introducing various substituents to the fluoranthene derivative. [0101] The present specification also provides an organic electronic device that uses the fluoranthene compound. [0102] In one embodiment of the present specification, an organic electronic device provided includes a first electrode, a second electrode, and one or more layers of organic material layers provided between the first electrode and the 30 second electrode, wherein one or more layers of the organic material layers include the fluoranthene compound. [0103] The organic electronic device may be selected from the group consisting of an organic light emitting device, an organic solar cell and an organic transistor. [0104] The organic material layer of the organic electronic device of the present specification may be formed as a monolayer structure, but may be formed as a multilayer structure in which two or more layers of the organic material 35 layers are laminated. For example, the organic light emitting device of the present specification may have a structure including a hole injection layer, a hole transfer layer, a light emitting layer, an electron transfer layer, an electron inject ion layer, and the like as the organic material layer. However, the structure of the organic light emitting device is not limited thereto, and may include less number of organic material layers. [0105] In another embodiment, the organic electronic device may be a normal-type organic electronic device in which 40 an anode, one or more layers of organic material layers, and a cathode are laminated on a substrate in consecutive order. [0106] In another embodiment, the organic electronic device may be an inverted-type organic electronic device in which a cathode, one or more layers of organic material layers, and an anode are laminated on a substrate in consecutive order. [0107] The organic electronic device of the present specification may be prepared using materials and methods known 45 in the related art except that the compound of the present specification, that is, the fluoranthene compound, is included in one or more layers of organic material layers. [0108] For example, the organic electronic device of the present specification may be manufactured by laminating a first electrode, an organic material layer and a second electrode on a substrate in consecutive order. At this time, the organic electronic device may be manufactured by forming an anode through the deposition of a metal, a metal oxide 50 having conductivity, or alloys thereof on a substrate using a physical vapor deposition (PVD) method such as a sputtering method or an e-beam evaporation method, forming an organic material layer that includes a hole injection layer, a hole transfer layer, a light emitting layer and an electron transfer layer thereon, and then depositing a material that can be used as acathode thereon. In addition to thismethod, the organicelectronic device maybe manufactured byconsecutively depositing a cathode material, an organic material layer and an anode material on a substrate. 55 [0109] In addition, when the organic electronic device is manufactured, the fluoranthene compound may be formed as an organic material layer using a solution coating method as well as a vacuum deposition method. Herein, the solution coating method means spin coating, dip coating, doctor blading, ink jet printing, screen printing, a spray method, roll coating or the like, but is not limited thereto.

20 EP 2 924 020 B1

[0110] In one embodiment of the present specification, the organic electronic device may be an organic light emitting device. [0111] In one embodiment of the present specification, an organic light emitting device provided includes a first elec- trode, a second electrode, and one or more layers of organic material layers including a light emitting layer provided 5 between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the fluoranthene compound. [0112] In one embodiment of the present specification, the organic material layer includes a hole injection layer, a hole transfer layer, or a layer that injects and transfers holes at the same time, and the hole injection layer, the hole transfer layer, or the layer that injects and transfers the holes at the same time includes the fluoranthene compound. 10 [0113] In one embodiment of the present specification, the organic material layer includes an electron transfer layer, an electron injection layer, or a layer that transfers and injects electrons at the same time, and the electron transfer layer, the electron injection layer, or the layer that transfers and injects electrons at the same time includes the fluoranthene compound. [0114] In one embodiment of the present specification, the light emitting layer includes the fluoranthene compound. 15 [0115] In one embodiment of the present specification, the light emitting layer includes the fluoranthene compound as the host of the light emitting layer. [0116] In one embodiment of the present specification, the light emitting layer includes the fluoranthene compound as the host of the light emitting layer, and a dopant may be selected from among dopant materials known in the industry by those skilled in the related art depending on the characteristics required in an organic light emitting device, but is not 20 limited thereto. [0117] In one embodiment of the present specification, the organic light emitting device further includes one, two or more layers selected from the group consisting of a hole injection layer, a hole transfer layer, an electron transfer layer, an electron injection layer, an electron blocking layer and a hole blocking layer. [0118] In another embodiment, the organic material layer of the organic light emitting device may include a hole 25 injection layer or a hole transfer layer including a compound that includes an arylamino group, a carbazole group or a benzocarbazole group, in addition to an organic material layer that includes the fluoranthene compound represented by Chemical Formula 1. [0119] In one embodiment of the present specification, the organic light emitting device may be a top-emission type, a bottom-emission type or a dual-emission type depending on the materials used. 30 [0120] For example, in embodiments of the organic electronic device of the present specification, the organic electronic device may have a structure shown in Fig. 1 and Fig. 2, but the structure is not limited thereto. [0121] Fig. 1 illustrates the structure of an organic electronic device in which a substrate (1), an anode (2), a light emitting layer (3) and a cathode (4) are laminated in consecutive order. In this structure, the fluoranthene compound may be included in the light emitting layer (3). 35 [0122] Fig. 2 illustrates the structure of an organic electronic device in which a substrate (1), an anode (2), a hole injection layer (5), a hole transfer layer (6), a light emitting layer (3), an electron transfer layer(7) and a cathode (4) are laminated in consecutive order. In this structure, the fluoranthene compound may be included in one or more layers of the hole injection layer (5), the hole transfer layer (6), the light emitting layer(3) and the electron transfer layer (7). [0123] In one embodiment of the present specification, the organic electronic device may be an organic solar cell. 40 [0124] In one embodiment of the present specification, an organic solar cell provided includes a first electrode; a second electrode; and one or more layers of organic material layers including a photoactive layer provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the fluoranthene compound. [0125] In one embodiment of the present specification, the organic material layer includes an electron transfer layer, 45 an electron injection layer, or a layer that transfers and injects electrons at the same time, and the electron transfer layer, the electron injection layer, or the layer that transfers and injects electrons at the same time includes the fluoranthene compound. [0126] In another embodiment, the photoactive layer may include the fluoranthene compound. [0127] In another embodiment, the organic material layer includes an electron donor and an electron acceptor, and 50 the electron donor or the electron acceptor includes the fluoranthene compound. [0128] In one embodiment of the present specification, when the organic solar cell receives photons from an external light source, electrons and holes are generated between the electron donor and the electron acceptor. The generated holes are transferred to an anode through an electron donor layer. [0129] In one embodiment of the present specification, the organic solar cell may further include additional organic 55 material layers. The organic solar cell may reduce the number of organic material layers by using organic materials simultaneously having a number of functions. [0130] In one embodiment of the present specification, the organic electronic device may be an organic transistor. [0131] In one embodiment of the present specification, an organic transistor provided includes a source, a drain, a

21 EP 2 924 020 B1

gate and one or more layers of organic material layers, wherein one or more layers of the organic material layers include the fluoranthene compound. [0132] In one embodiment of the present specification, the organic transistor may include a charge generation layer, and the charge generation layer may include the fluoranthene compound. 5 [0133] In another embodiment, the organic transistor may include an insulation layer, and the insulation layer may be located on the substrate and the gate. [0134] When the organic electronic device includes a plurality of organic material layers, the organic material layers may be formed with identical materials or different materials. [0135] In one embodiment of the present specification, the first electrode is a cathode, and the second electrode is 10 an anode. [0136] In one embodiment of the present specification, the first electrode is an anode, and the second electrode is a cathode. [0137] The substrate may be selected considering optical properties and physical properties as necessary. For ex- ample, the substrate is preferably transparent. Hard materials may be used as the substrate, however, the substrate 15 may be formed with flexible materials such as plastic. [0138] Materials of the substrate include, in addition to glass and quartz, polyethyleneterephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PI), polycarbonate (PC), polystyrene (PS), polyoxymethylene (POM), an acrylonitrile styrene (AS) copolymer, an acrylonitrile butadiene styrene (ABS) copolymer, triacetyl cellulose (TAC), polyarylate (PAR), and the like, but are not limited thereto. 20 [0139] As the cathode material, a material having small work function is normally preferable so that electron injection to the organic material layer is smooth. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;

