Environmental Noise Modelling for UK Military Helicopter Training Operations

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Noise Modelling for UK Military Helicopter Training Operations 59th American Helicopter Society International Annual Forum 2003 Phoenix, Arizona, USA 6 – 8 May 2003 Volume 1 of 3 ISBN: 978-1-61782-934-5 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2003) by the American Helicopter Society International All rights reserved. Printed by Curran Associates, Inc. (2011) For permission requests, please contact the American Helicopter Society International at the address below. American Helicopter Society International 217 N. Washington Street Alexandria, VA 22314-2538 Phone (703) 684-6777 Fax: (703) 739-9279 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS Volume 1 INTEGRATED MANUFACTURING PROCESS & CONTROL TECHNOLOGY I – COMPOSITES TECHNOLOGY Environmental Noise Modelling for UK Military Helicopter Training Operations.........................................................1 R. Munt, R. Browne, C. Simpson, S. Bradley, Y. Lam, G. Kerry, R. Beaman ACOUSTICS Longitudinal-Plane Simultaneous Non-Interfering Approach Trajectory Design for Noise Minimization ........................................................................................................................................................................ 14 G. Gopalan, M. Xue, E. Atkins, F. Schmitz Design and Analysis of High-Frequency Periodically Layered Isolators with Passive Design Enhancement for Helicopter Gearbox Isolation ............................................................................................................... 32 J. Szefi, E. Smith, G. Lesieutre Transonic Helicopter Noise................................................................................................................................................. 46 A. Morgans, S. Karabasov, A. Dowling, T. Hynes Near Real-Time Simulation of Rotorcraft Acoustics and Flight Dynamics.................................................................... 56 K. Brentner, L. Lopes, H. Chen, J. Horn Helicopter Acoustic Characterization by Simulation: Comparison with Flight Test Results and Predicted Impact of New Design Solutions........................................................................................................................ 71 R. Ponza AERODYNAMICS I – APPLIED AERODYNAMICS Experimental Characterization of the Transition Bubble on a NACA0012 Oscillating Airfoil.................................... 86 E. Berton, C. Maresca, D. Favier Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge ...................................................................................................................................................................................... 96 P. Martin, K. McAlister, M. Chandrasekhara, W. Geissler Estimating Blade Section Airloads from Blade Leading-Edge Pressure Measurements............................................. 114 J. Aken Calculation of Rotor Performance and Loads Under Stalled Conditions..................................................................... 135 H. Yeo Aerodynamic Design of a New Affordable Main Rotor for the Apache Helicopter..................................................... 150 R. Ram, R. Smith, B. Charles, A. Hassan Effect of Airfoil Wall Temperature on the Performance of Micro-Rotorcraft............................................................. 167 J. Kim, N. Koratkar AERODYNAMICS II – COMPUTATIONAL FLUID DYNAMICS Analysis of Vorticity Confinement for Compressible Flows .......................................................................................... 178 M. Costes, G. Kowani Toward a Better Understanding of Ducted Rotor Antitorque and Directional Control in Forward Flight................................................................................................................................................................................... 191 E. Alpman, L. Long, B. Kothmann A Non-Linear Indicial Method for the Calculation of Unsteady Airloads.................................................................... 204 D. Lee, J. Leishman, J. Baeder Ice Accretion Computations for Full Tiltrotor Configurations ..................................................................................... 232 J. Narramore, P. Tran, G. Baruzzi, W. Habashi, I. Akel, S. Balage Simulation of Unsteady Rotor-Fuselage Interactions Using Unstructured Adaptive Meshes..................................... 240 Y. Park, H. Nam, O. Kwon Validation of UH-60A Rotor Blade Aerodynamic Characteristics Using CFD ............................................................ 251 J. Sitaraman, J. Baeder, I. Chopra Towards Affordable CFD Simulations of Rotors in Forward Flight -- A Feasibility Study with Future Application to Vibrational Analysis................................................................................................................................. 268 H. Ven, O. Boelens AERODYNAMICS III – WAKES AND VORTICES Predictions of Transient Rotor Wake Aerodynamics in Response to Time-Dependent Blade Pitch Inputs.................................................................................................................................................................................. 285 S. Ananthan, J. Leishman First-Principles Free-Vortex Wake Analysis for Helicopters and Tiltrotors................................................................ 