First VLTI-MIDI Direct Determinations of Asteroid Sizes∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Cases of Unusual Polarimetric Behavior in Asteroids
A&A 482, 309–314 (2008) Astronomy DOI: 10.1051/0004-6361:20078965 & c ESO 2008 Astrophysics New cases of unusual polarimetric behavior in asteroids R. Gil-Hutton1,2, V. Mesa2, A. Cellino3, P. Bendjoya4, L. Peñaloza2,andF.Lovos2 1 Complejo Astronómico El Leoncito – CONICET, Av. España 1512 sur, J5402DSP San Juan, Argentina e-mail: [email protected] 2 Universidad Nacional de San Juan, J. I. de la Roza 590 oeste, 5400 Rivadavia, San Juan, Argentina 3 INAF, Osservatorio Astronomico di Torino, 10025 Pino Torinese (TO), Italy 4 Laboratoire Fizeau, UMR 6525 Université Nice Sophia Antipolis , Observatoire de la Côte d’Azur, CNRS, 06108 Nice Cedex 2, France Received 30 October 2007 / Accepted 5 February 2008 ABSTRACT Aims. Results of different polarimetric campaigns at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of these campaigns was to search for objects exhibiting anomalous polarimetric properties, similar to those shown by the Ld-class asteroid (234) Barbara, among members of the same or similar taxonomic classes. Methods. The data have been obtained with Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results. The campaigns began in 2005, and we found four new asteroids with Barbara-like polarimetric properties: the L-class objects (172) Baucis, (236) Honoria and (980) Anacostia, and the K-class asteroid (679) Pax. The polarimetric properties of the phase-polarization curves of these objects may be produced by a mixture of high- and low-albedo particles in their regolith as a result of the fragmentation of a substrate that is spectrally analog to the CO3/CV3 chondrites. -
A Visit to Gaspra
A Visit to Gaspra This is a ground-based photo of the first minor planet ever to be visited by a spacecraft. On October 29, 1991, the NASA spacecraft Galileo flew past minor planet No. 951 Gaspra on its way to Jupiter where it will arrive in De- cember 1995. The distance to Gaspra from the Earth was 410 million km at the time of the fly-by. Although Galilw's high-galn antenna has not yet been un- folded and could therefore not be used, JPL engineers succeeded In getting a 300-line Image via the low-gain antenna; the others will be sent when Gallleo is again near the Earth. The first image showed the irregular form of Gaspra and Several craters on its surface with a res- otution of ht130 metres. The diarne- ter was measured as 16 kilornetms. Gaspra was discovered on July 30, 191 6 at the Simeis Observatq in the mountains of Cximea, the Russia. The sofi on the southern coast of Crimea, in On this date, Its distance from the Earth discoverer was the welt-known Russian which the famous Russian writer Lev was 262 million km and the magnitude astronomer Grigorij Nikolaevich Neuj- Nikolaevfch Tolstoy (1828- 1910) spent was about 15. min (born 1886 in Tbilisi, Georgia; died many years of his life." The village of The background of the photo is a I946 in Leningrad), who later became Gaspra is located about 10 krn south- region in the southern constellation Director of that observatory (1925- 1931 west of Yalta. Ophlochus (the Serpent-holder) which is and 1936-1941) and Director of the The present photo was obtained with characterld by relatively few stars, but Pulkovo Obsewatoty near St. -
Phase Integral of Asteroids Vasilij G
A&A 626, A87 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935588 & © ESO 2019 Astrophysics Phase integral of asteroids Vasilij G. Shevchenko1,2, Irina N. Belskaya2, Olga I. Mikhalchenko1,2, Karri Muinonen3,4, Antti Penttilä3, Maria Gritsevich3,5, Yuriy G. Shkuratov2, Ivan G. Slyusarev1,2, and Gorden Videen6 1 Department of Astronomy and Space Informatics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine e-mail: [email protected] 2 Institute of Astronomy, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine 3 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland 4 Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, 02430 Masala, Finland 5 Institute of Physics and Technology, Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia 6 Space Science Institute, 4750 Walnut St. Suite 205, Boulder CO 80301, USA Received 31 March 2019 / Accepted 20 May 2019 ABSTRACT The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G1, G2 parameters of the HG1G2 function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G1 and G2 parameters are in very good agreement with the available observational data. -