multilayer structure materials such as LiF/Al or LiO2/Al, or the like, but are not limited thereto. [0140] As the anode material, a material having large work function is normally preferable so that hole injection to the 25 organic material layer is smooth. Specific examples of the anode material that can be used in the present specification include metals such as vanadium, chromium, copper, zinc or gold, or alloys thereof; metal oxides such as zinc oxides, indium oxides, indium tin oxides (ITO) or indium zinc oxides (IZO); and mixtures of metals and oxides such as ZnO:Al or SnO2:Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline, or the like, but are not limited thereto. 30 [0141] The hole transfer layer is a layer that receives holes from a hole injection layer and transfers the holes to a light emitting layer, and a hole transfer material is a material that can receive holes from an anode or a hole injection layer, move the holes to a light emitting layer, and a material having high mobility for holes is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, a block copolymer having conjugated parts and non-conjugated parts together, and the like, but are not limited thereto. 35 [0142] The hole injection layer is a layer that injects holes from an electrode, and a hole injection material is preferably a compound that has an ability to transfer the holes thereby has a hole injection effect in an anode and has an excellent hole injection effect for a light emitting layer or a light emitting material, prevents the movement of excitons generated in the light emitting layer to an electron injection layer or an electron injection material, and in addition, has excellent thin film forming ability. The highest occupied molecular orbital (HOMO) of the hole injection material is preferably 40 between the work function of an anode and the HOMO of surrounding organic material layers. Specific examples of the hole injection material include a metal porphyrin, oligothiophene, an arylamine-based organic material, a phthalocyanine derivative, a hexanitrile hexazatriphenylene-based organic material, a quinacridone-based organic material, a perylene- based organic material, anthraquinone, and a polyaniline- and polythiophene-based conductive polymer, and the like, but are not limited thereto. 45 [0143] The light emitting material is a material that can emit light in a visible light region by receiving holes and electrons from a hole transfer layer and an electron transfer layer, respectively, and binding the holes and the electrons, and is preferably a material having favorable quantum efficiency for fluorescence or phosphorescence. Specific examples

thereof include a 8-hydroxy-quinoline aluminum complex (Alq 3); a carbazole-based compound; a dimerized styryl com- pound; BAlq; a 10-hydroxybenzo quinoline-metal compound; a benzoxazole-, a benzthiazole- and a benzimidazole- 50 based compound; a poly(p-phenylenevinylene) (PPV)-based polymer; a spiro compound; polyfluorene, rubrene or the like, but are not limited thereto. [0144] The light emitting layer may include a host material and a dopant material. The host material includes a fused aromatic ring derivative, a heteroring-containing compound, or the like. Specifically, the fused aromatic ring derivative includes an anthracene derivative, a pyrene derivative, a naphthalene derivative, a pentacene derivative, a phenanthrene 55 compound, a fluoranthene compound or the like, and the heteroring-containing compound includes a carbazole derivative, a dibenzofuran derivative, a ladder-type furan compound, a pyrimidine derivative or the like, but are not limited thereto. [0145] The dopant material includes organic compounds, metals or metal compounds. [0146] The dopant material includes an aromatic amine derivative, a styrylamine compound, a boron complex, a

22 EP 2 924 020 B1

fluoranthene compound, a metal complex, or the like. Specifically, the aromatic amine derivative includes arylamino- including pyrene, anthracene, crycene and periflanthene as the fused aromatic ring derivative having a substituted or unsubstituted arylamino group, and the styrylamine compound includes a compound in which substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, and one, two or more substituents selected from the group 5 consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, styrylamine, styryldiamine, styryltriamine, styryltetramine or the like is included, but the sty- rylamine compound is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex or the like, but is not limited thereto. [0147] The electron transfer layer is a layer that receives electrons from an electron injection layer and transfers the 10 electrons to a light emitting layer, and an electron transfer material is a material that can receive electrons from a cathode, move the electrons to a light emitting layer, and a material having high mobility for electrons is suitable. Specific examples thereof include an Al complex of 8-hydroxyquinoline; a complex including Alq3; an organic radical compound; a hydrox- yflavone-metal complex or the like, but are not limited thereto. The electron transfer layer can be used together with any desired cathode material as is used according to technologies in the related art. Particularly, examples of the suitable 15 cathode material are common materials that have small work function, and followed by an aluminum layer or a silver layer. Specifically the cathode material includes cesium, barium, calcium, ytterbium and samarium, and in each case, an aluminum layer or a silver layer follows. [0148] The electron injection layer is a layer that injects electrons from an electrode, and an electron injection material is preferably a compound that has an ability to transfer the electrons, has an electron injection effect in a cathode and 20 has an excellent electron injection effect for a light emitting layer or a light emitting material, prevents the movement of excitons generated in the light emitting layer to the electron injection layer, and in addition, has excellent thin film formin g ability. Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxa- zole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone or the like, and derivatives thereof, a metal complex compound, a -containing 5-membered ring derivative, or the like, but are 25 not limited thereto. [0149] The metal complex compound includes 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hy- droxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hy- droxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h]quinolinato)berylium, bis(10-hy- droxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gal- 30 lium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium or the like, but is not limited thereto. [0150] The hole blocking layer is a layer that blocks the arrival of holes in a cathode, and generally, may be formed under the same conditions as those of the hole injection layer. Specific examples thereof include an oxadiazole derivative, a triazole derivative, a phenanthroline derivative, BCP, an aluminum complex or the like, but are not limited thereto. 35 [0151] The electron blocking layer is a layer that improves the probability of electron-hole recombination by receiving holes while blocking electrons, and a material having significantly low electron transfer ability while having hole transfer ability are suitable. As the material of the electron blocking layer, the materials of the hole transfer layer described above may be used as necessary, but the material is not limited thereto, and known electron blocking layers may be used. [0152] The organic electronic device according to the present specification may be a top-emission type, a bottom- 40 emission type or a dual-emission type depending on the materials used. [0153] Hereinafter, a method for preparing the compound represented of Chemical Formula 1 and the manufacture of an organic light emitting device including the same will be described in detail with reference to examples. However, the following examples are for illustrative purposes only, and the scope of the present specification is not limited thereto.

45 Preparation Example

(1) Preparation of [Compound A-1]

[0154] 50

55

23 EP 2 924 020 B1

5

10

15 [0155] After acenaphthenequinone (30 g, 164 mmol) and 1,3-diphenyl-2-propanone (34 g, 164 mmol) were placed in ethanol (600 mL), potassium hydroxide (KOH) (27.6 g, 492 mmol) was added thereto, and the mixture was stirred under reflux for 48 hours at 85°C. The temperature was lowered to room temperature, 300 mL of water was added thereto, the solid produced was filtered and dried, and [Compound A-1] (45 g, yield 77%) was prepared. MS: [M+H] +=357

20 (2) Preparation of [Compound A-2]

[0156]

25

30

35

40 [0157] After [Compound A-1] (30 g, 84.2 mmol) and 1-bromo-4-ethynylbenzene (16.8 g, 92.8 mmol) were placed in xylene (500 mL), the mixture was stirred under reflux for 48 hours at 140°C. The temperature was lowered to room temperature, 300 mL of ethanol was added thereto, the solid produced was filtered and dried, and [Compound A-2] (31.3 g, yield 74%) was prepared. MS: [M+H]+= 510 45 (3) Preparation of [Compound A-3]

[0158]

50

55

24 EP 2 924 020 B1

5

10

15

[0159] After [Compound A-1] (30 g, 84.2 mmol) and 1-bromo-4-ethynylbenzene (16.8 g, 92.8 mmol) were placed in xylene (500 mL), the mixture was stirred under reflux for 48 hours at 140°C. The temperature was lowered to room temperature, 300 mL of ethanol was added thereto, the solid produced was filtered and dried, and [Compound A-2] (29.7 20 g, yield 69%) was prepared. MS : [M+H]+= 510

