Space and Time in Loop Quantum Gravity Carlo Rovelli

Total Page:16

File Type:pdf, Size:1020Kb

Space and Time in Loop Quantum Gravity Carlo Rovelli Space and Time in Loop Quantum Gravity Carlo Rovelli To cite this version: Carlo Rovelli. Space and Time in Loop Quantum Gravity. 2018. hal-01714251 HAL Id: hal-01714251 https://hal.archives-ouvertes.fr/hal-01714251 Preprint submitted on 20 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Space and Time in Loop Quantum Gravity Carlo Rovelli CPT, Aix-Marseille Universit´e,Universit´ede Toulon, CNRS, F-13288 Marseille, France. (Dated: February 8, 2018) Quantum gravity is expected to require modifications of the notions of space and time. I discuss and clarify how this happens in Loop Quantum Gravity. [Written for the volume \Beyond Spacetime: The Philosophical Foundations of Quantum Gravity" edited by Baptiste Le Biha, Keizo Matsubara and Christian Wuthrich.] I. INTRODUCTION to in his Physics, Descartes founds on `contiguity', and so on. In mathematics it is studied by topol- Newton's success sharpened our understanding of the ogy. This is a very general notion of space, equally nature of space and time in the XVII century. Einstein's present in ancient, Cartesian, Newtonian, and rel- special and general relativity improved this understand- ativistic physics. ing in the XX century. Quantum gravity is expected to This notion of space is equally present in LQG. In take a step further, deepening our understanding of space LQG, in fact, we can say that something is in a cer- and time, by grasping of the implications for space and tain location with respect to something else. A par- time of the quantum nature of the physical world. ticle can be at the same location as a certain quan- The best way to see what happens to space and time tum of gravity. We can also say that two quanta are when their quantum traits cannot be disregarded is to adjacent. The network of adjacency of the elemen- look how this actually happens in a concrete theory of tary quanta of the gravitational field is captured by quantum gravity. Loop Quantum Gravity (LQG) [1{7] is the graph of a spin network (see Appendix). The among the few current theories sufficiently developed to links of the graph are the elementary adjacency re- provide a complete and clear-cut answer to this question. lations. Spin networks describe relative spacial ar- Here I discuss the role(s) that space and time play in rangements of dynamical entities: the elementary LQG and the version of these notions required to make quanta. sense of a quantum gravitational world. For a detailed discussion, see the first part of the book [1]. A brief sum- Newtonian space: In the XVII century, in the Prin- mary of the structure of LQG is given in the Appendix, cipia, Newton introduced a distinction between two for the reader unfamiliar with this theory. notions of space [9]. The first, which he called the \common" one, is the one illustrated in the previous item. The second, which he called the II. SPACE \true" one, is what has been later called Newto- nian space. Newtonian space is not a relation be- Confusion about the nature of space | even more so tween objects: it is assumed by Newton to exist for time| originates from failing to recognise that these also in the absence of objects. It is an entity with are stratified, multi-layered concepts. They are charged no dynamics, with a metric structure: that of a 3d with a multiplicity of attributes and there is no agree- Euclidean manifold. It is postulated by Newton on ment on a terminology to designate spacial or temporal the basis of suggestions from ancient Democritean physics, and is essential for his theoretical construc- notions lacking same of these attributes. When we say 1 `space' or `time' we indicate different things in different tion. Special relativity modifies this ontology only marginally, merging Newtonian space and time into arXiv:1802.02382v1 [gr-qc] 7 Feb 2018 contexts. The only route to clarify the role of space and time in Minkowski's spacetime. quantum gravity is to ask what we mean in general when In quantum gravity, Minkowski spacetime and we say `space' or `time' [8]. There are distinct answers to hence Newtonian space appear only as an approxi- this question; each defines a different notion of `space' or mations, as we shall see below. They have no role `time'. Let's disentangle them. I start with space, and at all in the foundation of the theory. move to time, which is more complex, later on. Relational space: `Space' is the relation we use when we locate things. We talk about space when we ask 1 During the XIX century, certain awkward aspects of this Newto- \Where is Andorra?" and answer \Between Spain nian hypostasis led to the development of the notion of `physical and France". Location is established in relation to reference system': the idea that Newtonian space captures the properties of preferred systems of bodies not subjected to forces. something else (Andorra is located by Spain and This is correct but already presupposes the essential ingredient: France). Used in this sense `space' is a relation a fixed metric space, permitting to locate things with respect to between things. It does not require metric conno- distant references bodies. Thus the notion of reference system tations. It is the notion of space Aristoteles refers does not add much to the novelty of the Newtonian ontology. 