Basic-And-Historical-Cryptography.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CS 105 Review Questions #2 in Addition to These Questions
1 CS 105 Review Questions #2 In addition to these questions, remember to look over your labs, homework assignments, readings in the book and your notes. 1. Explain how writing functions inside a Python program can potentially make the program more concise (i.e. take up fewer total lines of code). 2. The following Python statement may cause a ZeroDivisionError. Rewrite the code so that the program will not automatically halt if this error occurs. c = a / b 3. Indicate whether each statement is true or false. a. In ASCII code, the values corresponding to letters in the alphabet are consecutive. b. ASCII code uses the same values for lowercase letters as it does for capital letters. c. In ASCII code, non-printing, invisible characters all have value 0 4. Properties of ASCII representation: a. Each character is stored as how much information? b. If the ASCII code for ‘A’ is 65, then the ASCII code for ‘M’ should be ______. c. Suppose that the hexadecimal ASCII code for the lowercase letter ‘a’ is 0x61. Which lowercase letter would have the hexadecimal ASCII code 0x71 ? d. If we represent the sentence “The cat slept.” in ASCII code (not including the quotation marks), how many bytes does this require? e. How does Unicode differ from ASCII? 5. Estimate the size of the following file. It contains a 500-page book, where a typical page has 2000 characters of ASCII text and one indexed-color image measuring 200x300 pixels. “Indexed color” means that each pixel of an image takes up one byte. -
Classical Encryption Techniques
CPE 542: CRYPTOGRAPHY & NETWORK SECURITY Chapter 2: Classical Encryption Techniques Dr. Lo’ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Dr. Lo’ai Tawalbeh Fall 2005 Introduction Basic Terminology • plaintext - the original message • ciphertext - the coded message • key - information used in encryption/decryption, and known only to sender/receiver • encipher (encrypt) - converting plaintext to ciphertext using key • decipher (decrypt) - recovering ciphertext from plaintext using key • cryptography - study of encryption principles/methods/designs • cryptanalysis (code breaking) - the study of principles/ methods of deciphering ciphertext Dr. Lo’ai Tawalbeh Fall 2005 1 Cryptographic Systems Cryptographic Systems are categorized according to: 1. The operation used in transferring plaintext to ciphertext: • Substitution: each element in the plaintext is mapped into another element • Transposition: the elements in the plaintext are re-arranged. 2. The number of keys used: • Symmetric (private- key) : both the sender and receiver use the same key • Asymmetric (public-key) : sender and receiver use different key 3. The way the plaintext is processed : • Block cipher : inputs are processed one block at a time, producing a corresponding output block. • Stream cipher: inputs are processed continuously, producing one element at a time (bit, Dr. Lo’ai Tawalbeh Fall 2005 Cryptographic Systems Symmetric Encryption Model Dr. Lo’ai Tawalbeh Fall 2005 2 Cryptographic Systems Requirements • two requirements for secure use of symmetric encryption: 1. a strong encryption algorithm 2. a secret key known only to sender / receiver •Y = Ek(X), where X: the plaintext, Y: the ciphertext •X = Dk(Y) • assume encryption algorithm is known •implies a secure channel to distribute key Dr. -
Crypto Review
Crypto Review Track 3: Security Workshop Overview • What is Cryptography? • Symmetric Key Cryptography • Asymmetric Key Cryptography • Block and Stream Cipher • Digital Signature and Message Digest Cryptography • Cryptography is everywhere German Lorenz cipher machine Cryptography • Cryptography deals with creang documents that can be shared secretly over public communicaon channels • Other terms closely associated – Cryptanalysis = code breaking – Cryptology • Kryptos (hidden or secret) and Logos (descripGon) = secret speech / communicaon • combinaon of cryptography and cryptanalysis • Cryptography is a funcGon of plaintext and a Notaon: Plaintext (P) cryptographic key Ciphertext (C) C = F(P, k) Cryptographic Key (k) Typical Scenario • Alice wants to send a “secret” message to Bob • What are the possible problems? – Data can be intercepted • What are the ways to intercept this message? • How to conceal the message? – Encrypon Crypto Core • Secure key establishment Alice has key (k) Bob has key (k) • Secure communicaon m Confidenality and integrity m m Alice has key (k) Bob has key (k) Source: Dan Boneh, Stanford It can do much more • Digital Signatures • Anonymous communicaon • Anonymous digital cash – Spending a digital coin without anyone knowing my idenGty – Buy online anonymously? • ElecGons and private aucGons – Finding the winner without actually knowing individual votes (privacy) Source: Dan Boneh, Stanford Other uses are also theoreGcally possible (Crypto magic) What did she • Privately outsourcing computaon search for? E(query) -