(4) Preparation of [Compound B-1]

[0160] 25

30

35

[0161] After acenaphthenequinone (6.9 g, 38 mmol) and 1,3-bis(4-bromophenyl)propan-2-one (14 g, 38 mmol) were placed in ethanol (300 mL), potassium hydroxide (KOH) (6.4 g, 114 mmol) was added thereto, and the mixture was stirred under reflux for 48 hours at 85°C. The temperature was lowered to room temperature, 200 mL of water was added 40 thereto, the solid produced was filtered and dried, and [Compound B-1] (17.3 g, yield 88%) was prepared. MS: [M+H] +=515

(5) Preparation of [Compound B-2]

[0162] 45

50

55

25 EP 2 924 020 B1

[0163] After [Compound B-1] (17.3 g, 33.6 mmol) and ethynylbenzene (4.1 g, 40.3 mmol) were placed in xylene (200 mL), the mixture was stirred under reflux for 48 hours at 140°C. The temperature was lowered to room temperature, 200 mL of ethanol was added thereto, the solid produced was filtered and dried, and [Compound B-2] (14.3 g, yield 72%) was prepared. MS: [M+H]+=589 5 (6) Preparation of [Compound C-1]

[0164]

10

15

20

25

[0165] After [Compound A-2] (30 g, 58.9 mmol) and bis(pinacolato)diboron (16.5 g, 64.8 mmol) were placed in dioxane 30 (300 mL), potassium acetate (17.3 g, 177 mmol) and then Pd(dppf)Cl 2CH2Cl2 (0.96 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 6 hours. The temperature was lowered to room temperature, and the result was filtered. After the filtrate was vacuum distilled and dissolved in chloroform, the result was recrystallized using ethanol, filtered and dried, and [Compound C-1] (27.2 g, yield 83%) was prepared. MS: [M+H]+=557

35 (7) Preparation of [Compound C-2]

[0166]

40

45

50

55

26 EP 2 924 020 B1

5

10

15

20

[0167] After [Compound A-3] (30 g, 58.9 mmol) and bis(pinacolato)diboron (16.5 g, 64.8 mmol) were placed in dioxane (300 mL), potassium acetate (17.3 g, 177 mmol) and then Pd(dppf)Cl 2CH2Cl2 (0.96 g, 2 mol%) were added thereto, and 25 the mixture was stirred under reflux for 6 hours. The temperature was lowered to room temperature, and the result was filtered. After the filtrate was vacuum distilled and dissolved in chloroform, the result was recrystallized using ethanol, filtered and dried, and [Compound C-2] (26.2 g, yield 80%) was prepared. MS: [M+H]+=557

Example 30 Example 1. Preparation of [Compound 2]

[0168]

35

40

45

50

[0169] After [Compound C-1] (17.6 g, 31.6 mmol) and 2-bromo-1,10-phenanthroline (8.2 g, 31.6 mmol) were placed 55 in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K 2CO3) solution (100 mL) and then Pd(PPh 3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and ethanol, then filtered and dried, and [Compound 2] (16.5 g, yield 86%) was prepared. MS: [M+H]+=609

27 EP 2 924 020 B1

Example 2. Preparation of [Compound 6]

[0170]

5

10

15

20

25 [0171] After [Compound C-1] (17.6 g, 31.6 mmol) and 2-chloro-4,6-diphenylpyrimidine (8.4 g, 31.6 mmol) were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K 2CO3) solution (100 mL) and then Pd(PPh 3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and 30 ethanol, then filtered and dried, and [Compound 6] (15.6 g, yield 75%) was prepared. MS: [M+H]+=661

Example 3. Preparation of [Compound 7] (Reference)

[0172] 35

40

45

50

55

[0173] After [Compound C-1] (17.6 g, 31.6 mmol) and 4-chloro-2,6-diphenylpyrimidine (8.4 g, 31.6 mmol) were placed

in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K 2CO3) solution (100 mL) and then Pd(PPh 3)4

28 EP 2 924 020 B1

(0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and ethanol, then filtered and dried, and [Compound 7] (14.6 g, yield 70%) was prepared. MS: [M+H]+=661

5 Example 4. Preparation of [Compound 8] (Reference)

[0174]

10

15

20

25

30 [0175] After [Compound C-1] (17.6 g, 31.6 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (8.4 g, 31.6 mmol) were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K2CO3) solution (100 mL) and then Pd(PPh3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chlo- roform and ethanol, then filtered and dried, and [Compound 8] (16.1 g, yield 77%) was prepared. MS: [M+H] +=662 35 Example 5. Preparation of [Compound 26] (Reference)

[0176]

40

45

50

55

29 EP 2 924 020 B1

5

10

15

20

[0177] After [Compound A-2] (15 g, 29.4 mmol) and 4-dibenzothiophene boronic acid (6.7 g, 29.4 mmol) were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K 2CO3) solution (100 mL) and then Pd(PPh 3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered 25 to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and ethanol, then filtered and dried, and [Compound 26] (12.6 g, yield 70%) was prepared. MS: [M+H]+=613

Example 6. Preparation of [Compound 27] (Reference)

30 [0178]

35

40

45

50

55 [0179] After [Compound A-2] (15 g, 29.4 mmol) and 4-dibenzofuran boronic acid (6.2 g, 29.4 mmol) were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K2CO3) solution (100 mL) and then Pd(PPh3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered

30 EP 2 924 020 B1

to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and ethanol, then filtered and dried, and [Compound 27] (13.5 g, yield 77%) was prepared. MS: [M+H]+=597

Example 7. Preparation of [Compound 11] (Reference) 5 [0180]

10

15

20

25

[0181] After [Compound C-2] (15 g, 26.8 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (7.16 g, 26.8 mmol) were 30 placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K2CO3) solution (100 mL) and then Pd(PPh3)4 (0.67 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chlo- roform and ethanol, then filtered and dried, and [Compound 11] (13.3 g, yield 75%) was prepared. MS: [M+H] +=661

35 Example 8. Preparation of [Compound 24]

[0182]

40

45

50

55

[0183] After [Compound A-2] (15 g, 29.5 mmol) and 11H-benzo[a]carbazole (6.4 g, 29.5 mmol) were placed in toluene

(150 mL), sodium tetrabutoxide (NaOtBu) (15 g) and then Pd(PtBu4)2 (0.16 g, 1 mol%) were added thereto, and the

31 EP 2 924 020 B1

mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chloroform and ethanol, then filtered and dried, and [Compound 24] (11.4 g, yield 60%) was prepared. MS: [M+H] +=645

5 Example 9. Preparation of [Compound 32]

[0184]

10

15

20

25

[0185] After [Compound C-1] (18.0 g, 32.4 mmol) and (4-bromophenyl)diphenylphosphineoxide (11.6 g, 32.4 mmol) 30 were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K2CO3) solution (100 mL) and then Pd(PPh 3)4 (0.75 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chlo- roform and ethanol, then filtered and dried, and [Compound 32] (13.7 g, yield 64%) was prepared. MS: [M+H] +=706

35 Example 10. Preparation of [Compound 38]

[0186]

40

45

50

55

32 EP 2 924 020 B1

[0187] After [Compound C-1] (15.0 g, 27.0 mmol) and 4’-(4-bromophenyl)-2,2’:6’,2"-terpyridine (10.5 g, 27.0 mmol) were placed in tetrahydrofuran (THF) (200 mL), a 2M aqueous potassium carbonate (K2CO3) solution (100 mL) and Pd(PPh3)4 (0.62 g, 2 mol%) were added thereto, and the mixture was stirred under reflux for 4 hours. The temperature was lowered to room temperature, and the solid produced was filtered. The filtered solid was recrystallized using chlo- 5 roform and ethanol, then filtered and dried, and [Compound 38] (15.5 g, yield 78%) was prepared. MS: [M+H] +=737