307 D. Wachspress, T. Quackenbush, A. Boschitsch The Interdependence of Straining and Viscous Diffusion Effects on Vorticity in Rotor Flow Fields......................... 331 M. Ramasamy, J. Leishman Helicopter Rotor Response to Wake Encounters in Ground Effect .............................................................................. 346 G. Whitehouse, R. Brown Development of Unsteadiness in the Wake of a Rotor in Ground Effect ...................................................................... 362 T. Saijo, B. Ganesh, A. Huang, N. Komerath, S. Bhattacharya, D. Pulla, A. Conlisk AIRCRAFT DESIGN I Design & Development of a Thrust Augmented Entomopter: An Advanced Flapping Wing Micro Hovering Air Vehicle......................................................................................................................................................... 370 M. Tarascio, I. Chopra Development of an Advanced Singletilt Disc System VTOL Aircraft........................................................................... 388 S. Yassini, G. Syrovy Application of an Integrated Decision Support System for Mid-Life Upgrade of Helicopters ................................... 400 R. Kusumo, A. Sinha, D. Schrage Application of a Probabilistic Design Environment to the Mission Requirements and Technologies for a Heavy Lift Helicooper .................................................................................................................................................... 410 A. Baker, D. Mavris, D. Schrage Evaluation of Low Cost Unmanned Aerial Vehicle Comprised of Commercial-Off-The-Self Components as a Testbed for Military Research and Development.............................................................................. 420 T. Watson Jr. A Rapid Geometry Generator for Rotorcraft Exploratory Design with Computational Fluid Dynamics ............................................................................................................................................................................ 428 R. Narducci, J. Hirsh, T. Grandine, J. Vandenbrande, T. Hogan UNCONVENTIONAL VTOL AIRCRAFT DESIGN SPECIAL SESSION A Safe and Fuel-Efficient VTOL "Personal Aircraft" ................................................................................................... 438 K. Milde Jr., A. Pruszenski Jr., J. Wagner AIRCRAFT DESIGN II Lastest Developments in Fluidlastic® Lead-Lag Dampers for Vibration Control in Helicopters ............................... 446 P. Jones, D. Russell, D. McGuire Advanced Technologies for High Performance NH90 Blades........................................................................................ 456 P. Rauch, C. Quillien Design of New EUROCOPTER Medium Twin Helicopter EC145................................................................................ 468 A. Humpert High Stiffness ("Rigid") Helicopter Pylon Vibration Isolation Systems....................................................................... 485 D. McGuire Design of an Integrated Servo-Flap Main Rotor............................................................................................................. 495 F. Wei Composite Fuselage Design Synthesis.............................................................................................................................. 506 D. McCarthy, E. Walliser Modelling Dynamic Rollover and Related Lateral Responses ....................................................................................... 516 A. Cooke AVIONICS & SYSTEMS I Mobile Commander's Associate for AMUST-D.............................................................................................................. 551 P. Stiles, C. Bodenhorn, K. Galamback Comanche Situational Knowledge: A Consolidated Network View of the Battlefield: Maximizing the Versatility of the Tass Target Threat Manager..............................................................................................................
Recommended publications
  • 1.1.3 Helicopters
    Information on the Company’s Activities / 1.1 Presentation of the Company 1.1.3 Helicopters Airbus Helicopters is a global leader in the civil and military The HIL programme, for which the Airbus Helicopters’ H160 rotorcraft market, offering one of the most complete and modern was selected in 2017, was initially scheduled for launch range of helicopters and related services. This product range in 2022 by the current military budget law. Launching the currently includes light single-engine, light twin-engine, medium programme earlier will enable delivery of the fi rst H160Ms to and medium-heavy rotorcraft, which are adaptable to all kinds of the French Armed Forces to be advanced to 2026. The H160 mission types based on customer needs. See “— 1.1.1 Overview” was designed to be a modular helicopter, enabling its military for an introduction to Airbus Helicopters. version, with a single platform, to perform missions ranging from commando infi ltration to air intercept, fi re support, and anti-ship warfare in order to meet the needs of the army, the Strategy navy and the air force through the HIL programme. The new fi ve-bladed H145 is on track for EASA and FAA Business Ambition certifi cation in 2020. To ensure these certifi cations, two fi ve- bladed prototypes have clocked more than 400 fl ight hours Airbus Helicopters continues to execute its ambition to lead the in extensive fl ight test campaigns in Germany, France, Spain, helicopter market, build end-to-end solutions and grow new Finland, and in South America. First deliveries of the new H145 VTOL businesses, while being fi nancially sound.
