Moore Teaching Method and Mary Ellen Rudin

Total Page:16

File Type:pdf, Size:1020Kb

Moore Teaching Method and Mary Ellen Rudin Moore Teaching Method and Mary Ellen Rudin Aidy Segura October 15, 2014 The Moore method is named after Robert Lee Moore, a topologist, and it is used in advanced mathematics courses. Robert Lee Moore was born on November 14, 1882 in Dallas, Texas and died in Austin, Texas on October 4, 1974. Moore's father fought for the Confederacy and was a proud Southerner, it wasn't until much later that Moore found out that his uncles fought for the Union. Moore is considered as a founder of his own school of topology which had many contribution to that field. He was president of the American Mathematical Society in the late 30s. Three of his 50 graduate students were also presidents of the AMS and five were presidents of the Mathematical Association of America. The majority of his graduate students became academics and he has almost 1,700 mathematical descendants. There are various forms to teach the course. In general, the students are given a list of theorem and definitions and are expected to prove them and present in class. Usually, in using the Moore Method there are limitaitions to the amount of material the class is able to cover. The Moore Method has its pros and cons but in the end it is just another teaching method that involves more than just listening to lectures. F. Burton Jones was a student of Moore and practiced his method. Jones recalls that "when a student stated that he could prove Theorem x, he was asked to go to the blackboard and present his proof. Then the other students, especially those who had not been able to discover a proof, would make sure that the proof presented was correct and convincing. Moore sternly prevented heckling. This was seldom necessary because the whole atmosphere was one of a serious community effort to understand the argument." You could imagine the amount of pressure these students had on themselves. The students were for- bidden to read any book or article about the subject. They were even forbidden to talk about it outside of class. Some believe that the Moore method is a reminiscent of an old method of teaching swimming called "sink or swim." In 1920 after Moore became an associate-professor at the University of Texas at Austin the Moore Method became more popular. Today, the University of Texas at Austin continues using the method in various courses in their math department. Other institutions that use the Moore Method are : 1 • The University of Chicago offers the following Moore method classes: hon- ors calculus, analysis, algebra, geometry, and number theory along with one or two Moore method electives each year. • Professor Arnold Lebow uses the Moore method in his Advanced Calculus, Probability, and Discrete Structures courses at Yeshiva University in New York. • Professor Bryan Snyder at Sault Ste. Marie, Michigan's Lake Superior State University, has introduced the Moore Method to the university in a course named "Fundamental Concepts of Mathematics." • Professor Ronald D. Taylor at Berry College in Rome, Georgia successfully uses the Moore method in his Real Analysis course. • The Physics Department of Berry College successfully uses the Moore method in numerous upper level courses. • Professor Don Chalice at Western Washington University regularly uses a modified Moore method in all the upper level courses he teaches. • Professor Lawrence Fearnley of Brigham Young University has, over the course of several decades, thoroughly implemented the Moore method in several of the analysis, topology and Calculus courses. • Professor Mike Brilleslyper of the United States Air Force Academy uses the Moore Method to teach Real Analysis. • Professor Ed Parker of James Madison University uses a modified Moore Method in Calculus and Analysis courses. • Professor Elena Marchisotto of California State University, Northridge uses a modified Moore method in her "Foundations of Higher Mathemat- ics" course. • Many topology professors in the Mathematics Department of Auburn Uni- versity use varying modifications of the Moore method. • Professor David W. Cohen of Smith College implemented a modified Moore method for courses in Infinite-dimensional Linear Algebra and Real Anal- ysis. • Professor Vladimir N. Akis of California State University, Los Angeles uses the Moore Method to teach graduate Topology courses. • Professor Thomas Wieting of Reed College uses a Moore method in his Real Analysis and Differential Equations courses. • Professor Glenn Hurlbert of Arizona State University, uses the Moore Method to teach Introduction to Proofs, Combinatorics, and Linear opti- mization courses, and has written a Springer textbook to facilitate its use in Linear Optimization. 