Rarity and Commonness of New Zealand Ferns, Species Range Size Was Used As a Response Variable

Total Page:16

File Type:pdf, Size:1020Kb

Rarity and Commonness of New Zealand Ferns, Species Range Size Was Used As a Response Variable Lincoln University Digital Dissertation Copyright Statement The digital copy of this dissertation is protected by the Copyright Act 1994 (New Zealand). This dissertation may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the dissertation and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the dissertation. Rarity and Commonness of New Zealand Ferns A Dissertation submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science, Honours, in Conservation and Ecology at Lincoln University by Catherine Frances Mountier Lincoln University 2014 Abstract of a Dissertation submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science, Honours, in Conservation and Ecology Abstract Rarity and Commonness of New Zealand Ferns by Catherine Frances Mountier A macroecological approach was used to look for patterns in, and correlates of, rarity and commonness in the New Zealand fern flora, which is comprised of 250 species. Herbarium records and expert knowledge were used to map fern species distributions from which range sizes were calculated, and used as a measure of rarity and commonness. Fern species frequency distributions showed a pattern of many small and fewer large range sizes, with bimodal peaks at very small and medium range sizes. Latitudinal differences in range sizes showed evidence of a geometric constraint and the mid-domain effect, and did not directly support Rapoport’s Rule which suggests larger range sizes at higher latitudes and vice versa. Trait data for each fern species, including morphological characteristics, were compiled from the literature, as were habitat preferences, elevational range, and biostatus,. Both univariate and multivariate linear mixed models were used to determine relationships between species traits and range sizes for 211 fern species for which data were available. Habitat specialists had smaller range sizes than generalists, and species occurring in forest and/or montane environments had larger range sizes than those that did not, as did epiphytic species. The variation in range size explained by phylogeny (taxonomic family and genus) was lower than that explained by traits. Patterns of rarity and commonness differed markedly between indigenous and introduced species. This study provides new knowledge of patterns in the diversity of the New Zealand fern flora. ii Keywords: Ferns, rarity, range size, linear mixed models, Rapoport’s Rule, mid-domain effect, endemism, biostatus, New Zealand. Acknowledgements Many thanks to my supervisor Hannah Buckley, and Brad Case for the GIS component. Thanks to Leon Perrie and Patrick Brownsey at Te Papa for checking and correcting fern species distributions, and advice on numerous details of this study. The herbaria at Te Papa, the Auckland War Memorial Museum and the Allan Herbarium at Landcare Research provided herbarium records for fern species which form the basis of the spatial data in this study. Marian Dassonneville and Anais Tieche extracted and entered some of the fern trait data. Lincoln University and the Freemasons for financially supported my studies this year. Thanks to my fellow students for camaraderie and mutual support, and special thanks to Phil Holland and Jane Mountier for helping me achieve this goal. iii Table of Contents Abstract ....................................................................................................................................... ii Table of Contents ........................................................................................................................ iv List of Tables ............................................................................................................................... vi List of Figures ............................................................................................................................. vii Chapter 1 Introduction ............................................................................................................ 1 1.1 Background ...............................................................................................................................1 1.2 What is Rarity? ..........................................................................................................................2 1.3 Causes of rarity and commonness ............................................................................................5 1.3.1 Environmental factors .................................................................................................. 6 1.3.2 Colonisation ability ....................................................................................................... 6 1.3.3 Body size ...................................................................................................................... 8 1.3.4 Historical constraints ................................................................................................... 8 1.4 Biology, ecology, rarity and commonness of ferns ................................................................ 10 1.5 New Zealand ferns ................................................................................................................. 12 1.6 Aims and Objectives ............................................................................................................... 14 1.6.1 Research questions: ...................................................................................................14 1.6.2 Specific objectives: .....................................................................................................14 Chapter 2 Methods .................................................................................................................15 2.1 Data collection ....................................................................................................................... 