2 General relativistic space: Our understanding of the days". Location of events is given with respect to actual physical nature of Newtonian space (and something else. (We shall meet after three sun- Minkowski spacetime) underwent a radical sharp- rises.) Used in this sense time is a relation between ening with the discovery of General Relativity events. This is the notion Aristoteles refers to in (GR). The empirical success of GR |slowly cumu- his Physics2, and so on. It is a very general no- lated for a century and recently booming| adds tion of time, equally present in ancient, Cartesian, much credibility to the effectiveness of this step. Newtonian, and relativistic physics. What GR shows is that Newtonian space is indeed When used in this wide sense, `time' is definitely an entity as Newton postulated, but is not non- present in LQG. In LQG we can say that some- dynamical as Newton assumed. It is a dynamical thing happens when something else happens. For entity, very much akin to the electromagnetic field: instance, a particle is emitted when two quanta of a gravitational field. Therefore in GR there are gravity join. Also, we can say that two events are two distinct spacial notions. The first is the sim- temporally adjacent. A network of temporal adja- ple fact that dynamical entities (all entities in the cency of elementary processes of the gravitational theory are dynamical) are localized with respect to field is captured by the spinfoams (see Appendix). one another (\This black hole is inside this globu- lar cluster"). The second is a left-over habit from Newtonian time: In the Principia, Newton distin- Newtonian logic: the habit of calling `space' (or guished two notions of time. The first, which he `spacetime') one particular dynamical entity: the called the \common" one, is the one in the previous gravitational field. There is nothing wrong in do- item. The second, which he called the \true" one, ing so, provided that the substantial difference be- is what has been later called Newtonian time. New- tween these three notions of space (order of local- tonian time is assumed to be “flowing uniformly", ization, Newtonian non-dynamical space, gravita- even when nothing happens, with no influence from tional field) is clear. events, and to have a metric structure: we can say LQG treats space (in this sense) precisely as GR when two time intervals have equal duration. Spe- does: a dynamical entity that behaves as Newto- cial relativity modifies the Newtonian ontology only nian space in a certain approximation. However, in marginally, merging Newtonian space and time into LQG this dynamical entity has the usual additional Minkowski spacetime. properties of quantum entities. These are three: (i) In LQG (Minkowsky spacetime and hence) Newto- Granularity. The quantum electromagnetic field nian time appears only as an approximation. It has has granular properties: photons. For the same no role at all in the foundation of the theory. reason, the quantum gravitational field has granu- lar properties: the elementary quanta represented General relativistic time: What GR has shown is by the nodes of a spin network. Photon states form that Newtonian time is indeed (part of) an entity a basis in the Hilbert state of quantum electromag- as Newton postulated, but this entity is not non- netism like spin network states form a basis in the dynamical as Newton assumed. Rather, it is an Hilbert space of LQG. (ii) Indeterminism. The dy- aspect of a dynamical field, the gravitational field. namics of the `quanta of space' (like that of pho- What the reading T of a common clock tracks, for tons) is probabilistic. (iii) Relationalism. Quan- instance, is a function of the gravitational field gµν , tum gravity inherits all features of quantum me- Z p µ ν chanics including the weirdest.
Recommended publications
  • Unit 1 Old Quantum Theory
    UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Quantum Theory of the Hydrogen Atom
    Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, .
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • Lecture 3: Particle in a 1D Box
    Lecture 3: Particle in a 1D Box First we will consider a free particle moving in 1D so V (x) = 0. The TDSE now reads ~2 d2ψ(x) = Eψ(x) −2m dx2 which is solved by the function ψ = Aeikx where √2mE k = ± ~ A general solution of this equation is ψ(x) = Aeikx + Be−ikx where A and B are arbitrary constants. It can also be written in terms of sines and cosines as ψ(x) = C sin(kx) + D cos(kx) The constants appearing in the solution are determined by the boundary conditions. For a free particle that can be anywhere, there is no boundary conditions, so k and thus E = ~2k2/2m can take any values. The solution of the form eikx corresponds to a wave travelling in the +x direction and similarly e−ikx corresponds to a wave travelling in the -x direction. These are eigenfunctions of the momentum operator. Since the particle is free, it is equally likely to be anywhere so ψ∗(x)ψ(x) is independent of x. Incidently, it cannot be normalized because the particle can be found anywhere with equal probability. 1 Now, let us confine the particle to a region between x = 0 and x = L. To do this, we choose our interaction potential V (x) as follows V (x) = 0 for 0 x L ≤ ≤ = otherwise ∞ It is always a good idea to plot the potential energy, when it is a function of a single variable, as shown in Fig.1. The TISE is now given by V(x) V=infinity V=0 V=infinity x 0 L ~2 d2ψ(x) + V (x)ψ(x) = Eψ(x) −2m dx2 First consider the region outside the box where V (x) = .