Experimental Example. Manufacture of Organic Light Emitting Device and Characteristics Measurements There- of Experimental Example 1-1

10 [0188] A glass substrate on which indium tin oxide (ITO) was coated as a thin film to a thickness of 500 Å was placed in distilled water in which a detergent is dissolved, and then was ultrasonic cleaned. At this time, a product of Fischer Corporation was used as the detergent, and as the distilled water, dist illed water filtered twice with a filter manufactured by Millipore Corporation was used. After the ITO was cleaned for 30 minutes, ultrasonic cleaning was repeated twice for 10 minutes using distilled water. After the cleaning with distilled water was finished, ultrasonic cleaning was performed 15 using an isopropyl alcohol, acetone and methanol solvent, and the substrate was dried and transferred to a plasma washer. In addition, the substrate was washed for 5 minutes using oxygen plasma, and transferred to a vacuum deposition apparatus. [0189] On the transparent ITO electrode prepared as above, a hole injection layer was formed to a thickness of 100 Å by thermal vacuum depositing hexanitrile hexazatriphenylene (HAT) of the following chemical formula. 20

25

30

[0190] On the hole injection layer, a hole transfer layer was formed by vacuum depositing 4-4’-bis[N-(1-naphthyl)-N- 35 phenylamino]biphenyl (NPB) (1,000 Å) of the chemical formula above. [0191] Subsequently, a light emitting layer was formed on the hole transfer layer to a film thickness of 230 Å by vacuum depositing the following GH and GD in the weight ratio of 10:1.

40

45

50

[0192] On the light emitting layer, an electron injection and transfer layer was formed to a film thickness of 350 Å by 55 vacuum depositing [Compound 2]. [0193] A cathode was formed on the electron injection and transfer layer by depositing lithium fluoride (LiF) to a thickness of 15 Å and aluminum to a thickness of 2,000 Å in consecutive order. [0194] In the above process, the deposition rate of the organic material was maintained to be 0.4 to 0.7 Å/sec, the

33 EP 2 924 020 B1

deposition rate of the lithium fluoride of the cathode to be 0.3 Å/sec, and the deposition rate of the aluminum to be 2 Å/sec, and the degree of vacuum when being deposited was maintained to be 2 x 10 -7 to 5 x 10-8 torr, and as a result, the organic light emitting device was manufactured.

5 Experimental Example 1-2 (Reference)

[0195] The organic light emitting device was manufactured using the same method as in Experimental Example 1-1 except that [Compound 8] was used instead of [Compound 2] in Experimental Example 1-1.

10 Experimental Example 1-3 (Reference)

[0196] The organic light emitting device was manufactured using the same method as in Experimental Example 1-1 except that [Compound 11] was used instead of [Compound 2] in Experimental Example 1-1.

15 Experimental Example 1-4

[0197] The organic light emitting device was manufactured using the same method as in Experimental Example 1-1 except that [Compound 32] was used instead of [Compound 2] in Experimental Example 1-1.

20 Experimental Example 1-5

[0198] The organic light emitting device was manufactured using the same method as in Experimental Example 1-1 except that [Compound 38] was used instead of [Compound 2] in Experimental Example 1-1.

25 Comparative Example 1

[0199] The organic light emitting device was manufactured using the same method as in Experimental Example 1-1 except that the compound of the following Chemical Formula ET-B was used instead of [Compound 2] in Experimental Example 1-1. 30

35

40

45

[0200] When current (10 mA/cm2) was applied to the organic light emitting device manufactured by Experimental 50 Example 1-1 to Experimental Example 1-5, and Comparative Example 1, the results of Table 1 were obtained.

[Table 1] Compound Voltage (V) Efficienc y (cd/A) ColorCoordinates (x,y)

55 Experimental Example 1-1 2 3.71 41.25 (0.374, 0.621) Experimental Example 1-2* 8 4.15 39.11 (0.374, 0.621) Experimental Example 1-3* 11 4.10 40.20 (0.374, 0.620)

34 EP 2 924 020 B1

(continued)

Compound Voltage (V) Efficienc y (cd/A) ColorCoordinates (x,y) Experimental Example 1-4 32 4.50 37.25 (0.373, 0.618) 5 Experimental Example 1-5 38 3.63 43.55 (0.373, 0.618) Comparative Example 1 ET-B 5.51 25.53 (0.373, 0.617) *Reference

10 Experimental Example 2-1

[0201] On the transparent ITO electrode prepared as in Experimental Example 1-1, a hole injection layer was formed to athickness of 100 Å by thermal vacuumdepositing hexanitrile hexazatriphenylene (HAT) of thechemical formula above. 15 [0202] On the hole injection layer, a hole transfer layer was formed by vacuum depositing 4-4’-bis[N-(1-naphthyl)-N- phenylamino]biphenyl (NPB) (700 A), hexanitrile hexazatriphenylene (HAT) (50 Å) and 4-4’-bis[N-(1-naphthyl)-N-phe- nylamino]biphenyl (NPB) (700 Å) of the chemical formula above in consecutive order. [0203] Subsequently, a light emitting layer was formed on the hole transfer layer to a film thickness of 200 Å by vacuum depositing the following BH and BD in the weight ratio of 25:1. 20

25

30

35

40

[0204] On the light emitting layer, an electron injection and transfer layer was formed to a thickness of 300 Å by vacuum depositing [Compound 7] and the lithium quinolate (LiQ) of the following chemical formula in the weight ratio of 1:1.

45

50

55 [0205] A cathode was formed on the electron injection and transfer layer by depositing lithium fluoride (LiF) to a thickness of 15 Å and aluminum to a thickness of 2,000 Å in consecutive order. [0206] In the above process, the deposition rate of the organic material was maintained to be 0.4 to 0.7 Å/sec, the

35 EP 2 924 020 B1

deposition rate of the lithium fluoride of the cathode to be 0.3 Å/sec, and the deposition rate of the aluminum to be 2 Å/sec, and the degree of vacuum when being deposited was maintained to be 2 x 10 -7 to 5 x 10-8 torr, and as a result, the organic light emitting device was manufactured.

5 Experimental Example 2-2 (Reference)

[0207] The organic light emitting device was manufactured using the same method as in Experimental Example 2-1 except that [Compound 2] was used instead of [Compound 7] in Experimental Example 2-1.

10 Experimental Example 2-3 (Reference)

[0208] The organic light emitting device was manufactured using the same method as in Experimental Example 2-1 except that [Compound 27] was used instead of [Compound 7] in Experimental Example 2-1.

15 Experimental Example 2-4

[0209] The organic light emitting device was manufactured using the same method as in Experimental Example 2-1 except that [Compound 38] was used instead of [Compound 7] in Experimental Example 2-1.

20 Comparative Example 2

[0210] The organic light emitting device was manufactured using the same method as in Experimental Example 2-1 except that the compound of the following Chemical Formula ET-C was used instead of [Compound 7] in Experimental Example 2-1. 25

30

35

40

[0211] When current (10 mA/cm2) was applied to the organic light emitting device manufactured by Experimental 45 Examples 2-1 to 2-4 and Comparative Example 2, the results of Table 2 were obtained.