15 2.1.1 Herbarium data ..........................................................................................................15 2.1.2 Spatial data.................................................................................................................15 2.1.3 Range sizes .................................................................................................................16 2.1.4 Trait and attribute data ..............................................................................................17 2.2 Data Analyses ......................................................................................................................... 21 Chapter 3 Results ....................................................................................................................28 3.1 Descriptive statistics .............................................................................................................. 28 3.1.1 Measures of range size ..............................................................................................28 3.1.2 Range size frequency distribution graphs ..................................................................31 3.2 Statistical models ................................................................................................................... 35 3.2.1 Univariate models ......................................................................................................35 3.2.2 Multivariate Models ...................................................................................................46 Chapter 4 Discussion ...............................................................................................................53 4.1 Limitations of the research .................................................................................................... 57 4.2 Further study.......................................................................................................................... 57 4.3 Implications and applications for biodiversity conservation ................................................ 58 Chapter 5 Conclusion ..............................................................................................................59 iv Appendix A GIS .......................................................................................................................60 A.1 Examples of GIS maps for one fern species, Abrodictyum elongatum, showing herbarium specimen location points, and the ecological districts map derived from that, from which range size area was calculated. ............................................................................................. 60 A.2 Example of a GIS model constructed to automate process of calculating range sizes. ........ 60 Appendix B Range Sizes ..........................................................................................................61 B.1 Ranked range sizes of 241 New Zealand fern species (see next page). ................................. 61 Appendix C Fern Species List ................................................................................................. 64 C.1 List of New Zealand fern species for which data was compiled. e=endemic, n=native and i=introduced. Lower sections show species classed as “casuals”, and species which occur only on outlying islands and are
Recommended publications
  • Blue Tier Reserve Background Report 2016File
    Background Report Blue Tier Reserve www.tasland.org.au Tasmanian Land Conservancy (2016). The Blue Tier Reserve Background Report. Tasmanian Land Conservancy, Tasmania Australia. Copyright ©Tasmanian Land Conservancy The views expressed in this report are those of the Tasmanian Land Conservancy and not the Federal Government, State Government or any other entity. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Tasmanian Land Conservancy. Front Image: Myrtle rainforest on Blue Tier Reserve - Andy Townsend Contact Address Tasmanian Land Conservancy PO Box 2112, Lower Sandy Bay, 827 Sandy Bay Road, Sandy Bay TAS 7005 | p: 03 6225 1399 | www.tasland.org.au Contents Acknowledgements ................................................................................................................................. 1 Acronyms and Abbreviations .......................................................................................................... 2 Introduction ............................................................................................................................................ 3 Location and Access ................................................................................................................................ 4 Bioregional Values and Reserve Status ..................................................................................................
    [Show full text]
  • Asplenium Oblongifolium
    Crop & Food Research Plant-SyNZ, INVERTEBRATE IDENTIFICATION CHART STUDENT LEVEL DEMONSTRATION Shining spleenwort – Asplenium oblongifolium FROND Small white scales on underside of frond, Whitefly adults and white waxy areas with Whitefly nymphs and puparia with white waxy present all year. eggs on underside of frond, present all year. areas on underside of frond, present all year. SUCKING INSECT (Coccoidea) 384 SUCKING INSECT (Aleyrodidae) 494 SUCKING INSECT (Aleyrodidae) 494 White mines on upper side of frond, present all year. FLY (Agromyzidae) 32 Other plant damage symptoms and invertebrates that may be seen LEAVES * Twisted and distorted frond, grey aphids Fern spores webbed together on the under- Fern spores webbed together on the may be present on expanding frond, side of frond and small holes in frond to underside of frond. No holes in frond. symptoms all year. upper side where small ‘towers’ may be Probably present all year. SUCKING INSECT (Aphididae) 991 constructed, probably present most of year. MOTH (Gelechioidea) 861 MOTH (Gelechioidea) 583 Other host associations in the Plant-SyNZ database (September 2003) LEVEL OF EXPERTISE No other host associations recorded in the database * = adventive (alien) species This version is suitable for non-experts. A 10x New associations hand lens is useful, but not essential to confirm The host associations illustrated and listed here are those known when this identification the presence of some invertebrates. Versions of guide was compiled. New host associations are likely to be discovered. If invertebrates and/or plant damage are found that may be a new association, send specimens of the this identification guide that are suitable for insects and plants to experts (botanists and entomologists) and Dr Nicholas Martin, students are available.