2 • Professor Gordon Johnson of University of Houston utilizes the Moore method to instruct Calculus and Analysis courses. • Professor Genevieve Walsh of Tufts University uses a modified Moore method in her Point-set topology course. • Different instructors have used the Moore method at Canada/USA Math camp to teach various topics on algebra, topology, number theory, logic, and set theory. • Mike Cullerton used a modified Moore Method to teach the quadrangles unit of a high school Geometry class at Ute Creek Secondary Academy in Longmont, CO. • Professor Dylan Retsek uses this method at Cal Poly San Luis Obispo to teach Calculus, Introduction to Proofs, and Real Analysis. • Professor Padraig McLoughlin uses this method at Kutztown University of Pennsylvania to teach Calculus, Set Theory, Foundations of Mathematics, Real Analysis, Topology, and Probability and Statistics. Mary Ellen Rudin was born on December 7, 1924 and died on March 18, 2013, her maiden name is Mary Ellen Rudin and is an American mathematician. She attended the University of Texas under Robert Lee Moore. Rudin completed her Bachelors in 1944 and her Ph.D in 1949. At the University she was a member of the Phi Mu Women's Fraternity and was elected to the Phi Beta Kappa society. Mary Ellen's dad was a civil engineer and her mother was an English teacher in High School, both of Mary Ellen's grandmothers had graduated from Mary Sharp College in Winchester, Tennessee. She married Walter Rudin a mathematician. It is said that Rudin ran into mathematics by accident on the day of reg- istration at the University of Texas in 1941. Because there were few people at the math table, she went to it and discussed many things with the man sit- ting there for a long time and it turned out to be Moore. Even though Mary Ellen benefited from the Moore teaching method, she did not believe it was for everyone. Mary Ellen Rudin's research centered on point-set topography. It was only until 1971 that Rudin was appointed as professor of Mathematics at the Uni- versity of Wisconsin. She served as the vice president of the American Mathe- matical Society from 1980-1981. Rudin was selected to be a Noether Lecturer in 1984, an award given annually to honor women who have made fundamental and sustained contributions to the mathematical sciences. She was an honorary member of the Hungarian Academy of Sciences in 1995 and became a member of the American Mathematical Society in 2012. Rudin was the firs to create a ZFC Dowker space. ZFC stands for Zermelo-Fraenkel set theory with the axiom of choice and it is one of several axiomatic systems that were proposed in the early twentieth century to formulate a theory of sets free of paradoxes such as Russell's paradox, today it is the standard form of axiomatic set theory. In 3 topography Dowker space is a topological space that is T4 but not countably paracompact. With this contribution she disproved a conjecture of Dowker's that had stood, and helped drive topological research, for more than twenty years. She also proved the first Morita conjecture and a restricted version of the second. A Morita conjecture is a certain problem about normal spaces. Her last major contribution was a proof of Nikiel's conjecture. Rudin's Erdos num- ber is 1 and to be assigned an Erdos number you have to be a coauthor of a research paper with another person who has a finite Erdos number. Mary Ellen published two works: • (1975). Lectures on set theoretic topology (Rep. with corr. ed.). Provi- dence: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society. ISBN 082181673X. • (1984). Dowker spaces (in the Handbook of set-theoretic topology). Am- sterdam u.a. North-Holland. pp. 761-780. ISBN 0444865802. 4.