Astrophysical Light Scattering Problems (PAP316)
Astrophysical light scattering problems (PAP316) Lecture 7a Karri Muinonen1,2 Professor of Astronomy 1Department of Physics, University of Helsinki, Finland 2Finnish Geospatial Research Institute (FGI), Masala, Finland Contents • Introduction • Asteroids – Polarimetry, photometry, spectrometry – Polarimetric data – Telescopes and instruments – Interpretation of data – Polarization vs. taxonomy – Properties of F-class asteroids – Barbarians – Wavelength dependence – Near-Earth asteroids – Space weathering phenomena – Comparison of albedos – Open problems – Polarimetry in asteroid science – Subjects for future investigation • Intermediate conclusions Introduction • Physical characterization of astronomical objects (e.g., surfaces of airless planetary objects) • Direct problem of light scattering by particles with varying particle size, shape, refractive index, and spatial distribution • Inverse problem based on astronomical observations and/or experimental measurements • Plane of scattering, scattering angle, solar phase angle, degree of linear polarization Asteroids Photometry Polarimetry Muinonen et al., in Polarimetry of Stars and Planetary Systems, 2016 (obs. ref. therein) Polarimetric data • Disk-integrated observations only • Asteroid Polarimetric Database • (1) Ceres most extensively observed • Main-belt, near- Earth, transneptunian objects Telescopes and instruments • Crimean • Nice Observatory in Astrophysical Calern with Torino Observatory (UBVRI Observatory polarimeter by • University of Hawaii, Vilppu Piirola) Mauna Kea • Complejo -
Iso and Asteroids
r bulletin 108 Figure 1. Asteroid Ida and its moon Dactyl in enhanced colour. This colour picture is made from images taken by the Galileo spacecraft just before its closest approach to asteroid 243 Ida on 28 August 1993. The moon Dactyl is visible to the right of the asteroid. The colour is ‘enhanced’ in the sense that the CCD camera is sensitive to near-infrared wavelengths of light beyond human vision; a ‘natural’ colour picture of this asteroid would appear mostly grey. Shadings in the image indicate changes in illumination angle on the many steep slopes of this irregular body, as well as subtle colour variations due to differences in the physical state and composition of the soil (regolith). There are brighter areas, appearing bluish in the picture, around craters on the upper left end of Ida, around the small bright crater near the centre of the asteroid, and near the upper right-hand edge (the limb). This is a combination of more reflected blue light and greater absorption of near-infrared light, suggesting a difference Figure 2. This image mosaic of asteroid 253 Mathilde is in the abundance or constructed from four images acquired by the NEAR spacecraft composition of iron-bearing on 27 June 1997. The part of the asteroid shown is about 59 km minerals in these areas. Ida’s by 47 km. Details as small as 380 m can be discerned. The moon also has a deeper near- surface exhibits many large craters, including the deeply infrared absorption and a shadowed one at the centre, which is estimated to be more than different colour in the violet than any 10 km deep. -
EPSC2017-110, 2017 European Planetary Science Congress 2017 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2017
EPSC Abstracts Vol. 11, EPSC2017-110, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 On the synergy of polarimetry and spectroscopy for the physical characterization of the asteroids A. Cellino (1) INAF, Osservatorio Astrofisico di Torino, Italy ([email protected] / Fax: +39-011-8101930) Abstract 2. Asteroid taxonomy: the recovery of the F class The synergic use of polarimetry and visible/near-IR re- Polarimetric data were used in the first era of aster- flectance spectroscopy is a fundamental tool for the oid taxonomic classification to distinguish among ob- purposes of physical characterization of small solar jects having nearly identical UBVRI colours, but very system bodies, in particular the asteroids. A couple different albedo. Subsequently, taxonomy started to of major applications are asteroid taxonomy, and the be based on full reflectance spectra obtained in the study of the so-called Barbarian asteroids. In the field framework of extensive campaigns like the SMASS of taxonomy, a new identification of the F taxonomic [1], while the data-set of asteroid polarimetric data be- class previously found in the 80s and then substantially came fully insufficient to be used as a support to tax- lost due to a lack of spectroscopic data at short wave- onomic classification. Modern asteroid spectroscopy lengths is one of the expected results of the on-going has covered mostly the visible and near-IR spectral re- Gaia mission. As for Barbarians, there are indications gion, while the blue part of the spectrum has been es- that they might be extremely old and primitive. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
Magnetic Field Measurements During the ROSETTA Flyby at Asteroid
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Planetary and Space Science ] (]]]]) ]]]–]]] Contents lists available at SciVerse ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Magnetic field measurements during the ROSETTA flyby at asteroid (21)Lutetia I. Richter a,n, H.U. Auster a, K.H. Glassmeier a,b, C. Koenders a,b, C.M. Carr c, U. Motschmann d,e, J. Muller¨ d, S. McKenna-Lawlor f a Institut fur¨ Geophysik und extraterrestrische Physik, Technische Universitat¨ Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany b Max Planck Institute for Solar System Research, Lindau, Germany c Imperial College London, London, UK d Institut fur¨ theoretische Physik, Technische Universitat¨ Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany e DLR-Institut fur¨ Planetenforschung, Rutherfordstr. 2, 12489 Berlin, Germany f Space Technology Ireland, National University of Ireland Maynooth, Co. Kildare, Ireland article info abstract Article history: On July 10, 2010, the ROSETTA spacecraft performed a flyby at asteroid (21)Lutetia at a solar distance of Received 13 May 2011 2.72 AU. The spacecraft–asteroid distance at closest approach was 3120 km. The magnetometers Received in revised form onboard ROSETTA were operating but did not detect any conclusive signature of the asteroid. 18 August 2011 Any magnetic field signature which could possibly be attributed to the asteroid was below 1 nT. Accepted 19 August 2011 Consequently an upper limit for the global magnetic properties of asteroid (21)Lutetia could be derived: À maximum dipole moment r1:0 Â 1012 Am2, global maximum magnetization r2:1 Â 10 3 A=m, À Keywords: specific moment r5:9 Â 10 7 Am2=kg. -
Debris About Asteroids: Where and How Much?
Asteroids, Comets, Meteors 1991, pp. 101-108 Lunar and Planetarylnstitute, Houston, 1992 _ // /-7/0 _7"_ 10l DEBRIS ABOUT ASTEROIDS: WHERE AND HOW MUCH? - Joseph A. Burns and Douglas P. Hamilton Cornell University, Ithaca NY 14853 USA i We summarize several recent findings on the size and shape of the region within which material can ! i ! stably orbit an asteroid. If the asteroid (with assumed density 2.38 g/cm 3) circles the Sun at 2.55 AU, | co-planar prograde material will remain trapped whenever started on unperturbed circular orbits at ! less than about 220 R A (asteroid radii); co-planar retrograde particles are stable out twice as far. Our 3-D stability surface, which encloses several hundred numerically calculated orbits that start with various inclinations, is shaped like a sphere with its top and bottom sliced off; its dimensions scale like the Hill radius =(p./3)1/3R, where p. is the asteroid-to-solar mass ratio and R is the asteroid's orbital radius. If the asteroid moves along an elliptical orbit, a fairly reliable indicator of the dimensions of the hazard zone is the size of its Hill sphere at the orbit's pericenter. Grains with radii less than a few mm will be lost through the action of radiation forces which can induce escape or cause collisions with the asteroid on time scales of a few years; interplanetary micrometeoroids produce collisional break-up of these particles in ~104 yrs. The effects of Jupiter and of asteroids that pass close to the target asteroid allow particles to diffuse from the system, again shrinking the hazard zone. -
Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling
Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (doctor rerum naturalium) Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling Dipl.-Phys. Michael M¨uller 2007 Eingereicht und verteidigt am Fachbereich Geowissenschaften der Freien Universit¨atBerlin. Angefertigt am Institut f¨ur Planetenforschung des Deutschen Zentrums f¨urLuft- und Raumfahrt e.V. (DLR) in Berlin-Adlershof. arXiv:1208.3993v1 [astro-ph.EP] 20 Aug 2012 Gutachter Prof. Dr. Ralf Jaumann (Freie Universit¨atBerlin, DLR Berlin) Prof. Dr. Tilman Spohn (Westf¨alische Wilhems-Universit¨atM¨unster,DLR Berlin) Tag der Disputation 6. Juli 2007 In loving memory of Felix M¨uller(1948{2005). Wish you were here. Abstract The subject of this work is the physical characterization of asteroids, with an emphasis on the thermal inertia of near-Earth asteroids (NEAs). Thermal inertia governs the Yarkovsky effect, a non-gravitational force which significantly alters the orbits of asteroids up to ∼ 20 km in diameter. Yarkovsky-induced drift is important in the assessment of the impact hazard which NEAs pose to Earth. Yet, very little has previously been known about the thermal inertia of small asteroids including NEAs. Observational and theoretical work is reported. The thermal emission of aster- oids has been observed in the mid-infrared (5{35 µm) wavelength range using the Spitzer Space Telescope and the 3.0 m NASA Infrared Telescope Facility, IRTF; techniques have been established to perform IRTF observations remotely from Berlin. A detailed thermophysical model (TPM) has been developed and exten- sively tested; this is the first detailed TPM shown to be applicable to NEA data. -
Geology of 243 Ida
ICARUS 120, 119±139 (1996) ARTICLE NO. 0041 Geology of 243 Ida R. SULLIVAN,R.GREELEY, AND R. PAPPALARDO Department of Geology, Box 871404, Arizona State University, Tempe, Arizona 85287-1404 E-mail: [email protected] E. ASPHAUG,J.M.MOORE, AND D. MORRISON Space Sciences Division, NASA-Ames Research Center, Moffett Field, California 94035-1000 M. J. S. BELTON National Optical Astronomy Observatories, 950 N. Cherry Avenue, Tucson, Arizona 85719 M. CARR Branch of Astrogeologic Studies, MS-946, United States Geological Survey, 345 Middle®eld Road, Menlo Park, California 94025 C. R. CHAPMAN Planetary Science Institute, 620 N. 6th Street, Tucson, Arizona 85705 P. GEISSLER AND R. GREENBERG Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721 JAMES GRANAHAN Hawaii Institute of Geophysics, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, Hawaii 96822 J. W. HEAD III Department of Geological Sciences, Box 1846, Brown University, Providence, Rhode Island 02912 R. KIRK AND A. MCEWEN United States Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001 AND P. LEE,P.C.THOMAS, AND J. VEVERKA Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853-6801 Received April 3, 1995; revised August 21, 1995 greater than the 1 : 5 ratios common on other rocky bodies. The surface of 243 Ida is dominated by the effects of impacts. Contributing causes include rim degradation by whole-body No complex crater morphologies are observed. A complete ``ringing,'' relatively thin ejecta blankets around crater rims, range of crater degradation states is present, which also reveals or an extended strength gradient in near-surface materials due optical maturation of the surface (darkening and reddening to low gravitational self-packing. -
Ground-Based Astrometry Calibrated by Gaia DR1: New Perspectives in Asteroid Orbit Determination F
Ground-based astrometry calibrated by Gaia DR1: new perspectives in asteroid orbit determination F. Spoto, P. Tanga, S. Bouquillon, J. Desmars, D. Hestroffer, F. Mignard, M. Altmann, D. Herald, J. Marchant, C. Barache, et al. To cite this version: F. Spoto, P. Tanga, S. Bouquillon, J. Desmars, D. Hestroffer, et al.. Ground-based astrometry cali- brated by Gaia DR1: new perspectives in asteroid orbit determination. Astronomy and Astrophysics - A&A, EDP Sciences, 2017, 607, pp.A21. 10.1051/0004-6361/201731439. hal-02188425 HAL Id: hal-02188425 https://hal.archives-ouvertes.fr/hal-02188425 Submitted on 13 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 607, A21 (2017) Astronomy DOI: 10.1051/0004-6361/201731439 & c ESO 2017 Astrophysics Ground-based astrometry calibrated by Gaia DR1: new perspectives in asteroid orbit determination F. Spoto1,?, P. Tanga1, S. Bouquillon2, J. Desmars3, D. Hestroffer3, F. Mignard1, M. Altmann2; 4, D. Herald5, J. Marchant6, C. Barache2, T. Carlucci2, T. Lister7, and F. Taris2 1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, route de l’Observatoire, 06304 Nice Cedex 4, France e-mail: [email protected] 2 SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.