    [Show full text]
  • A Taxonomic Revision of Hymenophyllaceae
    BLUMEA 51: 221–280 Published on 27 July 2006 http://dx.doi.org/10.3767/000651906X622210 A TAXONOMIC REVISION OF HYMENOPHYLLACEAE ATSUSHI EBIHARA1, 2, JEAN-YVES DUBUISSON3, KUNIO IWATSUKI4, SABINE HENNEQUIN3 & MOTOMI ITO1 SUMMARY A new classification of Hymenophyllaceae, consisting of nine genera (Hymenophyllum, Didymoglos- sum, Crepidomanes, Polyphlebium, Vandenboschia, Abrodictyum, Trichomanes, Cephalomanes and Callistopteris) is proposed. Every genus, subgenus and section chiefly corresponds to the mono- phyletic group elucidated in molecular phylogenetic analyses based on chloroplast sequences. Brief descriptions and keys to the higher taxa are given, and their representative members are enumerated, including some new combinations. Key words: filmy ferns, Hymenophyllaceae, Hymenophyllum, Trichomanes. INTRODUCTION The Hymenophyllaceae, or ‘filmy ferns’, is the largest basal family of leptosporangiate ferns and comprises around 600 species (Iwatsuki, 1990). Members are easily distin- guished by their usually single-cell-thick laminae, and the monophyly of the family has not been questioned. The intrafamilial classification of the family, on the other hand, is highly controversial – several fundamentally different classifications are used by indi- vidual researchers and/or areas. Traditionally, only two genera – Hymenophyllum with bivalved involucres and Trichomanes with tubular involucres – have been recognized in this family. This scheme was expanded by Morton (1968) who hierarchically placed many subgenera, sections and subsections under
    [Show full text]
  • Download Document
    African countries and neighbouring islands covered by the Synopsis. S T R E L I T Z I A 23 Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands by J.P. Roux Pretoria 2009 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens which SANBI inherited from its predecessor organisations. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arborescent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of the South African National Biodiversity Institute is based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It sym- bolises the commitment of the Institute to champion the exploration, conservation, sustain- able use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. J.P. Roux South African National Biodiversity Institute, Compton Herbarium, Cape Town SCIENTIFIC EDITOR: Gerrit Germishuizen TECHNICAL EDITOR: Emsie du Plessis DESIGN & LAYOUT: Elizma Fouché COVER DESIGN: Elizma Fouché, incorporating Blechnum palmiforme on Gough Island PHOTOGRAPHS J.P. Roux Citing this publication ROUX, J.P. 2009. Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands. Strelitzia 23. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-48-8 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa.
    [Show full text]
  • Plant Charts for Native to the West Booklet
    26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• ••
    [Show full text]
  • New Species and Records of Tree Ferns (Cyatheaceae, Pteridophyta) from the Northern Andes
    Org. Divers. Evol. 6, Electr. Suppl. 13: 1 - 11 (2006) © Gesellschaft für Biologische Systematik URL: http://www.senckenberg.de/odes/06-13.htm URN: urn:nbn:de:0028-odes0613-1 New species and records of tree ferns (Cyatheaceae, Pteridophyta) from the northern Andes Marcus Lehnert Albrecht-von-Haller Institut, Abt. Systematische Botanik, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany e-mail: [email protected] Received 7 September 2005 • Accepted 6 December 2005 Abstract Four new species of Cyatheaceae from Ecuador are described: Alsophila conantiana Lehnert, Cyathea brucei Lehnert, C. mora- nii Lehnert, and C. sylvatica Lehnert. Range extensions are documented for Alsophila esmeraldensis R.C. Moran and Cyathea macrocarpa (C. Presl) Domin. Keywords: Alsophila; Cyathea; Andes; Colombia; Ecuador; Guayana Highlands Introduction The pteridophyte flora of Ecuador is one of the richest of most species. These advances enable us to resurrect in the world. About 1300 species have been registe- some species that had been united with others; they red (Jørgensen and León-Yánez 1999), including 177 also allow several new species to be described. endemic species (Valencia et al. 2000). Though mem- bers of the tree fern family were collected and studied New species frequently in the past (Tryon 1970, 1971, 1976, 1986; Gastony 1973; Stolze 1974; Barrington 1978; Conant Alsophila conantiana Lehnert, sp. nov. 1983; Tryon and Stolze 1989), new discoveries are (Fig. 1) still being made (Moran 1991, 1995a, 1998; Lehnert Etymology. This species is named for David S. Co- 2003, 2004). The complex taxonomy of the tree ferns, nant, Lyndon State College, Vermont, to honor his fragmentary collections, inadequate descriptions, and work on Cyatheaceae and especially Alsophila, from special descriptive vocabulary all contribute to our which my studies have greatly benefitted.