    [Show full text]
  • United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021
    UN Military Aviation Unit Manual United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021 Second Edition 2019 DEPARTMENT OF PEACE OPERATIONS DEPARTMENT OF OPERATIONAL SUPPORT UN Military Aviation Unit Manual Produced by: Office of Military Affairs, Department of Peace Operations UN Secretariat One UN Plaza, New York, NY 10017 Tel. 917-367-2487 Approved by: Jean-Pierre Lacroix, Under-Secretary-General for Peace Operations Department of Peace Operations (DPO). Atul Khare Under-Secretary-General for Operational Support Department of Operational Support (DOS) April 2021. Contact: PDT/OMA/DPO Review date: 30/ 04 / 2026 Reference number: 2021.04 Printed at the UN, New York © UN 2021. This publication enjoys copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, governmental authorities or Member States may freely photocopy any part of this publication for exclusive use within their training institutes. However, no portion of this publication may be reproduced for sale or mass publication without the express consent, in writing, of the Office of Military Affairs, UN Department of Peace Operations. ii UN Military Aviation Unit Manual Foreword We are delighted to introduce the United Nations Peacekeeping Missions Military Aviation Unit Manual, an essential guide for commanders and staff deployed in peacekeeping operations, and an important reference for Member States and the staff at United Nations Headquarters. For several decades, United Nations peacekeeping has evolved significantly in its complexity. The spectrum of multi-dimensional UN peacekeeping operations includes challenging tasks such as restoring state authority, protecting civilians and disarming, demobilizing and reintegrating ex-combatants. In today’s context, peacekeeping missions are deploying into environments where they can expect to confront asymmetric threats and contend with armed groups over large swaths of territory.
    [Show full text]
  • Global Military Helicopters 2015-16 Market Report Contents
    GLOBAL MILITARY HELICOPTERS 2015-16 MARKET REPORT CONTENTS MARKET OVERVIEW 2 MILITARY HELICOPTER KEY REQUIREMENTS 4 EUROPE 5 NORTH AMERICA 10 LATIN AMERICA & THE CARIBBEAN 12 AFRICA 15 ASIA-PACIFIC 16 MIDDLE EAST 21 WORLD MILITARY HELICOPTER HOLDINGS 23 EUROPE 24 NORTH AMERICA 34 LATIN AMERICA & THE CARIBBEAN 36 AFRICA 43 ASIA-PACIFIC 49 MIDDLE EAST 59 EVENT INFORMATION 65 Please note that all information herein is subject to change. Defence IQ endeavours to ensure accuracy wherever possible, but errors are often unavoidable. We encourage readers to contact us if they note any need for amendments or updates. We accept no responsibility for the use or application of this information. We suggest that readers contact the specific government and military programme offices if seeking to confirm the reliability of any data. 1 MARKET OVERVIEW Broadly speaking, the global helicopter market is currently facing a two- pronged assault. The military helicopter segment has been impacted significantly by continued defense budgetary pressures across most traditional markets, and a recent slide in global crude oil prices has impacted the demand for new civil helicopters as well as the level of activity for existing fleets engaged in the offshore oil & gas exploration sector. This situation has impacted industry OEMs significantly, many of which had been working towards strengthening the civil helicopter segment to partially offset the impact of budgetary cuts on the military segment. However, the medium- to long-term view of the market is promising given the presence of strong fundamentals and persistent, sustainable growth drivers. The market for military helicopters in particular is set to cross a technological threshold in the form of next-generation compound helicopters and tilt rotorcraft.
    [Show full text]
  • Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter
    Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter A project presented to The Faculty of the Department of Aerospace Engineering San José State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Aaron Ford May 2019 approved by Prof. Jeanine Hunter Faculty Advisor © 2019 Aaron Ford ALL RIGHTS RESERVED ABSTRACT Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter by Aaron Ford A model of helicopter blade flapping dynamics is created to determine the occurrence of retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. Equations of motion are developed, and blade element theory is utilized to evaluate the appropriate aerodynamics. Modelling of the blade flapping behavior is verified against benchmark data and then used to determine the angle of attack distribution about the rotor disk for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling of the coaxial configuration with the pusher-prop in straight and level flight is then considered. An approach was taken that minimizes the angle of attack and generation of lift on the advancing side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift distribution is compensated for by using both counter-rotating rotor disks to maximize lift on their respective advancing sides and reduce drag on their respective retreating sides. The result is an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, an assessment of the lift capability of the configuration at both sea level and at “high and hot” conditions were made.