Recommended publications
  • Locally Compact Groups: Traditions and Trends Karl Heinrich Hofmann Technische Universitat Darmstadt, [email protected]
    University of Dayton eCommons Summer Conference on Topology and Its Department of Mathematics Applications 6-2017 Locally Compact Groups: Traditions and Trends Karl Heinrich Hofmann Technische Universitat Darmstadt, [email protected] Wolfgang Herfort Francesco G. Russo Follow this and additional works at: http://ecommons.udayton.edu/topology_conf Part of the Geometry and Topology Commons, and the Special Functions Commons eCommons Citation Hofmann, Karl Heinrich; Herfort, Wolfgang; and Russo, Francesco G., "Locally Compact Groups: Traditions and Trends" (2017). Summer Conference on Topology and Its Applications. 47. http://ecommons.udayton.edu/topology_conf/47 This Plenary Lecture is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Some Background Notes Some \new" tools Near abelian groups Applications Alexander Doniphan Wallace (1905{1985) Gordon Thomas Whyburn Robert Lee Moore Some Background Notes Some \new" tools Near abelian groups Applications \The best mathematics is the most mixed-up mathematics, those disciplines in which analysis, algebra and topology all play a vital role." Gordon Thomas Whyburn Robert Lee Moore Some Background Notes Some \new" tools Near abelian groups Applications \The best mathematics is the most mixed-up mathematics, those disciplines in which
    [Show full text]
  • NEWSLETTER Issue: 491 - November 2020
    i “NLMS_491” — 2020/10/28 — 11:56 — page 1 — #1 i i i NEWSLETTER Issue: 491 - November 2020 COXETER THE ROYAL INSTITUTION FRIEZES AND PROBABILIST’S CHRISTMAS GEOMETRY URN LECTURER i i i i i “NLMS_491” — 2020/10/28 — 11:56 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Eleanor Lingham (Sheeld Hallam University) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or David Chillingworth (University of Southampton) photographer for the rights to reproduce. Jessica Enright (University of Glasgow) The LMS cannot accept responsibility for the Jonathan Fraser (University of St Andrews) accuracy of information in the Newsletter. Views Jelena Grbic´ (University of Southampton) expressed do not necessarily represent the Cathy Hobbs (UWE) views or policy of the Editorial Team or London Christopher Hollings (Oxford) Mathematical Society. Stephen Huggett Adam Johansen (University of Warwick) ISSN: 2516-3841 (Print) Susan Oakes (London Mathematical Society) ISSN: 2516-385X (Online) Andrew Wade (Durham University) DOI: 10.1112/NLMS Mike Whittaker (University of Glasgow) Early Career Content Editor: Jelena Grbic´ NEWSLETTER WEBSITE News Editor: Susan Oakes Reviews Editor: Christopher Hollings The Newsletter is freely available electronically at lms.ac.uk/publications/lms-newsletter. CORRESPONDENTS AND STAFF MEMBERSHIP LMS/EMS Correspondent: David Chillingworth Joining the LMS is a straightforward process. For Policy Digest: John Johnston membership details see lms.ac.uk/membership.
    [Show full text]
  • Women in Mathematics: an Historical Account of Women's Experiences and Achievement Kendra D
    Claremont Colleges Scholarship @ Claremont CMC Senior Theses CMC Student Scholarship 2011 Women in Mathematics: An Historical Account of Women's Experiences and Achievement Kendra D. Huff Claremont McKenna College Recommended Citation Huff, Kendra D., "Women in Mathematics: An Historical Account of Women's Experiences and Achievement" (2011). CMC Senior Theses. Paper 150. http://scholarship.claremont.edu/cmc_theses/150 This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized administrator. For more information, please contact [email protected]. CLAREMONT McKENNA COLLEGE WOMEN IN MATHEMATICS: AN HISTORICAL ACCOUNT OF WOMEN’S EXPERIENCES AND ACHIEVEMENT SUBMITTED TO PROFESSOR ASUMAN GÜVEN AKSOY AND DEAN GREGORY HESS BY KENDRA DANIELLE HUFF FOR SENIOR THESIS SPRING/2011 APRIL 25, 2011 Women in Mathematics 2 Table of Contents Abstract……………………………………………………………………………………3 I. A History of Women in Mathematics…………………………………………………4 II. The Effects of Gender on Mathematics Achievement……………………………….13 III. Personal Experiences of Female Mathematicians in the Claremont Colleges……….23 IV. Changing Trends for Women in the Mathematics Field…………………………….38 References………………………………………………………………………………..50 Women in Mathematics 3 Abstract For a long time, women have struggled to gain complete acceptance in the mathematics field. The purpose of this paper is to explore the history of women in the field of mathematics, the impact and experiences of current female mathematicians, and the common trends for women in the mathematics field, through literature review and personal interviews. This paper looks at the lives of four famous female mathematicians, as well as female mathematicians in the Claremont Colleges who were interviewed for this paper.