    [Show full text]
  • Pteridologist 2009
    PTERIDOLOGIST 2009 Contents: Volume 5 Part 2, 2009 The First Pteridologist Alec Greening 66 Back from the dead in Corrie Fee Heather McHaffie 67 Fern fads, fashions and other factors Alec Greening 68 A Stumpery on Vashon Island near Seattle Pat Reihl 71 Strange Revisions to The Junior Oxford English Dictionary Alistair Urquhart 73 Mauchline Fern Ware Jennifer Ide 74 More Ferns In Unusual Places Bryan Smith 78 The Ptéridophytes of Réunion Edmond Grangaud 79 Croziers - a photographic study. Linda Greening 84 A fern by any other name John Edgington 85 Tree-Fern Newsletter No. 15 Edited by Alastair C. Wardlaw 88 Editorial: TFNL then and now Alastair C. Wardlaw 88 Courtyard Haven for Tree Ferns Alastair C. Wardlaw 88 Bulbils on Tree Ferns: II Martin Rickard 90 Gough-Island Tree Fern Comes to Scotland Jamie Taggart 92 Growing ferns in a challenging climate Tim Pyner 95 Maraudering caterpillars. Yvonne Golding 104 New fern introductions from Fibrex Nurseries Angela Tandy 105 Ferns which live with ants! Yvonne Golding 108 The British Fern Gazette 1909 – 2009 Martin Rickard 110 A Siberian Summer Chris Page 111 Monitoring photographs of Woodsia ilvenis Heather McHaffie 115 Notes on Altaian ferns Irina Gureyeva 116 Ferns from the Galapagos Islands. Graham Ackers 118 Did you know? (Extracts from the first Pteridologist) Jimmy Dyce 121 The First Russian Pteridological Conference Chris Page 122 Tectaria Mystery Solved Pat Acock 124 Chatsworth - a surprising fern link with the past Bruce Brown 125 Fern Postage Stamps from the Faroe Islands Graham Ackers 127 Carrying out trials in your garden Yvonne Golding 128 A national collection of Asplenium scolopendrium Tim Brock 130 Asplenium scolopendrium ‘Drummondiae’ Tim Brock 132 Fern Recording – A Personal Scottish Experience Frank McGavigan 133 Book Notes Martin Rickard 136 Gay Horsetails Wim de Winter 137 Ferning in snow Martin Rickard 139 Fern Enthusiasts do the strangest things.