[Table 2] Compound Voltage (V) Efficienc y (cd/A) ColorCoordinates (x,y)

50 Experimental Example 2-1* 7 4.35 6.43 (0.133, 0.154) Experimental Example 2-2 2 4.10 6.33 (0.133, 0.153) Experimental Example 2-3* 27 4.51 5.99 (0.133, 0.153) Experimental Example 2-4 38 4.22 6.25 (0.134, 0.154) 55 Comparative Example 2 ET-C 5.21 5.51 (0.134, 0.153) *Reference

36 EP 2 924 020 B1

[0212] From the results of Table 2, it can be seen that the novel compound according to the present specification can be used as the material of an organic material layer of an organic electronic device including an organic light emitting device, and an organic electronic device including an organic light emitting device, which uses the novel compound, shows excellent characteristics in efficiency, driving voltage, stability, and the like. In particular, the novel compound 5 according to the present specification has excellent thermal stability, deep HOMO level and hole stability thereby shows excellent characteristics. The novel compound can be used in an organic electronic device including an organic light emitting device either alone or by being mixed with an n-type dopant such as LiQ. The novel compound according to the present specification improves the efficiency, and improves the stability of a device due to the thermal stability of the compound. 10 [References]

[0213]

15 1: Substrate 2: Anode 3: Light Emitting Layer 4: Cathode 5: Hole Injection Layer 20 6: Hole Transfer Layer 7: Electron Transfer Layer

Claims 25 1. A fluoranthene compound represented by the following Chemical Formula 1:

30

35

40 wherein, in Chemical Formula 1,

R1 to R3 are groups represented by -(L)p-(Y)q; p is an integer of 0 to 10 and q is an integer of 1 to 10; o is an integer of 1 to 5; 45 r is an integer of 0 to 6; L is a substituted or unsubstituted arylene group; a substituted or unsubstituted alkenylene group; a substituted or unsubstituted fluorenylene group; or a substituted or unsubstituted heteroarylene group having O, N, S or P as a heteroatom; Y is hydrogen; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or 50 unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or unsubstituted alkylthioxy group; a substituted or unsubstituted arylthioxy group; a substituted or unsubstituted alkylsulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted 55 or unsubstituted amine group; a substituted or unsubstituted alkylamine group; a substituted or unsubstituted aralkylamine group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted heteroar- ylamine group; a substituted or unsubstituted aryl group; a substituted or unsubstituted fluorenyl group; a sub- stituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or

37 EP 2 924 020 B1

more of N, O, S and P atoms; when p≥2 or q≥2, Ls or Ys are the same as or different from each other; R1 and R3 may be bonded to each other to form an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond; 5 when o≥ 2, R4s are the same as or different from each other; R4 is a phenyl group substituted with at least one of the following substituents; or is at least one of the following substituents, or a plurality of adjacent R4s form a hydrocarbon ring substituted with at least one of the following substituents with each other:

10

15

20

25

30

35

40

45

50

55

38 EP 2 924 020 B1

5

10

15

20

25

30

35

40

wherein the substituents in the table above may be unsubstituted or additionally substituted with substituents 45 selected from the group consisting of an alkyl group; an aryl group; and a heteroring group including one or more of N, O, S or P atoms; when r≥ 2, R5s are the same as or different from each other; and R5 is hydrogen; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy 50 group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or unsubstituted alkylthioxy group; a substituted or unsubstituted arylthioxy group; a substituted or unsubstituted alkylsulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkylamine group; a substituted or unsubstituted 55 aralkylamine group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted heteroar- ylamine group; a substituted or unsubstituted aryl group; a substituted or unsubstituted fluorenyl group; a sub- stituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms, or adjacent groups among a plurality of R5s are bonded to each other to form

39 EP 2 924 020 B1

an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond.

2. The fluoranthene compound of Claim 1, wherein the compound represented by Chemical Formula 1 is represented by the following Chemical Formula 2: 5

10

15

20 wherein, in Chemical Formula 2,

o, r, and R3 to R5 are the same as those defined in Chemical Formula 1; each of n and m is an integer of 0 to 5; when n≥ 2, R6s are the same as or different from each other; 25 when m≥ 2, R7s are the same as or different from each other; and R6 and R7 are the same as or different from each other, each independently hydrogen; deuterium; a halogen group; a nitrile group; a nitro group; a hydroxy group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted phosphine oxide group; a substituted or unsubstituted aryloxy group; a substituted or unsubstituted alkylthioxy 30 group; a substituted or unsubstituted arylthioxy group; a substituted or unsubstituted alkylsulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkylamine group; a substituted or unsubstituted aralkylamine group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted heteroarylamine group; a substituted or un- 35 substituted aryl group; a substituted or unsubstituted fluorenyl group; a substituted or unsubstituted carbazole group; or a substituted or unsubstituted heteroring group including one or more of N, O, S and P atoms, or adjacent groups may be bonded to each other to form an aliphatic ring, an aromatic ring, an aliphatic heteroring or an aromatic heteroring, or form a spiro bond.

40 3. The fluoranthene compound of Claim 1, wherein the substituents are additionally substituted with hydrogen; a methyl group; an ethyl group; a phenyl group; a naphthyl group; a biphenyl group; or a pyridine group.

4. The fluoranthene compound of Claim 1, wherein Chemical Formula 1 is represented by any one of the following Compounds 1 to 5, 12 to 25 and 32 to 38: 45

Compound 1 Compound 2

50

55

40 EP 2 924 020 B1

(continued)

Compound 3 Compound 4

5

10

15

Compound 5 Compound 12

20

25

30

35 Compound 13 Compound 14

40

45

50

Compound 15 Compound 16

55

41 EP 2 924 020 B1

(continued)

5

10

15

Compound 17 Compound 18

20

25

30

35 Compound 19 Compound 20

40

45

50 Compound 21 Compound 22

55

42 EP 2 924 020 B1

(continued)

5

10

15

Compound 23 Compound 24

20

25

30

Compound 25 Compound 32 35

40

45

50 Compound 33 Compound 34

55

43 EP 2 924 020 B1

(continued)

5

10

15

Compound 35 Compound 36

20

25

30

Compound 37 Compound 38 35

40

45

50 5. An organic electronic device comprising:

a first electrode; a second electrode; and 55 one or more layers of organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the fluoranthene compound of any one of Claims 1 to 4.

44 EP 2 924 020 B1

6. The organic electronic device of Claim 5, which is selected from the group consisting of an organic light emitting device, an organic solar cell and an organic transistor.

7. The organic electronic device of Claim 5, which is an organic light emitting device comprising: 5 a first electrode; a second electrode; and one or more layers of organic material layers including a light emitting layer provided between the first electrode and the second electrode, 10 wherein one or more layers of the organic material layers include the fluoranthene compound.

8. The organic electronic device of Claim 7, wherein the organic material layer includes an electron transfer layer, an electron injection layer, or a layer that transfers and injects electrons at the same time, and the electron transfer layer, the electron injection layer, or the layer that transfers and injects electrons at the same time includes the 15 fluoranthene compound.

9. The organic electronic device of Claim 7, wherein the light emitting layer includes the fluoranthene compound.

10. The organic electronic device of Claim 7, wherein the organic material layer includes a hole transfer layer or a hole 20 injection layer, and the hole transfer layer or the hole injection layer includes the fluoranthene compound.

11. The organic electronic device of Claim 7, wherein the organic material layer includes one, two or more layers selected from the group consisting of the hole injection layer, the hole transfer layer, the electron transfer layer, the electron injection layer, an electron blocking layer and a hole blocking layer. 25 12. The organic electronic device of Claim 5, which is an organic solar cell comprising:

a first electrode; a second electrode; and 30 one or more layers of organic material layers including a photoactive layer provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the fluoranthene compound.

13. The organic electronic device of Claim 12, wherein the organic material layer includes a photoactive layer, and the 35 photoactive layer includes the fluoranthene compound.

14. The organic electronic device of Claim 5, which is an organic transistor comprising:

a source; 40 a drain; a gate; and one or more layers of organic material layers, wherein one or more of the organic material layers include the fluoranthene compound.