    [Show full text]
  • Faculty Document 2436 Madison 7 October 2013
    University of Wisconsin Faculty Document 2436 Madison 7 October 2013 MEMORIAL RESOLUTION OF THE FACULTY OF THE UNIVERSITY OF WISCONSIN-MADISON ON THE DEATH OF PROFESSOR EMERITA MARY ELLEN RUDIN Mary Ellen Rudin, Hilldale professor emerita of mathematics, died peacefully at home in Madison on March 18, 2013. Mary Ellen was born in Hillsboro, Texas, on December 7, 1924. She spent most of her pre-college years in Leakey, another small Texas town. In 1941, she went off to college at the University of Texas in Austin, and she met the noted topologist R.L. Moore on her first day on campus, since he was assisting in advising incoming students. He recognized her talent immediately and steered her into the math program, which she successfully completed in 1944, and she then went directly into graduate school at Austin, receiving her PhD under Moore’s supervision in 1949. After teaching at Duke University and the University of Rochester, she joined the faculty of the University of Wisconsin-Madison as a lecturer in 1959 when her husband Walter came here. Walter Rudin died on May 20, 2010. Mary Ellen became a full professor in 1971 and professor emerita in 1991. She also held two named chairs: she was appointed Grace Chisholm Young Professor in 1981 and Hilldale Professor in 1988. She received numerous honors throughout her career. She was a fellow of the American Academy of Arts and Sciences and was a member of the Hungarian Academy of Sciences, and she received honorary doctor of science degrees from the University of North Carolina, the University of the South, Kenyon College, and Cedar Crest College.
    [Show full text]
  • President's Report
    Newsletter VOLUME 44, NO. 3 • MAY–JUNE 2014 PRESIDENT’S REPORT It is with great pleasure that I address this report to the whole mathematical community! As of March 2014, all current and previously embargoed AWM Newsletters are available to members and non-members alike through the AWM The purpose of the Association website. The academic world is embroiled in an ongoing debate on “open access” for Women in Mathematics is for journals, books, etc. A version of this debate unfolded at the January Executive • to encourage women and girls to Committee meeting over open access for the AWM Newsletter, weighing the study and to have active careers advantages of getting our message out to the broader community against the desire in the mathematical sciences, and to offer unique benefits to our members. We believe that most of you who are • to promote equal opportunity and the equal treatment of women and currently members have joined AWM because you believe in our mission and will girls in the mathematical sciences. not begrudge our efforts to spread our message to a broader audience. We firmly hope that those of you who are not members, but find ourNewsletters informa- tive and thought-provoking, will join AWM to help us support the growing community of women in mathematics. One of the current initiatives at AWM is to broaden the reach of the Asso- ciation beyond academics to include more people working in government and industry. Please help us reach out to this audience by telling your friends in govern- ment or industry about AWM.
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • Problem-Solving in Undergraduate Mathematics and Computer Aided Assessment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Archive, E-theses Repository Problem-Solving in Undergraduate Mathematics and Computer Aided Assessment by Matthew Badger A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy School of Mathematics The University of Birmingham February 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Problem solving is an important skill for students of the mathematical sciences, but traditional methods of directed learning often fail to teach students how to solve problems independently. To compound the issue, assessing problem-solving skills with computers is extremely difficult. In this thesis we investigate teaching by problem solving and introducing aspects of problem solving in computer aided assessment. In the first part of this thesis we discuss problem solving and problem-based pedagogies. This leads us, in the second part, to a discussion of the Moore Method, a method ofenquiry- based learning. We demonstrate that a Moore Method course in the School of Mathematics at the University of Birmingham has helped students’ performance in certain other courses in the School, and record the experiences of teachers new to the Moore Method at another U.K.