    [Show full text]
  • Downloadable PDF Format On
    Checklist of the New Zealand Flora Ferns and Lycophytes 2019 A New Zealand Plant Names Database Report © Landcare Research New Zealand Limited 2019 This copyright work is licensed under the Creative Commons Attribution 4.0 International license. Attribution if redistributing to the public without adaptation: "Source: Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Landcare Research" DOI: 10.26065/6s30-ex64 CATALOGUING IN PUBLICATION Checklist of the New Zealand flora : ferns and lycophytes [electronic resource] / Allan Herbarium. – [Lincoln, Canterbury, New Zealand] : Landcare Research Manaaki Whenua, 2017- . Online resource Annual August 2017- ISSN 2537-9054 I.Manaaki Whenua-Landcare Research New Zealand Ltd. II. Allan Herbarium. Citation and Authorship Schönberger, I.; Wilton, A.D.; Brownsey, P.J.; Perrie, L.R.; Boardman, K.F.; Breitwieser, I.; de Pauw, B.; Ford, K.A.; Gibb, E.S.; Glenny, D.S.; Korver, M.A.; Novis, P.M.; Prebble, J.M.; Redmond, D.N.; Smissen, R.D.; Tawiri, K. (2019) Checklist of the New Zealand Flora – Ferns and Lycophytes. Lincoln, Manaaki Whenua-Landcare Research. http://dx.doi.org/10.26065/6s30-ex64 This report is generated using an automated system and is therefore authored by the staff at the Allan Herbarium and collaborators who currently contribute directly to the development and maintenance of the New Zealand Plant Names Database (PND). Authors are listed alphabetically after the fourth author. Authors have contributed as follows: Leadership: Wilton, Breitwieser Database editors: Wilton, Schönberger, Gibb Taxonomic and nomenclature research and review for the PND: Schönberger, Wilton, Gibb, Breitwieser, Brownsey, de Lange, Ford, Fife, Glenny, Novis, Perrie, Prebble, Redmond, Smissen Information System development: Wilton, De Pauw, Cochrane Technical support: Boardman, Korver, Redmond, Tawiri Contents Introduction.......................................................................................................................................................
    [Show full text]
  • Cyathea Cunninghamii (Slender Treefern)
    CyatheaListing Statement cunninghamii for Cyathea cunninghamii (slender treefern) slender treefern T A S M A N I A N T H R E A T E N E D F L O R A L I S T I N G S T A T E M E N T Image by Mike Garrett Scientific name: Cyathea cunninghamii Hook.f., Icon . Pl. 10, t.985 (1854) Common name: slender treefern (Wapstra et al. 2005) Group: vascular plant, pteridophyte, family Cyatheaceae Status: Threatened Species Protection Act 1995 : endangered Environment Protection and Biodiversity Conservation Act 1999 : Not Listed Distribution: Endemic: Not endemic to Tasmania Tasmanian NRM Regions: Cradle Coast, North and South Figure 1. Distribution of Cyathea cunninghamii in Plate 1. Cyathea cunninghamii : habit Tasmania (image by Oberon Carter) 1 Threatened Species Section – Department of Primary Industries, Parks, Water & Environment Listing Statement for Cyathea cunninghamii (slender treefern) IDENTIFICATION AND ECOLOGY black, dull, with numerous, very small, sharp Cyathea cunninghamii is a tall treefern in the tubercles. The scales at the base of the stipe are Cyatheaceae family. It has a slender trunk and papery, shiny, pale fawn to light brown (often small crown, and typically occurs along creeks with dark central streaks), 1 to 4 cm long, ovate in sheltered coastal fern gullies (Plate 1). to linear with hair-like tips (Figure 2). Recruitment is from spore, with plants reaching Lamina are dark green, sub-triangular to sub- maturity at an age of about 25 to 30 years. lanceolate, 3-pinnate with pinnae shorter near Cyathea cunninghamii may be recognised in the the stipe.
