Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment By J. Thomas Nash Open-File Report 2010–1001 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Nash, J. Thomas, 2010, Volcanogenic uranium deposits—Geology, geochemical processes, and criteria for resource assessment: U.S. Geological Survey Open-File Report 2010-1001, 99 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract ...................................................................................................................... 1 Introduction ................................................................................................................ 2 Classification and Nomenclature............................................................................. 4 Known and Important Deposits: Descriptions and Comments ................................... 6 Largest in the World: Streltsovskoye, Russia ......................................................... 8 Even Larger “Volcanic” Deposit? Olympic Dam ...................................................... 9 Pocos de Caldas, Brazil ........................................................................................ 10 Dornot, Xiangshan, Chatkalo, and Other Districts of Asia ..................................... 12 Pena Blanca District, Mexico ................................................................................ 12 Macusani District, Peru ........................................................................................ 14 Lakeview District, Oregon ..................................................................................... 14 McDermitt District, Nevada and Oregon ............................................................... 17 Aurora Prospect, McDermitt, Nevada-Oregon ................................................... 17 Kings River area (Moonlight Mine) ..................................................................... 21 Marysvale District, Utah ........................................................................................ 22 Rexspar Deposit, Canada ..................................................................................... 23 Georgetown-Townsville Uranium Field, Australia ................................................. 23 Novazza, Italy ...................................................................................................... 26 Spor Mountain, Utah ............................................................................................. 26 Date Creek Basin, Arizona .................................................................................... 28 Lodeve District, France ......................................................................................... 30 Virgin Valley District, Nevada ................................................................................ 30 Deposits in Pre-Volcanic Structural Traps ............................................................... 31 Pitch Mine, Colorado ............................................................................................. 31 Midnite Mine, Washington ..................................................................................... 33 Apex Mine, Austin District, Nevada ....................................................................... 35 Arlit, Niger: Deposits in Volcaniclastic Sandstone ................................................. 36 Metamorphosed Volcanogenic Deposits ............................................................... 36 Genesis of Uranium Deposits: Concepts for Source, Transport, and Deposition ..... 37 Source Mechanisms and Concepts ...................................................................... 37 Uranium in Magmas and Magmatic-Hydrothermal Fluids .................................. 37 Rhyolite Magmatism .......................................................................................... 38 Petrochemistry of Uranium in Volcanic Rocks ................................................... 42 Release of Uranium .......................................................................................... 43 Transport Mechanisms and Concepts .................................................................. 44 Uranium Transport ............................................................................................. 44 Thorium Transport ............................................................................................. 45 Hydrology of Volcanic Systems.......................................................................... 46 Geochemical Signatures .................................................................................... 50 Uranium Deposition: Focused Flow, Traps, and Reductants ................................ 51 Post Ore: Preservation, Enrichment, or Destruction ................................................ 56 A Geologic Framework for Assessment ................................................................... 57 Assessment for Volcanogenic Uranium Deposits .................................................... 59 Introduction to Assessment Methods .................................................................... 59 iii Assessment Step 1: Permissive Tract Delineation ............................................... 59 Assessment Step 2: Grade and Tonnage Model ................................................. 60 Assessment Step 3A: Estimates of Number of Undiscovered Deposits ............... 61 Assessment Step 3B: Favorability Levels and Maps ............................................ 63 Quantitative Assessment Criteria .......................................................................... 64 Geology ............................................................................................................. 66 Geochemistry ..................................................................................................... 68 Geophysics ........................................................................................................ 68 Other Databases ................................................................................................ 69 Assessment Databases ........................................................................................ 70 Geology ............................................................................................................. 70 Geochemistry ..................................................................................................... 70 Geophysics ........................................................................................................ 71 Other Databases ................................................................................................ 72 Links to Other Assessments .............................................................................. 73 Suggestions for Further Work .................................................................................. 73 Comparison with Epithermal Processes ............................................................... 73 Refine Rhyolite Magmatism .................................................................................. 73 Evaluate Role of Sulfate-Rich Brines .................................................................... 74 Refine Sulfur Reduction Mechanisms ................................................................... 74 Hydrothermal Mobilization of Uranium in Volcaniclastic Strata ............................. 74 Refine Post-Ore Stability of Deposits ................................................................... 75 Refine Assessment Concepts and Practices ........................................................ 75 Concluding Remarks ................................................................................................ 76 Acknowledgments .................................................................................................... 77 References .............................................................................................................. 77 Appendix: Grade-Tonnage Relations Among Volcanogenic Uranium Deposits ...... 95 Figures 1. Location of volcanogenic uranium deposits, western U.S. ..................................... 7 2. Geologic map of the Streltsovskoye caldera, Russia ............................................. 9 3. Conceptual diagram of the phreatic stage, Olympic Dam deposit........................ 10 4. Cross sections, Pena Blanca .............................................................................. 13 5. Geologic map of the Lakeview District ................................................................ 16 6. Geologic map and section of the Aurora deposit ................................................. 19 7. Cross section showing geology and ore lenses, Aurora
Recommended publications
  • Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3.