    [Show full text]
  • Arxiv:2104.09150V1 [Math.LO] 19 Apr 2021 Dokwer
    A GUESSING PRINCIPLE FROM A SOUSLIN TREE, WITH APPLICATIONS TO TOPOLOGY ASSAF RINOT AND ROY SHALEV This paper is dedicated to the memory of Kenneth Kunen (1943–2020) Abstract. We introduce a new combinatoiral principle which we call ♣AD. This principle asserts the existence of a certain multi-ladder system with guess- ing and almost-disjointness features, and is shown to be sufficient for carrying out de Caux type constructions of topological spaces. Our main result states that strong instances of ♣AD follow from the exis- tence of a Souslin tree. It is also shown that the weakest instance of ♣AD does not follow from the existence of an almost Souslin tree. As an application, we obtain a simple, de Caux type proof of Rudin’s result that if there is a Souslin tree, then there is an S-space which is Dowker. 1. Introduction All topological spaces under consideration are assumed to be T1 and Hausdorff. A Dowker space is a normal topological space whose product with the unit interval is not normal. Dowker [Dow51] raised the question of their very existence, and gave a useful characterization of these spaces. The first consistent example of such a space was given by Rudin [Rud55], who constructed a Dowker space of size ℵ1, assuming the existence of a Souslin tree. Later on, in [Rud72], Rudin ℵ constructed another Dowker space, this time in ZFC, and of cardinality (ℵω) 0 . Two decades later, Balogh [Bal96] gave a ZFC construction of a Dowker space of size 2ℵ0 , and Kojman and Shelah [KS98] gave a ZFC construction of a Dowker space of size ℵω+1.
    [Show full text]
  • President's Report
    Newsletter Volume 45, No. 3 • mAY–JuNe 2015 PRESIDENT’S REPORT I remember very clearly the day I met Cora Sadosky at an AWM event shortly after I got my PhD, and, knowing very little about me, she said unabashedly that she didn’t see any reason that I should not be a professor at Harvard someday. I remember being shocked by this idea, and pleased that anyone would express The purpose of the Association such confidence in my potential, and impressed at the audacity of her ideas and for Women in Mathematics is confidence of her convictions. Now I know how she felt: when I see the incredibly talented and passionate • to encourage women and girls to study and to have active careers young female researchers in my field of mathematics, I think to myself that there in the mathematical sciences, and is no reason on this earth that some of them should not be professors at Harvard. • to promote equal opportunity and But we are not there yet … and there still remain many barriers to the advancement the equal treatment of women and and equal treatment of women in our profession and much work to be done. girls in the mathematical sciences. Prizes and Lectures. AWM can be very proud that today we have one of our Research Prizes named for Cora and her vision is being realized. The AWM Research Prizes and Lectures serve to highlight and celebrate significant contribu- tions by women to mathematics. The 2015 Sonia Kovalevsky Lecturer will be Linda J. S. Allen, the Paul Whitfield Horn Professor at Texas Tech University.