45 Patentansprüche

1. Fluoranthenverbindung mit der folgenden chemischen Formel 1:

50

55

45 EP 2 924 020 B1

5

10

worin in der chemischen Formel 1 die Gruppen R1 bis R3 dargestellt sind durch -(L)p-(Y)q, p eine ganze Zahl 15 von 0 bis 10 ist und q eine ganze Zahl von 1 bis 10 sind, o eine ganze Zahl von 1 bis 5 ist, r eine ganze Zahl von 0 bis 6 ist, L eine substituierte oder unsubstituierte Arylengruppe, substituierte oder unsubstituierte Alkenylengruppe, sub- stituierte oder unsubstituierte Fluorenylengruppe oder substituierte oder unsubstituierte Heteroarylengruppe mit O, N, S oder P als Heteroatom ist, 20 Y Wasserstoff, Deuterium, Halogengruppe, Nitrilgruppe, Nitrogruppe, Hydroxygruppe, substituierte oder un- substituierte Alkylgruppe, substituierte oder unsubstituierte Cycloalkylgruppe, substituierte oder unsubstituierte Alkoxygruppe, substituierte oder unsubstituierte Phosphinoxidgruppe, substituierte oder unsubstituierte Arylo- xygruppe, substituierte oder unsubstituierte Alkylthioxygruppe, substituierte oder unsubstituierte Arylthioxygrup- pe, substituierte oder unsubstituierte Alkylsulfoxygruppe, substituierte oder unsubstituierte Arylsulfoxygruppe, 25 substituierte oder unsubstituierte Alkenylgruppe, substituierte oder unsubstituierte Silylgruppe, substituierte oderunsubstituierte Borgruppe, substituierte oderunsubstituierte Amingruppe, substituierte oderunsubstituierte Alkylamingruppe, substituierte oder unsubstituierte Aralkylamingruppe, substituierte oder unsubstituierte Aryl- amingruppe, substituierte oder unsubstituierte Heteroarylamingruppe, substituierte oder unsubstituierte Aryl- gruppe, substituierte oder unsubstituierte Fluorenylgruppe, substituierte oder unsubstituierte Carbazolgruppe 30 oder substituierte oder unsubstituierte Heteroringgruppe mit ein oder mehreren von N-, O-, S- oder P-Atomen ist, wenn p≥2 oder q≥2, Ls oder Ys gleich oder verschieden voneinander sind; R1 und R3 aneinander zur Bildung eines aliphatischen Rings, eines aromatischen Rings, eines aliphatischen Heterorings oder eines aromatischen Heterorings gebunden sein können oder eine Spirobindung bilden, wenn o≥2, die Gruppen R4 gleich oder verschieden voneinander sind; 35 R4 eine Phenylgruppe ist, substituiert mit zumindest einem der folgenden Substituenten, oder zumindest einer der folgenden Substituenten ist oder eine Vielzahl von benachbarten R4 einen Kohlenwasserstoffring bilden, substituiert mit zumindest einem der folgenden Substituenten:

40

45

50

55

46 EP 2 924 020 B1

5

10

15

20

25

30

35

40

worin die Substituenten in der obigen Tabelle unsubstituiert oder zusätzlich mit Substituenten substituiert sein 45 können, ausgewählt aus der Gruppe, bestehend aus einer Alkylgruppe, Arylgruppe und Heteroringgruppe, die ein oder mehrere von N-, O-, S- oder P-Atomen enthalten, wenn r≥2, die R5-Gruppen gleich oder verschieden voneinander sind und R5 Wasserstoff, Deuterium, Halo- gengruppe, Nitrilgruppe, Nitrogruppe, Hydroxygruppe, substituierte oder unsubstituierte Alkylgruppe, substitu- ierte oder unsubstituierte Cycloalkylgruppe, substituierte oder unsubstituierte Alkoxygruppe, substituierte oder 50 unsubstituierte Phosphinoxidgruppe, substituierte oder unsubstituierte Aryloxygruppe, substituierte oder un- substituierte Alkylthioxygruppe, substituierte oder unsubstituierte Arylthioxygruppe, substituierte oder unsubs- tituierte Alkylsulfoxygruppe, substituierte oder unsubstituierte Arylsulfoxygruppe, substituierte oder unsubstitu- ierte Alkenylgruppe, substituierte oder unsubstituierte Silylgruppe, substituierte oder unsubstituierte Borgruppe, substituierte oder unsubstituierte Amingruppe, substituierte oder unsubstituierte Alkylamingruppe, substituierte 55 oder unsubstituierte Aralkylamingruppe, substituierte oder unsubstituierte Arylamingruppe, substituierte oder unsubstituierte Heteroarylamingruppe, substituierte oder unsubstituierte Arylgruppe, substituierte oder unsub- stituierte Fluorenylgruppe, substituierte oder unsubstituierte Carbazolgruppe oder substituierte oder unsubsti- tuierte Heteroringgruppe mit einem oder mehreren von N-, O-, S- oder P-Atomen sind, oder worin benachbarte

47 EP 2 924 020 B1

Gruppen unter einer Vielzahl von R5 aneinander zur Bildung eines aliphatischen Rings, aromatischen Rings, aliphatischen Heterorings oder eines aromatischen Heterorings gebunden sein können oder eine Spirobindung bilden.

5 2. Fluoranthenverbindung gemäß Anspruch 1, worin die Verbindung mit der chemischen Formel 1 durch die folgende chemische Formel 2 dargestellt ist:

10

15

20

worin in der chemischen Formel 2 o, r und R3 bis R5 gleich sind wie in der chemischen Formel 1 definiert, jedes von n und m eine ganze Zahl von 0 bis 5 ist, wenn n ≥2, die Gruppen R6 gleich oder verschieden voneinander sind, wenn m≥2, die Gruppen R7 gleich oder verschieden voneinander sind, und 25 R6 und R7 gleich oder verschieden voneinander sind und jeweils unabhängig Wasserstoff, Deuterium, Halo- gengruppe, Nitrilgruppe, Nitrogruppe, Hydroxygruppe, substituierte oder unsubstituierte Alkylgruppe, substitu- ierte oder unsubstituierte Cycloalkylgruppe, substituierte oder unsubstituierte Alkoxygruppe, substituierte oder unsubstituierte Phosphinoxidgruppe, substituierte oder unsubstituierte Aryloxygruppe, substituierte oder un- substituierte Alkylthioxygruppe, substituierte oder unsubstituierte Arylthioxygruppe, substituierte oder unsubs- 30 tituierte Alkylsulfoxygruppe, substituierte oder unsubstituierte Arylsulfoxygruppe, substituierte oder unsubstitu- ierte Alkenylgruppe, substituierte oder unsubstituierte Silylgruppe, substituierte oder unsubstituierte Borgruppe, substituierte oder unsubstituierte Amingruppe, substituierte oder unsubstituierte Alkylamingruppe, substituierte oder unsubstituierte Aralkylamingruppe, substituierte oder unsubstituierte Arylamingruppe, substituierte oder unsubstituierte Heteroarylamingruppe, substituierte oder unsubstituierte Arylgruppe, substituierte oder unsub- 35 stituierte Fluorenylgruppe, substituierte oder unsubstituierte Carbazolgruppe oder substituierte oder unsubsti- tuierte Heteroringgruppe mit einem oder mehreren von N-, O-, S- oder P-Atomen sind, oder benachbarte Grup- pen aneinander zur Bildung eines aliphatischen Rings, eines aromatischen Rings, eines aliphatischen Heter- orings oder eines aromatischen Heterorings gebunden sein können oder eine Spirobindung bilden.

40 3. Fluoranthenverbindung gemäß Anspruch 1, worin die Substituenten zusätzlich mit Wasserstoff, Methylgruppe, Ethyl- gruppe, Phenylgruppe, Naphthylgruppe, Biphenylgruppe oder Pyridingruppe substituiert sind.