    [Show full text]
  • Gravity, Inertia, and Quantum Vacuum Zero Point Fields
    Foundations of Physics, Vol.31,No. 5, 2001 Gravity, Inertia, and Quantum Vacuum Zero Point Fields James F. Woodward1 Received July 27, 2000 Over the past several years Haisch, Rueda, and others have made the claim that the origin of inertial reaction forces can be explained as the interaction of electri- cally charged elementary particles with the vacuum electromagnetic zero-point field expected on the basis of quantum field theory. After pointing out that this claim, in light of the fact that the inertial masses of the hadrons reside in the electrically chargeless, photon-like gluons that bind their constituent quarks, is untenable, the question of the role of quantum zero-point fields generally in the origin of inertia is explored. It is shown that, although non-gravitational zero-point fields might be the cause of the gravitational properties of normal matter, the action of non-gravitational zero-point fields cannot be the cause of inertial reac- tion forces. The gravitational origin of inertial reaction forces is then briefly revisited. Recent claims critical of the gravitational origin of inertial reaction forces by Haisch and his collaborators are then shown to be without merit. 1. INTRODUCTION Several years ago Haisch, Rueda, and Puthoff (1) (hereafter, HRP) pub- lished a lengthy paper in which they claimed that a substantial part, indeed perhaps all of normal inertial reaction forces could be understood as the action of the electromagnetic zero-point field (EZPF), expected on the basis of quantum field theory, on electric charges of normal matter. In several subsequent papers Haisch and Rueda particularly have pressed this claim, making various modifications to the fundamental argument to try to deflect several criticisms.
    [Show full text]
  • Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
    universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • Gravitational Interaction to One Loop in Effective Quantum Gravity A
    IT9700281 LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-96/0S8 (P) ITHf 00 Z%i 31 ottobre 1996 gr-qc/9611018 Gravitational Interaction to one Loop in Effective Quantum Gravity A. Akhundov" S. Bellucci6 A. Shiekhcl "Universitat-Gesamthochschule Siegen, D-57076 Siegen, Germany, and Institute of Physics, Azerbaijan Academy of Sciences, pr. Azizbekova 33, AZ-370143 Baku, Azerbaijan 6INFN-Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati, Italy ^International Centre for Theoretical Physics, Strada Costiera 11, P.O. Box 586, 34014 Trieste, Italy Abstract We carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and couplings, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence our results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. We consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective lagrangian. We calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature. PACS.: 04.60.+n Submitted to Physics Letters B 1 E-mail addresses: [email protected], bellucciQlnf.infn.it, [email protected] — 2 1 Introduction A longstanding puzzle in quantum physics is how to marry the description of gravity with the field theory of elementary particles.
    [Show full text]
  • Physics Needs Philosophy. Philosophy Needs Physics. Carlo Rovelli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Physics needs philosophy. Philosophy needs physics. Carlo Rovelli Extended version of a keynote talk at the XVIII UK-European Conference on the Foundation of Physics, given at the London School of Economics the 16 July 2016 Published on Foundations of Physics, 48, 481-491, 2018 Abstract Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method. 1. Against Philosophy is the title of a chapter of a book by one of the great physicists of the last generation: Steven Weinberg, Nobel Prize winner and one of the architects of the Standard Model of elementary particle physicsi. Weinberg argues eloquently that philosophy is more damaging than helpful for physics—although it might provide some good ideas at times, it is often a straightjacket that physicists have to free themselves from. More radically, Stephen Hawking famously wrote that “philosophy is dead” because the big questions that used to be discussed by philosophers are now in the hands of physicistsii.
    [Show full text]