    [Show full text]
  • English, French GROUP – Details Below) • Forming Ground Or Basking Groups; • 20+ Adults/400 M Foot Transect (Or 500+/Ha)
    D E S E R T L O C U S T B U L L E T I N FAO Emergency Centre for Locust Operations No. 301 (6 November 2003) General Situation during October 2003 Forecast until mid-December 2003 The Desert Locust situation deteriorated occurred in northwestern Mauritania and southwestern further during October as outbreaks developed Morocco where breeding is likely to occur in the in Mauritania, Mali, Niger and Sudan. Hoppers coming months. Low numbers of adults have moved and adults were concentrating in vegetation into southern Morocco and northern Mauritania on and starting to become gregarious and form winds associated with the storm. Other adults were small groups in these countries. Ground control reported in central, southern and southeastern operations are in progress against these Algeria and in southwestern and southeastern Libya. concentrations as well as against scattered adults Breeding may occur in some of these areas and will in Algeria, Libya and Egypt. Unusually heavy and be supplemented by adult groups moving out of Mali widespread rains that fell in North West Africa and Niger. Control operations were in progress in could cause the situation to worsen as locusts Mauritania, Mali, Niger, Algeria and Libya. move into newly favourable areas in the Region and breed again. Locusts may also cross the Red Central Region. A locust outbreak developed Sea from northeastern Sudan to Saudi Arabia. during October in northeastern Sudan where several Once the winter rains begin, breeding will occur small swarms were reported. Breeding continued in along the coastal plains of the Red Sea.
    [Show full text]
  • Brachytron 13 (1/2)
    The Odonata of the Tassili-n-Ajjer, Algeria Henri J Dumont [email protected] Inleiding The study area: Tassili-n-Ajjer It has been pointed out to me that, in the The Tassili-n-Ajjer (‘plateau of the rivers’) is a framework of my Sahara work, I have dealt with 75,000 km2 sandstone plateau in the centre the Odonata of the Air (Dumont 1978a), the of the Sahara desert, mainly on east Algerian Hoggar mountains (Dumont 1978b), and later territory, but extending in the south-east as the with the Mouydir plateau (Dumont 2007) and Tadrart Acacus into western Libya. The area has the Tibesti and Ounianga (Dumont 2014), but I become world famous as an archaeological site, have never published on the Central Saharan where thousands of rock paintings of Neolithic plateau of Tassili-n-Ajjer. Yet, I visited this area age were found (Lhote 1958). It is well isolated of deeply dissected sandstone on six occasions from the Hoggar that extends to the south-west, between 1978 and 1991, and made observations and more or less contiguous with the Mouydir on the local dragonfly fauna. Here, I present the and Tefedest plateaus in the west. The plateau delayed results of this work. Voucher specimens is deeply dissected by the canyons of a number were collected, in addition to field notes on of oueds (or wadis). Most of these run north, observations made in situ, when no specimens although some shorter ones drain towards the were extirpated from nature. Some locations south. Many of these canyons are so deep that were only visited once, others four or five times permanent water can locally be found on their (see below).