4. Fluoranthenverbindung gemäß Anspruch 1, worin die chemische Formel 1 durch eine der folgenden Verbindung 1 bis 5, 12 bis 25 und 32 bis 38 dargestellt ist: 45

Verbindung 1 Verbindung 2

50

55

48 EP 2 924 020 B1

(fortgesetzt)

Verbindung 3 Verbindung 4

5

10

15

Verbindung 5 Verbindung 12

20

25

30

35 Verbindung 13 Verbindung 14

40

45

50

Verbindung 15 Verbindung 16

55

49 EP 2 924 020 B1

(fortgesetzt)

5

10

15

Verbindung 17 Verbindung 18

20

25

30

35 Verbindung 19 Verbindung 20

40

45

50 Verbindung 21 Verbindung 22

55

50 EP 2 924 020 B1

(fortgesetzt)

5

10

15

Verbindung 23 Verbindung 24

20

25

30

Verbindung 25 Verbindung 32 35

40

45

50 Verbindung 33 Verbindung 34

55

51 EP 2 924 020 B1

(fortgesetzt)

5

10

15

Verbindung 35 Verbindung 36

20

25

30

Verbindung 37 Verbindung 38 35

40

45

50 5. Organische elektronische Vorrichtung, enthaltend:

eine erste Elektrode, eine zweite Elektrode und eine oder mehrere Schichten von organischen Materialschichten, die zwischen der ersten und der zweiten Elektrode angeordnet sind, 55 worin eine oder mehrere Schichten der organischen Materialschichten die Fluoranthenverbindung gemäß einem der Ansprüche 1 bis 4 enthalten.

52 EP 2 924 020 B1

6. Organische elektronische Vorrichtung gemäß Anspruch 5, ausgewählt aus der Gruppe, bestehend aus einer orga- nischen lichtemittierenden Vorrichtung, organischen Solarzelle und einem organischen Transistor.

7. Organische elektronische Vorrichtung gemäß Anspruch 5, die eine organische lichtemittierende Vorrichtung ist, 5 enthaltend:

eine erste Elektrode, eine zweite Elektrode und eine oder mehrere Schichten von organischen Materialschichten, einschließlich einer lichtemittierenden Schicht, die zwischen der ersten und der zweiten Elektrode angeordnet ist, 10 worin eine oder mehrere Schichten der organischen Materialschichten die Fluoranthenverbindung enthalten.

8. Organische elektronische Vorrichtung gemäß Anspruch 7, worin die organische Materialschicht eine Elektronen- transferschicht, Elektroneninjektionsschicht oder eine Schicht enthält, die Elektronen zur gleichen Zeit transferiert und injiziert, und die Elektronentransferschicht, die Elektroneninjektionsschicht oder die Schicht, die Elektronen 15 zum gleichen Zeitpunkt transferiert und injiziert, die Fluoranthenverbindung enthält.

9. Organische elektronische Vorrichtung gemäß Anspruch 7, worin die lichtemittierende Schicht die Fluoranthenver- bindung enthält.

20 10. Organische elektronische Vorrichtung gemäß Anspruch 7, worin die organische Materialschicht eine Lochtransfer- schicht oder eine Lochinjektionsschicht enthält und die Lochtransferschicht oder die Lochinjektionsschicht die Flu- oranthenverbindung enthält.

11. Organische elektronische Vorrichtung gemäß Anspruch 7, worin die organische Materialschicht eine, zwei oder 25 mehrere Schichten enthält, ausgewählt aus der Gruppe, bestehend aus der Lochinjektionsschicht, Lochtransfer- schicht, Elektronentransferschicht, Elektroneninjektionsschicht, Elektronenblockierschicht und Lochblockierschicht.

12. Organische elektronische Vorrichtung gemäß Anspruch 5, die eine organische Solarzelle ist, enthaltend:

30 eine erste Elektrode, eine zweite Elektrode und eine oder mehrere Schichten aus organischen Materialschichten, enthaltend eine fotoaktive Schicht zwischen der ersten und der zweiten Elektrode, worin eine oder mehrere Schichten aus der organischen Materialschicht die Fluoranthenverbindung enthält.

13. Organische elektronische Vorrichtung gemäß Anspruch 12, die organische Materialschicht eine fotoaktive Schicht 35 enthält und die fotoaktive Schicht die Fluoranthenverbindung enthält.

14. Organische elektronische Vorrichtung gemäß Anspruch 5, die ein organischer Transistor ist, enthaltend:

eine Quelle, einen Kanal, ein Gate und eine oder mehrere Schichten aus organischen Materialschichten, 40 worin eine oder mehrere der organischen Materialschichten die Fluoranthenverbindung enthält.

Revendications

45 1. Composé de fluoranthène représenté par la formule chimique 1 suivante :

50

55

53 EP 2 924 020 B1

5

10

15

dans lequel, dans la formule chimique 1,

20 R1 à R3 sont des groupes représentés par -(L)p-(Y)q ; p est un nombre entier de 0 à 10 et q est un nombre entier de 1 à 10 ; o est un nombre entier de 1 à 5 ; r est un nombre entier de 0 à 6 ; L est un groupe arylène substitué ou non substitué ; un groupe alcénylène substitué ou non substitué ; un 25 groupe fluorénylène substitué ou non substitué ; ou un groupe hétéroarylène substitué ou non substitué ayant O, N, S ou P comme hétéroatome ; Y est un atome d’hydrogène ; de deutérium ; un groupe halogène ; un groupe nitrile ; un groupe nitro ; un groupe hydroxy; un groupe alkyle substitué ou non substitué ; un groupe cycloalkyle substitué ou non substitué ; un groupe alcoxy substitué ou non substitué ; un groupe oxyde de phosphine substitué ou non substitué ; un groupe 30 aryloxy substitué ou non substitué ; ou groupe alkylthioxy substitué ou non substitué ; un groupe arylthioxy substitué ou non substitué ; un groupe alkylsulfoxy substitué ou non substitué ; un groupe arylsulfoxy substitué ou non substitué ; un groupe alcényle substitué ou non substitué ; un groupe silyle substitué ou non substitué ; un groupe bore substitué ou non substitué; un groupe amine substitué ou non substitué; un groupe alkylamine substitué ou non substitué; un groupe aralkylamine substitué ou non substitué ; un groupe arylamine substitué 35 ou non substitué ; un groupe hétéroarylamine substitué ou non substitué ; un groupe aryle substitué ou non substitué ; un groupe fluorényle substitué ou non substitué ; un groupe carbazole substitué ou non substitué ; ou un groupe hétérocyclique substitué ou non substitué incluant un ou plusieurs atomes de N, O, S et P ; lorsque p ≥ 2 ou q ≥ 2, les L ou Y sont identiques ou différents les uns des autres ; R1 et R3 peuvent être liés l’un à l’autre pour former un cycle aliphatique, un cycle aromatique, un hétérocycle 40 aliphatique ou un hétérocycle aromatique, ou forment une liaison spiro ; lorsque o ≥ 2, les R4 sont identiques ou différents les uns des autres ; R4 est un groupe phényle substitué par au moins l’un des substituants suivants ; ou est au moins l’un des substituants suivants, ou une pluralité de R4 adjacents forment un cycle hydrocarbure substitué par au moins l’un des substituants suivants les uns avec les autres ; 45