    [Show full text]
  • Micro Coaxial Helicopter Controller Design
    Micro Coaxial Helicopter Controller Design A Thesis Submitted to the Faculty of Drexel University by Zelimir Husnic in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 c Copyright 2014 Zelimir Husnic. All Rights Reserved. ii Dedications To my parents and family. iii Acknowledgments There are many people who need to be acknowledged for their involvement in this research and their support for many years. I would like to dedicate my thankfulness to Dr. Bor-Chin Chang, without whom this work would not have started. As an excellent academic advisor, he has always been a helpful and inspiring mentor. Dr. B. C. Chang provided me with guidance and direction. Special thanks goes to Dr. Mishah Salman and Dr. Humayun Kabir for their mentorship and help. I would like to convey thanks to my entire thesis committee: Dr. Chang, Dr. Kwatny, Dr. Yousuff, Dr. Zhou and Dr. Kabir. Above all, I express my sincere thanks to my family for their unconditional love and support. iv v Table of Contents List of Tables ........................................... viii List of Figures .......................................... ix Abstract .............................................. xiii 1. Introduction .......................................... 1 1.1 Vehicles to be Discussed................................... 1 1.2 Coaxial Benefits ....................................... 2 1.3 Motivation .......................................... 3 2. Helicopter Flight Dynamics ................................ 4 2.1 Introduction ........................................
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Military Use Handbook
    National Interagency Fire Center Military Use Handbook 2021 This publication was produced by the National Interagency Coordination Center (NICC), located at the National Interagency Fire Center (NIFC), Boise, Idaho. This publication is also available on the Internet at http://www.nifc.gov/nicc/logistics/references.htm. MILITARY USE HANDBOOK 2021 INTRODUCTION ................................................................................................. ………………… ..................................................................................................................................................... CHAPTER 10 – GENERAL ........................................................................................................ 1 10.1 Purpose ............................................................................................................... 1 10.2 Overview .............................................................................................................. 1 10.3 Ordering Requirements and Procedures .............................................................. 1 10.4 Authorities/Responsibilities .................................................................................. 2 10.5 Billing Procedures ................................................................................................ 3 CHAPTER 20 – RESOURCE ORDERING PROCEDURES FOR MILITARY ASSETS ............... 4 20.1 Ordering Process ................................................................................................. 4 20.2 Demobilization
    [Show full text]
  • The Rotating Wing Aircraft Meetings of 1938 and 1939 Were the First
    The Rotating Wing Aircraft Meetings of 1938 and 1939 This advertisement showing Pitcairn’s 1932 Tandem landing at an were the first national conferences on rotorcraft. They marked estate was typical of their strategy to market to the wealthy. “If yours a transition from a technological focus on the Autogiro to the is such an estate or if you will select a neighboring field, a Pitcairn representative will gladly demonstrate the complete practicality of helicopter. In addition, these important meetings helped to this modern American scene.” With the Great Depression wearing lay the groundwork for the founding of the American Heli- on, however, the Autogiro business was moribund by the late 1930s. copter Society. – Ed. he Rotating Wing Aircraft Meeting of October 28 This was a significant gathering for the future of – 29, 1938 at the Franklin Institute in Philadel- rotary wing flight in America, coming at a time when T phia, PA, sponsored by the Philadelphia Chapter the Autogiro movement was moribund and helicopter of the Institute of the Aeronautical Sciences (IAS, the development was just about to receive a boost with forerunner of the American Institute of Aeronautics and commencement of the just-passed Dorsey-Logan Bill. Astronautics, or AIAA), was an historic gathering of And, perhaps of greater importance, those attending – those involved, committed to and researching Autogiro, including many of the leading developers of rotary wing convertiplane and helicopter flight. It was, as described flight – were actively speculating as to the future that in the preface to the conference proceedings, “the first rotary wing flight might take.