    [Show full text]
  • WCS Title Page
    WORKING PAPER NO. 24 DECEMBER 2005 SETTING CONSERVATION AND RESEARCH PRIORITIES FOR LARGER AFRICAN CARNIVORES Justina C. Ray, Luke Hunter, and Joanna Zigouris WORKING PAPER NO. 24 DECEMBER 2005 SETTING CONSERVATION AND RESEARCH PRIORITIES FOR LARGER AFRICAN CARNIVORES Justina C. Ray, Luke Hunter, and Joanna Zigouris This working paper was prepared for the Wildlife Conservation Society by Justina C. Ray, Luke Hunter, and Joanna Zigouris. WCS Working Papers ISSN 1530-4426 Copies of WCS Working Papers are available for download from http://www.wcs.org/science or by mailing a request to: Wildlife Conservation Society International Conservation 2300 Southern Boulevard Bronx, NY 10460-1099 USA Suggested citation: Ray, Justina C., Luke Hunter, and Joanna Zigouris. 2005 Setting Conservation and Research Priorities for Larger African Carnivores. WCS Working Paper No. 24. Wildlife Conservation Society, New York. Front cover photographs: © P. Henschel (African Golden Cat) © S. Williams (Ethiopian wolf) © L. Hunter/WCS Copyright: The contents of this paper are solely the property of the authors, and cannot be reproduced without the permission of the authors. The Wildlife Conservation Society (WCS) is dedicated to saving wildlife and wildlands, to assure a future for threatened species like elephants, tigers, sharks, macaws, or lynx. That mission is achieved through a conservation program that protects some 50 living landscapes around the world, manages more than 590 field projects in 53 countries, and supports the nations largest system of living institutions—the Bronx Zoo, the New York Aquarium, and the Wildlife Centers in Central Park, Queens and Prospect Park. We are developing and maintaining pioneering environmental education programs that reach more than three million people in the New York metropolitan area as well as in all 50 United States and on six continents.
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru
    Earth-Science Reviews, 18 (1982) 253-283 253 Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru G. Carlier', G. Grandin', G. Laubacher', R. and F. M6gard2 ' ORSTOM, Mission Peru, Apartado 270, Lima 18 (Peru) and 2'4 rue Bayard75008 Paris (France) ' Institut Francais #Etudes Andines, Apartado 278, Lima I8 (Peru) Pontificia Universidad Catdica del Perú, Avda S. Boliuar, Lima 27 (Peru) ABSTRACT Carlier, G., Grandin, G., Laubacher, G., Marócco, R. and Mégard, F., 1982. Present knowledge of the magmatic evolution of the Eastern Cordillera of Peru. Earth-Sci. Rev., 18: 253-283. The studies which have been carried out in the Eastern Cordillera of Peru over the past 20 years prove the existence of at least three orogenic cycles: the Late Precambrian, the Hercynian and the Andean, each one accompanied by a more or less abundant magmatism. (1) The Precambrian. Leaving aside the prasinites, possibly derived from synsedimentary , volcanites, Precambrian magmatism (in the Huanuco region) consists of: a meta-igneous ultramafic to mafic association (serpentinites, meta-gabbros, meta-diorites); syntectonic meta-tonalites; and post-tectonic dioritic and granitic intrusive bodies. (2) The Hercynian (550 to 220 my.). From the Cambrian to the Upper Devonian the existence of a synsedimentary magmatism is known. Syntectonic granites were emplaced during the Eohercynian phase, but the major part of magmatism is of a Late Permian to Early Trias age, and is characterized by the intrusion of granitoids and by volcanism of calc-al- kaline tendency. It appears that the nepheline syenite of Macusani may belong to a terminal episode of this magmatic period.
    [Show full text]
  • Petrologic and Geochemical Tracers of Magmatic Movement in Volcanic Arc Systems: Case Studies from the Aleutian Islands and Kamchatka, Russia
    Petrologic And Geochemical Tracers Of Magmatic Movement In Volcanic Arc Systems: Case Studies From The Aleutian Islands And Kamchatka, Russia Item Type Thesis Authors Neill, Owen Kelly Download date 04/10/2021 04:22:53 Link to Item http://hdl.handle.net/11122/9176 PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA By Owen Kelly Neill RECOMMENDED: APPROVED: PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Owen Kelly Neill Fairbanks, Alaska May 2013 UMI Number: 3573010 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss8?t&iori Publishing UMI 3573010 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 iii Abstract Mixing, crystallization and degassing commonly affect magmas during storage, ascent and eruption from volcanoes. As these interactions cannot be observed directly, they must be characterized using chemical signatures of volcanic eruptive products.