50

55

54 EP 2 924 020 B1

5

10

15

20

25

30

35

dans lequel les substituants dans le tableau ci-dessus peuvent être non substitués ou substitués en plus par des substituants sélectionnés dans le groupe consistant en un groupe alkyle; un groupe aryle ; et un groupe hétérocyclique incluant un ou plusieurs des atomes de N, O, S ou P ; 40 lorsque r ≥ 2, les R5 sont identiques ou différents les uns des autres ; et R5 est un atome d’hydrogène ; de deutérium ; un groupe halogène ; un groupe nitrile ; un groupe nitro ; un groupe hydroxy; un groupe alkyle substitué ou non substitué ; un groupe cycloalkyle substitué ou non substitué ; un groupe alcoxy substitué ou non substitué ; un groupe oxyde de phosphine substitué ou non substitué ; un groupe aryloxy substitué ou non substitué ; ou groupe alkylthioxy substitué ou non substitué ; un groupe aryl- 45 thioxy substitué ou non substitué ; un groupe alkylsulfoxy substitué ou non substitué ; un groupe arylsulfoxy substitué ou non substitué ; un groupe alcényle substitué ou non substitué ; un groupe silyle substitué ou non substitué ; un groupe bore substitué ou non substitué; un groupe amine substitué ou non substitué; un groupe alkylamine substitué ou non substitué; un groupe aralkylamine substitué ou non substitué ; un groupe arylamine substitué ou non substitué ; un groupe hétéroarylamine substitué ou non substitué ; un groupe aryle substitué 50 ou non substitué ; un groupe fluorényle substitué ou non substitué ; un groupe carbazole substitué ou non substitué ; ou un groupe hétérocyclique substitué ou non substitué incluant un ou plusieurs atomes de N, O, S et P, ou des groupes adjacents parmi une pluralité de R5 sont liés les uns aux autres pour former un cycle aliphatique, un cycle aromatique, un hétérocycle aliphatique ou un hétérocycle aromatique, ou forment une liaison spiro. 55 2. Composé de fluoranthène selon la revendication 1, dans lequel le composé représenté par la formule chimique 1 est représenté par la formule chimique 2 suivante :

55 EP 2 924 020 B1

5

10

15

dans lequel, dans la formule chimique 2,

o, r, et R3 à R5 sont identiques à ceux définis dans la formule chimique 1 ; 20 chacun des n et m est un nombre entier de 0 à 5 ; lorsque n ≥ 2, les R6 sont identiques ou différents les uns des autres ; lorsque m ≥ 2, les R7 sont identiques ou différents les uns des autres ; et R6 et R7 sont identiques ou différents l’un de l’autre, sont chacun indépendamment un atome d’hydrogène; de deutérium ; un groupe halogène; un groupe nitrile ; un groupe nitro ; un groupe hydroxy ; un groupe alkyle 25 substitué ou non substitué ; un groupe cycloalkyle substitué ou non substitué ; un groupe alcoxy substitué ou non substitué ; un groupe oxyde de phosphine substitué ou non substitué ; un groupe aryloxy substitué ou non substitué ; ou groupe alkylthioxy substitué ou non substitué ; un groupe arylthioxy substitué ou non substitué ; un groupe alkylsulfoxy substitué ou non substitué ; un groupe arylsulfoxy substitué ou non substitué ; un groupe alcényle substitué ou non substitué ; un groupe silyle substitué ou non substitué ; un groupe bore substitué ou 30 non substitué; un groupe amine substitué ou non substitué; un groupe alkylamine substitué ou non substitué; un groupe aralkylamine substitué ou non substitué ; un groupe arylamine substitué ou non substitué ; un groupe hétéroarylamine substitué ou non substitué ; un groupe aryle substitué ou non substitué ; un groupe fluorényle substitué ou non substitué ; un groupe carbazole substitué ou non substitué ; ou un groupe hétérocyclique substitué ou non substitué incluant un ou plusieurs atomes de N, O, S et P, ou des groupes adjacents peuvent 35 être liés les uns aux autres pour former un cycle aliphatique, un cycle aromatique, un hétérocycle aliphatique ou un hétérocycle aromatique, ou forment une liaison spiro.

3. Composé de fluoranthène selon la revendication 1, dans lequel les substituants sont substitués en plus par un atome d’hydrogène ; un groupe méthyle ; un groupe éthyle ; un groupe phényle ; un groupe naphtyle ; un groupe 40 biphényle ; ou un groupe pyridine.

4. Composé de fluoranthène selon la revendication 1, dans lequel la formule chimique 1 est représentée par l’un quelconque des composés 1 à 5, 12 à 25 et 32 à 38 suivants :

45 Composé 1 Composé 2

50

55

56 EP 2 924 020 B1

(suite)

5

10

15

Composé 3 Composé 4

20

25

30

35

Composé 5 Composé 12 40

45

50

55

57 EP 2 924 020 B1

(suite)

Composé 13 Composé 14

5

10

15

20

Composé 15 Composé 16

25

30

35

40

Composé 17 Composé 18

45

50

55

58 EP 2 924 020 B1

(suite)

5

10

15

20 Composé 19 Composé 20

25

30

35

40

Composé 21 Composé 22

45

50

55

59 EP 2 924 020 B1

(suite)

5

10

15

20

Composé 23 Composé 24

25

30

35

40

Composé 25 Composé 32 45

50

55

60 EP 2 924 020 B1

(suite)

5

10

15

20 Composé 33 Composé 34

25

30

35

40 Composé 35 Composé 36

45

50

55

61 EP 2 924 020 B1

(suite)

5

10

15

20

Composé 37 Composé 38

25

30

35

40

5. Dispositif électronique organique comprenant :

45 une première électrode ; une seconde électrode ; et une ou plusieurs couches de couches de matériau organique aménagées entre la première électrode et la seconde électrode, dans lequel une ou plusieurs couches des couches de matériau organique incluent le composé de fluoranthène 50 selon l’une quelconque des revendications 1 à 4.

6. Dispositif électronique organique selon la revendication 5, qui est sélectionné dans le groupe consistant en un dispositif électroluminescent organique, une cellule solaire organique et un transistor organique.

55 7. Dispositif électronique organique selon la revendication 5, qui est un dispositif électroluminescent organique comprenant :

une première électrode ;

62 EP 2 924 020 B1

une seconde électrode ; et une ou plusieurs couches de couches de matériau organique incluant une couche électroluminescente amé- nagée entre la première électrode et la seconde électrode, dans lequel une ou plusieurs couches des couches de matériau organique incluent le composé de fluoranthène. 5 8. Dispositif électronique organique selon la revendication 7, dans lequel la couche de matériau organique inclut une couche de transfert d’électrons, une couche d’injection d’électrons, ou une couche qui transfère et injecte des électrons en même temps, et la couche de transfert d’électrons, la couche d’injection d’électrons, ou la couche qui transfère et injecte des électrons en même temps inclut le composé de fluoranthène. 10 9. Dispositif électronique organique selon la revendication 7, dans lequel la couche électroluminescente inclut le composé de fluoranthène.

10. Dispositif électronique organique selon la revendication 7, dans lequel la couche de matériau organique inclut une 15 couche de transfert de trous ou une couche d’injection de trous, et la couche de transfert de trous ou la couche d’injection de trous inclut le composé de fluoranthène.

11. Dispositif électronique organique selon la revendication 7, dans lequel la couche de matériau organique inclut une, deux ou plus de deux couches sélectionnées dans le groupe consistant en la couche d’injection de trous, la couche 20 de transfert de trous, la couche de transfert d’électrons, la couche d’injection d’électrons, une couche de blocage d’électrons et une couche de blocage de trous.

12. Dispositif électronique organique selon la revendication 5, qui est une cellule solaire organique comprenant :

25 une première électrode ; une seconde électrode ; et une ou plusieurs couches de couches de matériau organique incluant une couche photoactive aménagée entre la première électrode et la seconde électrode, dans lequel une ou plusieurs couches des couches de matériau organique incluent le composé de fluoranthène. 30 13. Dispositif électronique organique selon la revendication 12, dans lequel la couche de matériau organique inclut une couche photoactive, et la couche photoactive inclut le composé de fluoranthène.

14. Dispositif électronique organique selon la revendication 5, qui est un transistor organique comprenant : 35 une source ; un drain ; une grille ; et une ou plusieurs couches de couches de matériau organique, 40 dans lequel une ou plusieurs des couches de matériau organique incluent le composé de fluoranthène.

45

50

55

63 EP 2 924 020 B1

64 EP 2 924 020 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 2007001220 [0007] • KR 20100057887 [0008] • KR 2011137897 [0007] • KR 20120029258 [0009]

65