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly. -
Simple Substitution and Caesar Ciphers
Spring 2015 Chris Christensen MAT/CSC 483 Simple Substitution Ciphers The art of writing secret messages – intelligible to those who are in possession of the key and unintelligible to all others – has been studied for centuries. The usefulness of such messages, especially in time of war, is obvious; on the other hand, their solution may be a matter of great importance to those from whom the key is concealed. But the romance connected with the subject, the not uncommon desire to discover a secret, and the implied challenge to the ingenuity of all from who it is hidden have attracted to the subject the attention of many to whom its utility is a matter of indifference. Abraham Sinkov In Mathematical Recreations & Essays By W.W. Rouse Ball and H.S.M. Coxeter, c. 1938 We begin our study of cryptology from the romantic point of view – the point of view of someone who has the “not uncommon desire to discover a secret” and someone who takes up the “implied challenged to the ingenuity” that is tossed down by secret writing. We begin with one of the most common classical ciphers: simple substitution. A simple substitution cipher is a method of concealment that replaces each letter of a plaintext message with another letter. Here is the key to a simple substitution cipher: Plaintext letters: abcdefghijklmnopqrstuvwxyz Ciphertext letters: EKMFLGDQVZNTOWYHXUSPAIBRCJ The key gives the correspondence between a plaintext letter and its replacement ciphertext letter. (It is traditional to use small letters for plaintext and capital letters, or small capital letters, for ciphertext. We will not use small capital letters for ciphertext so that plaintext and ciphertext letters will line up vertically.) Using this key, every plaintext letter a would be replaced by ciphertext E, every plaintext letter e by L, etc. -
Cryptography in Modern World
Cryptography in Modern World Julius O. Olwenyi, Aby Tino Thomas, Ayad Barsoum* St. Mary’s University, San Antonio, TX (USA) Emails: [email protected], [email protected], [email protected] Abstract — Cryptography and Encryption have been where a letter in plaintext is simply shifted 3 places down used for secure communication. In the modern world, the alphabet [4,5]. cryptography is a very important tool for protecting information in computer systems. With the invention ABCDEFGHIJKLMNOPQRSTUVWXYZ of the World Wide Web or Internet, computer systems are highly interconnected and accessible from DEFGHIJKLMNOPQRSTUVWXYZABC any part of the world. As more systems get interconnected, more threat actors try to gain access The ciphertext of the plaintext “CRYPTOGRAPHY” will to critical information stored on the network. It is the be “FUBSWRJUASLB” in a Caesar cipher. responsibility of data owners or organizations to keep More recent derivative of Caesar cipher is Rot13 this data securely and encryption is the main tool used which shifts 13 places down the alphabet instead of 3. to secure information. In this paper, we will focus on Rot13 was not all about data protection but it was used on different techniques and its modern application of online forums where members could share inappropriate cryptography. language or nasty jokes without necessarily being Keywords: Cryptography, Encryption, Decryption, Data offensive as it will take those interested in those “jokes’ security, Hybrid Encryption to shift characters 13 spaces to read the message and if not interested you do not need to go through the hassle of converting the cipher. I. INTRODUCTION In the 16th century, the French cryptographer Back in the days, cryptography was not all about Blaise de Vigenere [4,5], developed the first hiding messages or secret communication, but in ancient polyalphabetic substitution basically based on Caesar Egypt, where it began; it was carved into the walls of cipher, but more difficult to crack the cipher text. -
Introduction to Public Key Cryptography and Clock Arithmetic Lecture Notes for Access 2010, by Erin Chamberlain and Nick Korevaar