    [Show full text]
  • List of Vascular Plants of Whenua Hou (Codfish Island)
    List of Vascular Plants of Whenua Hou (Codfish Island) Azorella lyallii John Barkla July 2021 This list is based on a visit to Whenua Hou (Codfish Island) by John Barkla 24 July – 7 Aug 2019. Whenua Hou (Codfish Island) lies west of Stewart Island/Rakiura and is c. 1396 hectares in size and rises to a height of 250 m above sea level. Whenua Hou was designated a Nature Reserve in 1986. A central grid reference for the island is NZ Topo50-CH08 900060. The list is supplemented with records of taxa seen by others and recorded in lists by Courtney (1992), Rance (2010), from observations in iNaturalist, from personal communications, and from anonymous and undated records collected from an annotated copy of Hugh Wilson’s field guide ‘Stewart Island Plants’ that resides in the DOC hut on Whenua Hou. Courtney (1992) included records from D.L. Poppelwell 1911, B.A. Fineran 1965, H.D. Wilson 1978 and B. Rance 1990. Rance (2010) included records from P. Johnson 1992, B. Fineran 1965, S. Courtney 1992, R. Cole and J. Hiscock. Where there are multiple records for the same taxa, the most recent observer and date is listed. Plant names follow those used by the New Zealand Plant Conservation Network. Please direct any corrections/additions to John Barkla [email protected]. Observations can also be made directly to iNaturalist Plant lists and references cited Courtney, S. 1992. Checklist of Vascular Plants of Codfish Island. Unpublished list. de Lange, P.J.; Rolfe, J.R.; Barkla, J.W.; Courtney, S.P.; Champion, P.D.; Perrie, L.R.; Beadel, S.M.; Ford, K.A.; Breitwieser,I.; Schonberger, I.; Hindmarsh-Walls, R.; Heenan, P.B.; Ladley, K.
    [Show full text]
  • Vascular Plants of an Unclassified Islet, Cape Brett Peninsula, Northern New Zealand, by E.K. Cameron, P
    TANE 28,1982 VASCULAR PLANTS OF AN UNCLASSIFIED ISLET, CAPE BRETT PENINSULA, NORTHERN NEW ZEALAND by E.K. Cameron Department of Botany, University of Auckland, Private Bag, Auckland SUMMARY Seventy indigenous and 2 adventive vascular plants taxa are recorded for the "unmodified" islet. Its botanical value exceeds its small size because of the modification of the adjacent Cape Brett Peninsula and nearby islands. INTRODUCTION The islet is situated only a few metres off the northern coastline of Cape Brett Peninsula (Fig. 1). This steep beehive-shaped greywacke islet, less than two hectares in area, supports an excellent cover of indigenous vegetation compared with the adjacent goat (Copra hircus) browsed mainland. Approximately thirty minutes was spent on the islet during a four day botanical survey of Cape Brett Peninsula carried out for the Department of Lands and Survey, Auckland, in June 1980 (Cameron 1980). Time permitted only a single south-west to north-east traverse, returning to the starting point via the north-west littoral. PLANT COMMUNITIES For ease of description four plant associations (Fig. 2) are recognised although it must be remembered that these are by no means distinct as they grade into one another. Area 1: Coastal Rock. The amount of coastal rock on the islet is proportional to the degree of wave exposure and thus the north-eastern side of the islet has the greatest amount of exposed rock. Plants such as Asplenium flaccidum ssp. haurakiense, Samolus repens and the shore lobelia (Lobelia anceps) are frequently found growing in cracks and crevices. Others found here include the N.Z.
    [Show full text]
  • Polypodiophyta): a Global Assessment of Traits Associated with Invasiveness and Their Distribution and Status in South Africa
    Terrestrial alien ferns (Polypodiophyta): A global assessment of traits associated with invasiveness and their distribution and status in South Africa By Emily Joy Jones Submitted in fulfilment of the requirements for the degree Master of Science in the Faculty of Science at the Nelson Mandela University April 2019 Supervisor: Dr Tineke Kraaij Co-Supervisor: Dr Desika Moodley Declaration I, Emily Joy Jones (216016479), hereby indicate that the dissertation for Master of Science in the Faculty of Science is my own work and that it has not previously been submitted for assessment or completion of any postgraduate qualification to another University or for another qualification. _______________________ 2019-03-11 Emily Joy Jones DATE Official use: In accordance with Rule G4.6.3, 4.6.3 A treatise/dissertation/thesis must be accompanied by a written declaration on the part of the candidate to the effect that it is his/her own work and that it has not previously been submitted for assessment to another University or for another qualification. However, material from publications by the candidate may be embodied in a treatise/dissertation/thesis. i Table of Contents Abstract ...................................................................................................................................... i Acknowledgements ................................................................................................................ iii List of Tables ...........................................................................................................................
    [Show full text]