    [Show full text]
  • Voluminous and Compositionally Diverse, Middle Miocene Strawberry Volcanics of NE Oregon: Magmatism Cogenetic with fl Ood Basalts of the Columbia River Basalt Group
    OLD G The Geological Society of America Special Paper 538 OPEN ACCESS Voluminous and compositionally diverse, middle Miocene Strawberry Volcanics of NE Oregon: Magmatism cogenetic with fl ood basalts of the Columbia River Basalt Group Arron Steiner Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA, and Department of Geology, Washington State University, P.O. Box 642812, Pullman, Washington 99164-2812, USA Martin J. Streck Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA ABSTRACT The mid-Miocene Strawberry volcanic fi eld of northeastern Oregon is an exam- ple of intracontinental fl ood volcanism that produced lavas of both tholeiitic and calc- alkaline compositions derived by open-system processes. Until now, these dominantly calc-alkaline lavas have not been considered to have a petrogenetic origin similar to that of the fl ood basalts of the Pacifi c Northwest because of their calc-alkaline composition. These lavas are situated in between and co-erupted with the domi- nant volcanic fi eld of the Columbia River Basalt Group (CRBG). Due to the timing, location, and diversity of these erupted units, the Strawberry Volcanics may hold valuable information about the role of crustal modifi cation during large magmatic events such as hotspot volcanism. The earliest eruptions of the Strawberry Volca- nics began at 16.2 Ma and appear continuous to 15.3 Ma, characterized by low-sil- ica rhyolite. High-silica, A-type rhyolite eruptions followed at 15.3 Ma. The silicic eruptions continued until 14.6 Ma, with an estimated total volume up to ~100 km3.
    [Show full text]
  • Ten Seconds in the Field: Rapid Armenian Obsidian Sourcing With
    Journal of Archaeological Science 41 (2014) 333e348 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Ten seconds in the field: rapid Armenian obsidian sourcing with portable XRF to inform excavations and surveys Ellery Frahm a, *, Beverly A. Schmidt b, Boris Gasparyan c, Benik Yeritsyan c, Sergei Karapetian d, Khachatur Meliksetian d, Daniel S. Adler b a Department of Archaeology, The University of Sheffield, Northgate House, West Street, Sheffield S1 4ET, United Kingdom b Department of Anthropology, Old World Archaeology Program, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, United States c Institute of Archaeology and Ethnography, National Academy of Sciences, 15 Charents Street, Yerevan, Armenia d Institute of Geological Sciences, National Academy of Sciences, 24 Baghramian Avenue, Yerevan, Armenia article info abstract Article history: Armenia has one of the most obsidian-rich natural and cultural landscapes in the world, and the lithic Received 19 May 2013 assemblages of numerous Palaeolithic sites are predominantly, if not entirely, composed of obsidian. Received in revised form Recent excavations at the Middle Palaeolithic cave of Lusakert 1 recovered, on average, 470 obsidian 30 July 2013 artifacts daily. After sourcing more than 1700 artifacts using portable XRF (pXRF) in our field house, our Accepted 12 August 2013 team sought to shift pXRF-based obsidian sourcing into the field itself, believing that the geological origins of artifacts would be useful information to have on-site during an excavation or survey. Despite Keywords: increasing use of portable instruments, previous studies have principally focused on collections in Obsidian pXRF museums and other archives, and as a result, obsidian sourcing has remained embedded in post- fi Field methods excavation studies.