    [Show full text]
  • MARY ELLEN's CONJECTURES Introduction For
    MARY ELLEN'S CONJECTURES GARY GRUENHAGE AND PETER NYIKOS Introduction For a special issue like this, it would seem to be very appropriate for us, the editors, to write an article summarizing Mary Ellen's contributions to the field, and giving some account of her mathematical career. But there is an excellent article by Frank Tall [65] in the book The Work of Mary Ellen Rudin that does exactly this, covering her work and giving a sketch of her mathematical life up until shortly after her retirement in 1991. The article also includes a list of her students and their theses titles, her postdocs, and her publications. While she published a couple of papers on other topics after that time, she spent most of her post-retirement working on Nikiel's conjecture, that the images of compact ordered spaces are exactly the compact monotonically normal spaces. She eventually solved it (positively) in 2001 [63]; it took one of the deepest and most difficult arguments of her career to do so. Instead of copying Frank's article, we would like to do something a bit different. In the book Open Problems in Topology, published in 1990, Mary Ellen has an article [62] in which she states 17 \conjectures".1 This is the way she chose to phrase some unsolved problems, most of them due originally to others, that she was particularly interested in. We quote from her article to give a sense of her reasons for choosing these particular problems: \The problems I list here have mostly been listed in Rudin [1988]; I have worked on all of them long enough to have some real respect for them; they have all stood the test of time and labor by various people; and I feel any solution to any of them would have applications at least to other problems exhibiting similar pathologies." Here we go over Mary Ellen's list of conjectures, giving a brief summary of her contributions and where each conjecture stands today.
    [Show full text]
  • ROBERT LEE MOORE, 1882-1974 If One Were Asked to List
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 82, Number 3, May 1976 ROBERT LEE MOORE, 1882-1974 BY R. L. WILDER If one were asked to list mathematicians who had the most influence on the development of American mathematics during the first half of the twentieth century, certainly R. L. Moore's name would find a prominent place among them. Among the fifty doctorates which he supervised are two former presidents of the American Mathematical Society, four former presidents of the Mathematical Association of America, three members of the National Academy of Sciences; and the number of doctorates which have originated from Moore doctorates either directly or through later generations is apparently in excess of 500.2 These statistics already imply that the man must have been a great teacher; and that he was, any of his students would testify. The "Moore method" of teaching, the heart of which is to get the student to find his own proofs of theorems and, ultimately, to suggest and prove new theorems, has been recorded on a film made by the Mathematical Association of America with the title Challenge in the classroom. However, no film, no matter how faithful to detail, could record all the pertinent features of his teaching associated with the man's character and environment. An essential part of the method was Moore's ability to search out and recognize creative ability among the multitude of students who presented themselves at the University of Texas. It was Moore's custom to teach five courses (which he continued to do until his retirement at age 86!) consisting of calculus, an intermediate course such as advanced calculus, and three courses which began with point set topology ("Foundations of Mathema­ tics") and culminated in a research course.
    [Show full text]
  • An Interview with Mary Ellen Rudin* by Donald J
    Mary Ellen Rudin 114 This content downloaded from 65.206.22.38 on Wed, 20 Mar 2013 09:32:01 AM All use subject to JSTOR Terms and Conditions An Interview With Mary Ellen Rudin* by Donald J. Albers and Constance Reid Mary Ellen Rudin grew up in a small Texas town, but she has made it big in the world of mathematics. In 1981 she was named the first Grace Chisholm Young Professor of Mathematics at the University of Wisconsin-Madison. She is the author of more than seventy research papers, primarily in set-theoretic topology, and is especially well known for her ability to construct counterexamples. She has served on committees of both the American Mathematical Society and the Mathematical Association of America, and was Vice President of the American Mathematical Society for 1981-1982. Professor Rudin has given dozens of invited addresses in this country and other countries, including Canada, Czechoslovakia, Hungary, Italy, the Netherlands, and the Soviet Union. In 1963 the Mathematical Society of the Netherlands honored her with the Prize of Nieuwe Archief voor Wiskunk. Rudin received her Ph.D. at the University of Texas under the direction of R. L. Moore, famous for what has become known as the "Moore Method" of teaching. She does not use the Moore Method "because I guess I don't believe in it." Her own method of teaching is marked by a bubbling enthusiasm for mathematics that has resulted in thirteen students earning doctorates with her. She and her mathematician husband, Walter, live in a home designed by Frank Lloyd Wright.
    [Show full text]