    [Show full text]
  • Development of a Helicopter Vortex Ring State Warning System Through a Moving Map Display Computer
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1999-09 Development of a helicopter vortex ring state warning system through a moving map display computer Varnes, David J. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/26475 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS DEVELOPMENT OF A HELICOPTER VORTEX RING STATE WARNING SYSTEM THROUGH A MOVING MAP DISPLAY COMPUTER by David J. Varnes September 1999 Thesis Advisor: Russell W. Duren Approved for public release; distribution is unlimited. Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. agency use only (Leave blank) September 1999 Master's Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS DEVELOPMENT OF A HELICOPTER VORTEX RING STATE WARNING SYSTEM THROUGH A MOVING MAP DISPLAY COMPUTER 6. AUTHOR(S) Varnes, David, J. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 10.
    [Show full text]
  • Robot Dynamics Rotary Wing UAS: Introduction Design and Aerodynamics
    Robot Dynamics Rotary Wing UAS: Introduction Design and Aerodynamics 151-0851-00 V Marco Hutter, Roland Siegwart and Thomas Stastny Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 1 Contents | Rotary Wing UAS 1. Introduction - Design and Propeller Aerodynamics 2. Propeller Analysis and Dynamic Modeling 3. Control of a Quadrotor 4. Rotor Craft Case Study Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 2 Introduction Rotary Wing UAS: Introduction Design and Aerodynamics Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 3 Rotorcraft: Definition . Rotorcraft: Aircraft which produces lift from a rotary wing turning in a plane close to horizontal “A helicopter is a collection of vibrations held together by differential equations” John Watkinson Advantage Disadvantage Ability to hover High maintenance costs Power efficiency during hover Poor efficiency in forward flight “If you are in trouble anywhere, an airplane can fly over and drop flowers, but a helicopter can land and save your life” Igor Sikorsky Autonomous Systems Lab Robot Dynamics: Rotary Wing UAS| 07.11.2016 | 4 Rotorcraft | Overview on Types of Rotorcraft Helicopter Autogyro Gyrodyne Power driven main rotor Un-driven main rotor, tilted Power driven main propeller away The air flows from TOP to The air flows from BOTTOM The air flows from TOP to BOTTOM to TOP BOTTOM Tilts its main rotor to fly Forward
    [Show full text]
  • Aviation Safety Letter Produce a Flurry of Re-Circulating Snow, Reducing Local Visibility and Causing Whiteout Conditions
    Transport Transports Canada Canada Transport Transports aviation safety in history Canada Canada TP 185E A Issue 1/2008 viation Safety in History 1907—The Helicopter’s Chaotic Beginnings by Guy Houdin, Chief, Aviation Terminology Standardization, Policy and Regulatory Services, Civil Aviation, Transport Canada In those days, the safety of humans and machines was a concept that was buried in the subconscious. What mattered most was rising up, flying in the air, and landing without damaging the machine, or “beating up” the pilot. But first, the sky had to be iation Safety in History conquered and mastered. Av On July 14, 2007, I was watching the military parade, ones to witness this first successful flight, and although celebrating France’s National Day in Paris, on television. others before him—such as Léger in Monaco, Bréguet Approximately one hundred aircraft had been invited to and Vollumard in Douai, France—had some good, but less Snow Landing and Take-off Techniques for Helicopters the event. The airplanes started the procession down the convincing, attempts, historians retained November 13, 1907, Champs-Élysées, followed by the troops on foot and in as the birth date of free flight by a rotary wing aircraft. Throughout the course of winter operations, helicopters face a significant hazard associated with takeoffs, vehicles, and then about 30 helicopters brought up the landings and hovering when the ground is covered with fresh or light snow. The rotor down wash can rear. When you could barely see them, high above the La aviation safety letter produce a flurry of re-circulating snow, reducing local visibility and causing whiteout conditions.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering REAL-TIME PATH PLANNING AND AUTONOMOUS CONTROL FOR HELICOPTER AUTOROTATION A Dissertation in Aerospace Engineering by Thanan Yomchinda 2013 Thanan Yomchinda Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 The dissertation of Thanan Yomchinda was reviewed and approved* by the following: Joseph F. Horn Associate Professor of Aerospace Engineering Dissertation Co-Advisor Co-Chair of Committee Jacob W. Langelaan Associate Professor of Aerospace Engineering Dissertation Co-Advisor Co-Chair of Committee Edward C. Smith Professor of Aerospace Engineering Christopher D. Rahn Professor of Mechanical Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented.
    [Show full text]