    [Show full text]
  • Libellula 28 (1/2) 2009: 97-115 98©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Libellula Jahr/Year: 2009 Band/Volume: 28 Autor(en)/Author(s): Juillerat Laurent, Monnerat Christian Artikel/Article: Odonata in southern Morocco, with first records of Orthetrum ransonnetii and Sympetrum sinaiticum (Odonata: Libellulidae) 97-115 ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at15. August 2009 Odonata in southern Morocco, with first records of Orthetrum ransonnetii and Sympetrum sinaiticum (Odonata: Libellulidae) Laurent Juillerat1 and Christian Monnerat2 1 Chemin du Soleil 12, CH-2000 Neuchâtel, <[email protected]> 2 Faubourg de la Gare 19, CH-2000 Neuchâtel, <[email protected]> Abstract On several field trips between 2001 and 2008 to southern Morocco, 26 species were re- corded in 24 localities. Orthetrum ransonnetii and Sympetrum sinaiticum were recor- ded for the first time in April 2003 and April 2007 respectively. Both are new for the Moroccan fauna, increasing the number of odonate species for this country to 61. Résumé Odonates au sud du Maroc, avec les premières mentions d’Orthetrum ransonnetii et Sympetrum sinaiticum (Odonata: Libellulidae) – Au cours de plusieurs voyages dans le sud du Maroc réalisés entre 2001 et 2008, 26 espèces ont été observées en 24 locali- tés. Orthetrum ransonnetii et S. sinaiticum ont été découverts en avril 2003, respecti- vement avril 2007. Tous deux sont nouveaux pour la faune odonatologique marocaine qui compte à ce jour 61 espèces. Zusammenfassung Libellen im südlichen Marokko, mit Erstnachweisen von Orthetrum ransonnetii und Sympetrum sinaiticum (Odonata: Libellulidae) - Bei verschiedenen Aufenthalten im süd- lichen Marokko wurden zwischen 2001 und 2008 an insgesamt 24 Fundorten 26 Li- bellenarten festgestellt.
    [Show full text]
  • PDF | 108.93 KB | English Version
    warning level: CAUTION D E S E R T L O C U S T B U L L E T I N FAO Emergency Centre for Locust Op er a tions No. 389 General Situation during February 2011 (3 Mar 2011) Forecast until mid-April 2011 Desert Locust infestations persisted during parts of the Sahara in Algeria where ground teams February in Sudan, Saudi Arabia and Mauritania treated small groups in one area (45 ha). Small-scale as a result of continued breeding. Control hatching will continue early in the forecast period in operations were carried out against hopper bands northwest Mauritania and adjacent areas of southern and swarms on the Red Sea coast in Sudan and Morocco but infestations are expected to decline as Egypt, against hopper bands on the coast in Saudi vegetation dries out and control operations continue. Arabia, and against hopper and adult groups Nevertheless, there remains a moderate risk that in Mauritania. Smaller scale operations were some adults will move north to the spring breeding undertaken in southern Morocco and Algeria. If areas along the southern side of the Atlas Mountains current infestations in Sudan and Saudi Arabia in Morocco and Algeria and lay eggs in March. In are not controlled, new adult groups and small West Africa, dry conditions prevailed in the northern swarms could form on the Red Sea coast and Sahel of Mali, Niger and Chad where the situation is move to the interior of Saudi Arabia during March expected to remain calm. and April. Similarly, adults and small groups in northwest Mauritania and southern Morocco could Central Region.
    [Show full text]
  • December 2005
    ~.THE DIGGING STICK Volume 22, No 3 ISSN 1013-7521 December 2005 THE MALEOSKOP ARCHAEOLOGICAL PROJECT Groblersdal District, Mpumalanga Willem Boshoff and Danie Kruger The Maleoskop area represents a diverse by a combined Swazi and Boer force. It was this collection of archaeological sites. Included are attack that ended the Bakopa occupation of scattered Middle and Late Stone Age sites, Thabantsho. ancient mining sites, a Late Iron Age settlement at ThabantSho and the remains of a mission The Maleoskop Archaeological Project station named Gerlachshoop. Unisa's Maleoskop Archaeological Project got This was the first mission station to be estab­ underway in 2001. Despite the rich variety of lished by the Berlin Missionary Society north of archaeological remains in the area, it was decid­ the Vaal River. Furthermore there are the ed to focus attention on the settlement area at remains of an early 20th century trader's settle­ Thabantsho and the Gerlachshoop mission ment, post point and wagon route. The sites, station. Thabantsho comprises several distinct concentrated on the farm Rietkloof JS166 south­ features: the highest hill Thabantsho, the settle­ east of Groblersdal in Mpumalanga, previously ment areas at its base and the flanking hills to the formed part of an SAPS training base called north and west. A surface survey (2001 to 2003) Maleoskop. The area has since been returned to yielded circular fortification walls on the three the Bakgaga 8akopa tribe after a successful land hills and numerous demarcation walls in the claim. valley, a huge kgoro (meeting place), many con- The historical context In 1859, the Bakopa moved from their previous settlement at De Oude Stadt to settle in the vicinity of a prominent hill named Thaban­ tsho.
    [Show full text]