1 Introduction to Public Key Cryptography and Clock Arithmetic Lecture notes for Access 2010, by Erin Chamberlain and Nick Korevaar We’ve discussed Caesar Shifts and other mono-alphabetic substitution ciphers, and we’ve seen how easy it can be to break these ciphers by using frequency analysis. If Mary Queen of Scots had known this, perhaps she would not have been executed. It was a long time from Mary Queen of Scots and substitution ciphers until the end of the 1900’s. Cryptography underwent the evolutionary and revolutionary changes which Si- mon Singh chronicles in The Code Book. If you are so inclined and have appropriate leisure time, you might enjoy reading Chapters 2-5, to learn some of these historical cryptography highlights: People came up with more complicated substitution ciphers, for example the Vigen`ere square. This Great Cipher of France baffled people for quite a while but a de- termined cryptographer Etienne Bazeries had a Eureka moment after three years of work, cracked the code, and possibly found the true identity of the Man in the Iron Mask, one of the great mysteries of the seventeeth century. Edgar Allan Poe and Sir Arthur Conan Doyle even dabbled in cryptanalysis. Secrecy was still a problem though because the key needed to be sent, and with the key anyone could encrypt and decrypt the messages. Frequency analysis was used to break all of these codes. In 1918 Scherbius invented his Enigma machine, but Alan Turing’s machine (the first computer?) helped in figuring out that supposedly unbreakable code, and hastened the end of the second World War. -
Amy Bell Abilene, TX December 2005
Compositional Cryptology Thesis Presented to the Honors Committee of McMurry University In partial fulfillment of the requirements for Undergraduate Honors in Math By Amy Bell Abilene, TX December 2005 i ii Acknowledgements I could not have completed this thesis without all the support of my professors, family, and friends. Dr. McCoun especially deserves many thanks for helping me to develop the idea of compositional cryptology and for all the countless hours spent discussing new ideas and ways to expand my thesis. Because of his persistence and dedication, I was able to learn and go deeper into the subject matter than I ever expected. My committee members, Dr. Rittenhouse and Dr. Thornburg were also extremely helpful in giving me great advice for presenting my thesis. I also want to thank my family for always supporting me through everything. Without their love and encouragement I would never have been able to complete my thesis. Thanks also should go to my wonderful roommates who helped to keep me motivated during the final stressful months of my thesis. I especially want to thank my fiancé, Gian Falco, who has always believed in me and given me so much love and support throughout my college career. There are many more professors, coaches, and friends that I want to thank not only for encouraging me with my thesis, but also for helping me through all my pursuits at school. Thank you to all of my McMurry family! iii Preface The goal of this research was to gain a deeper understanding of some existing cryptosystems, to implement these cryptosystems in a computer programming language of my choice, and to discover whether the composition of cryptosystems leads to greater security. -
Lancaster County, PA Archives
Fictitious Names in Business Index 1917-1983 Derived from original indexes within the Lancaster County Archives collection 1001 Hobbies & Crafts, Inc. Corp 1 656 1059 Columbia Avenue Associates 15 420 120 Antiquities 8 47 121 Studio Gallery 16 261 1226 Gallery Gifts 16 278 1722 Motor Lodge Corp 1 648 1810 Associates 15 444 20th Century Card Co 4 138 20thLancaster Century Housing County,6 PA332 Archives 20th Century Television Service 9 180 222 Service Center 14 130 25th Hour 14 43 28th Division Highway Motor Court 9 225 3rd Regular Infantry Corp 1 568 4 R's Associates 16 227 4 Star Linen Supply 12 321 501 Diner 11 611 57 South George Street Associates 16 302 611 Shop & Gallery 16 192 7 Cousins Park City Corp 1 335 78-80 West Main, Inc. Corp 1 605 840 Realty 16 414 A & A Aluminum 15 211 A & A Credit Exchange 4 449 A & B Associates 13 342 A & B Automotive Warehouse Company Corp 1 486 A & B Electronic Products Leasing 15 169 A & B Manufacturing Company 12 162 A & E Advertising 15 54 A & H Collectors Center 12 557 A & H Disposal 15 56 A & H Drywall Finishers 12 588 A & L Marketing 15 426 A & L Trucking 16 358 A & M Enterprises 15 148 A & M New Car Brokers 15 128 A & M Rentals 12 104 A & P Roofing Company 14 211 A & R Flooring Service 15 216 A & R Nissley, Inc. Corp 1 512 A & R Nissley, Inc. Corp 1 720 A & R Nissley, Inc. Corp 2 95 A & R Tour Services Co. -
Historical Ciphers • A
ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont. -
The Mathemathics of Secrets.Pdf
THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6 -
Partial Differential Equations
CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council pnor to the date this issue of the Nouces was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE ISSUE 778 June 20-21, 1980 Ellensburg, Washington APRIL 21 June 1980 779 August 18-22, 1980 Ann Arbor, Michigan JUNE 3 August 1980 (84th Summer Meeting) October 17-18, 1980 Storrs, Connecticut October 31-November 1, 1980 Kenosha, Wisconsin January 7-11, 1981 San Francisco, California (87th Annual Meeting) January 13-17, 1982 Cincinnati, Ohio (88th Annual Meeting) Notices DEADLINES ISSUE NEWS ADVERTISING June 1980 April 18 April 29 August 1980 June 3 June 18 Deadlines for announcements intended for the Special Meetings section are the same as for News.